Automated classification of histopathology involves identification of multiple classes, including benign, cancerous, and confounder categories. The confounder tissue classes can often mimic and share attributes with both the diseased and normal tissue classes, and can be particularly difficult to identify, both manually and by automated classifiers. In the case of prostate cancer, they may be several confounding tissue types present in a biopsy sample, posing as major sources of diagnostic error for pathologists. Two common multi-class approaches are one-shot classification (OSC), where all classes are identified simultaneously, and one-versus-all (OVA), where a “target” class is distinguished from all “non-target” classes. OSC is typically unable to handle discrimination of classes of varying similarity (e.g. with images of prostate atrophy and high grade cancer), while OVA forces several heterogeneous classes into a single “non-target” class. In this work, we present a cascaded (CAS) approach to classifying prostate biopsy tissue samples, where images from different classes are grouped to maximize intra-group homogeneity while maximizing inter-group heterogeneity.


Publications List | Quantification of tumor … »

Doyle, S., Feldman, M., Shih, N., Tomaszewski, J., Madabhushi, A., "Cascaded discrimination of normal, abnormal, and confounder classes in histopathology - Gleason grading of prostate cancer," BMC Bioinformatics (2012) 13:282.

doi:10.1186/1471-2105-13-282


About

I am Assistant Professor of Pathology and Anatomical Sciences, Biomedical Engineering, and Biomedical Informatics at the University at Buffalo, SUNY. My lab develops computational tools for medical data, with a focus on imaging, machine learning, and artificial intelligence.

Where

Search