Runge-Kutta Methods

Dr. Alexandr Chernyavskiy

$$
\text { January } 17^{\text {th }}, 2024
$$

Intended Learning Outcomes

Our classroom norms

- Get ready to engage in learning actively.
- Raise your hand to ask a question at any point during this session.

Objectives

- Use a variety of RK methods to solve practical problems
- Test the rate of convergence of various RK methods
- Construct multistage RK methods (time permitting)

Recall: First-order Initial Value Problem (IVP)

First-order IVP

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=f(t, y), \quad \leftarrow \text { ordinary differential equation (ODE) } \tag{1}\\
y\left(t_{0}\right)=y_{0} . \quad \leftarrow \text { initial condition (IC) }
\end{array}\right.
$$

Example

An object falling is subject to two external forces: gravitational and drag. Then, by Newton's second law of motion, we have an equation of the form

$$
\left\{\begin{array} { l }
{ m \frac { d v } { d t } = m g - b v ^ { 2 } , } \\
{ v (0) = 0 }
\end{array} \quad \rightarrow \left\{\begin{array}{l}
\frac{d v}{d t}=f(t, v)=g-\beta v^{2} \\
v(0)=0
\end{array}\right.\right.
$$

Recall: Euler's Method

Taylor series methods

$$
Y_{n+1}=Y_{n}+h \varphi\left(t_{n}, Y_{n}, h\right)
$$

where

$$
\varphi(t, y, h)=f(t, y)+\frac{h}{2!} \frac{\partial f}{\partial t}(t, y)+\frac{h^{2}}{3!} \frac{\partial^{2} f}{\partial t^{2}}(t, y)+\ldots
$$

Euler's Method (RK1)

$$
Y_{n+1}=Y_{n}+h f\left(t_{n}, Y_{n}\right), \quad t_{n+1}=t_{n}+h
$$

This method is not as accurate as other RK methods, as we shall see.

Note

Y_{n} is the approximate value of $y\left(t_{n}\right)$, and is sometimes denoted as $Y_{n}(h)$ to emphasize that the stepsize h was used.

Test of Convergence

Order of a method

If a numerical method is convergent, the global truncation error $E_{h}=\max _{n}\left|Y_{n}(h)-y\left(t_{n}\right)\right| \rightarrow 0$ as $h \rightarrow 0$. If $E_{h}=\mathcal{O}\left(h^{p}\right)=C h^{p}$, we say that the numerical method is of order p.

Finding the rate of convergence p

- If the analytic solution is available, estimate the slope of $E_{h}(h)$ in $\log -\log$ plot of E_{h} vs h. This gives the value of p.
- Otherwise, compute the ratios of the difference in approximations with different step sizes:

$$
p=\log _{2}\left(\frac{\max _{n}\left|Y_{n}(h)-Y_{n}(h / 2)\right|}{\max _{n}\left|Y_{n}(h / 2)-Y_{n}(h / 4)\right|}\right)
$$

In this case, $E_{h} \approx 2^{p} E_{h / 2}$.

Example

Use Euler's method with $h=2^{-k}, k=2, \ldots, 9$ to approximate the solution to

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=32-y^{2} \\
y(0)=0
\end{array}\right.
$$

on the interval $[0,1]$. Use the analytical solution

$$
y(t)=\sqrt{32} \frac{e^{2 \sqrt{32} t}-1}{e^{2 \sqrt{32} t}+1}
$$

to verify that the order of Euler's method is 1.

Midpoint method (RK2)

Midpoint method (RK2)

$$
\begin{aligned}
K_{1} & =h f\left(t_{n}, Y_{n}\right) \\
K_{2} & =h f\left(t_{n}+\frac{h}{2}, Y_{n}+\frac{1}{2} K_{1}\right) \\
Y_{n+1} & =Y_{n}+K_{2} .
\end{aligned}
$$

Idea

Take "trial step" to the middle of the interval using Euler's method. Then use the values of t and Y at the midpoint to take the full step.

Example

Use RK2 method with $h=2^{-k}, k=2, \ldots, 9$ to approximate the solution to

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=32-y^{2} \\
y(0)=0
\end{array}\right.
$$

on the interval $[0,1]$. Verify that the order of the method is 2 without using the analytical solution.

RK4 method

Classic fourth-order Runge-Kutta method (RK4)

$$
\begin{aligned}
K_{1} & =h f\left(t_{n}, Y_{n}\right) \\
K_{2} & =h f\left(t_{n}+\frac{h}{2}, Y_{n}+\frac{1}{2} K_{1}\right), \\
K_{3} & =h f\left(t_{n}+\frac{h}{2}, Y_{n}+\frac{1}{2} K_{2}\right), \\
K_{4} & =h f\left(t_{n}+h, Y_{n}+K_{3}\right) \\
Y_{n+1} & =Y_{n}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) .
\end{aligned}
$$

Activity

Use RK4 method with $h=2^{-k}, k=2, \ldots, 9$ to approximate the solution to

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=32-y^{2} \\
y(0)=0
\end{array}\right.
$$

on the interval $[0,1]$. Verify that the order of the method is 4 with and without using the analytical solution.

Analytical solution:

$$
y(t)=\sqrt{32} \frac{e^{2 \sqrt{32} t}-1}{e^{2 \sqrt{32} t}+1}
$$

RK methods

Recall: Taylor series methods

$$
\begin{aligned}
Y_{n+1} & =Y_{n}+h \varphi\left(t_{n}, Y_{n}, h\right) \\
\text { where } \quad \varphi(t, y, h)=f(t, y) & +\frac{h}{2!} \frac{\partial f}{\partial t}(t, y)+\frac{h^{2}}{3!} \frac{\partial^{2} f}{\partial t^{2}}(t, y)+\ldots
\end{aligned}
$$

where

m-stage explicit RK method

$$
\varphi(t, y, h)=\sum_{i=1}^{m} c_{i} K_{i}, \quad K_{i}=f\left(t+a_{i} h, y+h \sum_{j=1}^{i-1} b_{i j} K_{j}\right)
$$

The coefficients $a_{i}, b_{i j}, c_{i}$ fully characterize RK method.

Idea

The coefficients are chosen to cancel out error terms in a Taylor series.
Optimal choice of these coefficients requires a deep mathematical analysis.

Motivation: RK2

From $y^{\prime}=f(t, y)$ we can use the Fundamental Theorem of Calculus to obtain that

$$
\begin{equation*}
y\left(t_{n+1}\right)-y\left(t_{n}\right)=\int_{t_{n}}^{t_{n+1}} f(t, y(t)) d t \tag{2}
\end{equation*}
$$

Let $h=t_{n+1}-t_{n}$. Using the midpoint formula for an integral we obtain that

$$
\begin{equation*}
\int_{t_{n}}^{t_{n+1}} f(t, y(t)) d t=h f\left(t_{n}+\frac{h}{2}, y\left(t_{n}+\frac{h}{2}\right)\right)+\mathcal{O}\left(h^{3}\right) \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
y\left(t_{n+1}\right)=y\left(t_{n}\right)+h f\left(t_{n}+\frac{h}{2}, y\left(t_{n}+\frac{h}{2}\right)\right)+\mathcal{O}\left(h^{3}\right) \tag{4}
\end{equation*}
$$

However, we do not know y $\left(t_{n}+\frac{h}{2}\right)$! We can use Euler's method to approximate $y\left(t_{n}+\frac{h}{2}\right)$ and obtain

$$
\begin{equation*}
y\left(t_{n}+\frac{h}{2}\right)=y\left(t_{n}\right)+\frac{h}{2} f\left(t_{n}, y\left(t_{n}\right)\right)+\mathcal{O}\left(h^{2}\right) . \tag{5}
\end{equation*}
$$

As we insert (5) into (4), we obtain the algorithm for the second order RK method (RK2).

Motivation: RK4

From $y^{\prime}=f(t, y)$ we can use the Fundamental Theorem of Calculus to obtain that

$$
\begin{equation*}
y\left(t_{n+1}\right)-y\left(t_{n}\right)=\int_{t_{n}}^{t_{n+1}} f(t, y(t)) d t \tag{6}
\end{equation*}
$$

Let $h=t_{n+1}-t_{n}$. Using the Simpson rule for an integral we obtain that

$$
\begin{equation*}
\int_{t_{n}}^{t_{n+1}} f(t, y(t)) d t=\frac{h}{6}\left[f\left(t_{n}, y\left(t_{n}\right)\right)+4 f\left(t_{n}+\frac{h}{2}, y\left(t_{n}+\frac{h}{2}\right)\right)+f\left(t_{n+1}, y\left(t_{n+1}\right)\right)\right]+\mathcal{O}\left(h^{5}\right), \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
y\left(t_{n+1}\right)=y\left(t_{n}\right)+\frac{h}{6}\left[f\left(t_{n}, y\left(t_{n}\right)\right)+4 f\left(t_{n}+\frac{h}{2}, y\left(t_{n}+\frac{h}{2}\right)\right)+f\left(t_{n+1}, y\left(t_{n+1}\right)\right)\right]+\mathcal{O}\left(h^{5}\right) . \tag{8}
\end{equation*}
$$

However, we do not know $y\left(t_{n}+\frac{h}{2}\right)$ and $y\left(t_{n+1}\right)$! The fourth-order RK4 splits midpoint evaluations in two steps, that is we have

$$
\begin{align*}
y\left(t_{n+1}\right)= & y\left(t_{n}\right)+\frac{h}{6}\left[f\left(t_{n}, y\left(t_{n}\right)\right)+2 f\left(t_{n}+\frac{h}{2}, y\left(t_{n}+\frac{h}{2}\right)\right)+2 f\left(t_{n}+\frac{h}{2}, y\left(t_{n}+\frac{h}{2}\right)\right)\right. \tag{9}\\
& \left.+f\left(t_{n+1}, y\left(t_{n+1}\right)\right)\right]+\mathcal{O}\left(h^{5}\right) \tag{10}
\end{align*}
$$

Continuation

We have:

$$
\begin{align*}
y\left(t_{n+1}\right)= & y\left(t_{n}\right)+\frac{h}{6}\left[f\left(t_{n}, y\left(t_{n}\right)\right)+2 f\left(t_{n}+\frac{h}{2}, y\left(t_{n}+\frac{h}{2}\right)\right)+2 f\left(t_{n}+\frac{h}{2}, y\left(t_{n}+\frac{h}{2}\right)\right)\right. \tag{11}\\
& \left.+f\left(t_{n+1}, y\left(t_{n+1}\right)\right)\right]+\mathcal{O}\left(h^{5}\right) . \tag{12}
\end{align*}
$$

The first two function evaluations are as for RK2; that is, we make

$$
\begin{equation*}
K_{1}=h f\left(t_{n}, Y_{n}\right) \tag{13}
\end{equation*}
$$

which is the slope at t_{n}, and then we compute the slope at the midpoint using Euler's method to predict y $\left(t_{n}+\frac{h}{2}\right)$:

$$
\begin{equation*}
K_{2}=h f\left(t_{n}+\frac{h}{2}, Y_{n}+\frac{1}{2} K_{1}\right) . \tag{14}
\end{equation*}
$$

Then the improved slope at the midpoint is used to further improve the slope used for $y\left(t_{n}+\frac{h}{2}\right)$:

$$
\begin{equation*}
K_{3}=h f\left(t_{n}+\frac{h}{2}, Y_{n}+\frac{1}{2} K_{2}\right) . \tag{15}
\end{equation*}
$$

Finally, with the latter slope we can in turn predict:

$$
\begin{equation*}
y\left(t_{n+1}\right)=y\left(t_{n}\right)+K_{3}+\mathcal{O}\left(h^{5}\right) \tag{16}
\end{equation*}
$$

As we put everything together, we obtain the algorithm for the fourth-order RK method (RK4).

Final remarks

Note

Higher-order IVPs can be reduced to a system of first-order ones. E.g.,

$$
\text { (second-order) } \frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right) \Leftrightarrow\left\{\begin{array}{l}
\frac{d y}{d t}=v \\
\frac{d v}{d t}=f(t, y, v) .
\end{array}\right.
$$

Other numerical methods for solving IVPs

- Richardson extrapolation, Bulirsch-Stoer method: extrapolate a computed result to a smaller stepsize
- Predictor-corrector methods: store solution, extrapolate it, then correct using derivative information

Adaptive stepsize

Changes in stepsize during the computation are often used to achieve greater accuracy with minimal effort.

Summary

- Runge-Kutta methods can be used to solve ODEs coming from applications like physics and engineering
- Convergence and order of numerical methods can be tested by computations with different step sizes
- Runge-Kutta methods of various orders can be built using FTC or Taylor series

