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Abstract
In the present work, we compute numerical solutions
of an integro-differential equation for traveling waves
on the boundary of a 2D blob of an ideal fluid in the
presence of surface tension. We find that solutions with
multiple lobes tend to approach Crapper capillary waves
in the limit of many lobes. Solutions with a few lobes
become elongated as they become more nonlinear. It is
unclear whether there is a limiting solution for small
number of lobes, and what are its properties. Solutions
are found from solving a nonlinear pseudodifferential
equation by means of the Newton conjugate-residual
method. We use Fourier basis to approximate the solu-
tion with the number of Fourier modes up to 𝑁 =
65536.
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1 INTRODUCTION

The capillary waves are commonly observed in the ocean swell on the length scale of a few cen-
timeters. They often appear as a result of breaking of steep gravitywaves1 or other processes related
to water wave turbulence, such as the formation of direct energy cascade.2,3 When wind blows on
the ocean surface, or a breaking ocean wave is observed, a spray of droplets often is formed when
tiny droplets detach from the main body of water.
Leaving aside the ballistic motion induced by gravity, the internal motion of a droplet is dom-

inated by the kinetic energy entrapped in its body, and the surface tension forces acting upon its
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2 CHERNYAVSKY and DYACHENKO

free surface. The perfect sphere is a minimizer of the surface area of a fluid droplet, and hence,
potential energy due to surface tension attains its minimum value in a spherical droplet. Simi-
larly, in a 2D fluid, the minimal perimeter is attained by a disc-shaped droplet. Once detached
from the bulk of the fluid, it carries away angular momentum from the fluid body as a part of its
kinetic energy. Both quantities are conserved in time and contribute to its dynamics that can be
quite complicated, and is described by the Euler equations with a free boundary. When the angu-
lar momentum carried by a droplet is too large to be balanced by surface tension, the droplet may
break further into even smaller droplets, and a cascade of multiple breaking droplets observed
on a large scale may be contributing to generation of water spray at the crests of steep ocean
waves. Some environmental processes, like the gas exchange at the air–water interface, can be
greatly enhanced by an effective increase of surface area through droplet generation. It is our
aim to understand the internal dynamics of droplets, and the processes that may result in their
breaking.
In the present work, we consider nonlinear traveling waves on the free surface of a droplet of

radius 𝑅 induced by a balance of angular momentum and the forces of surface tension. We follow
the conformal variables approach originally introduced by Stokes in Ref. [4] and later extended to
time-dependent problem in Refs. [5, 6]. A framework for studying flows in closed domains (like
a fluid blob) as well as on the exterior of an air bubble submerged in a 2D ideal fluid has been
developed in Ref. [7] focusing on fluid flows generated by point vortex. In contrast to Ref. [7], we
make no additional assumption on the nature of the velocity field. Our approach is based on the
conformal variables technique for bounded domains described in Ref. [8].
We find families of nonlinear traveling waves that bifurcate from a disc-shaped droplet and

can be parameterized by an integer number of wavelengths per perimeter of a droplet (the
number of lobes, 𝑘) and the wave steepness. The solutions are found numerically in terms of
Fourier series satisfying pseudodifferential nonlinear eigenvalue problem that is qualitatively sim-
ilar to the Babenko equation for Stokes waves in 2D9 and can be solved by similar numerical
techniques.10,11
Given wave length 𝜆, we recover the family of Crapper wave solutions12,13 in the limit 𝜆 ≪ 𝑅

(𝑘 → ∞). This limit is equivalent to traveling capillary waves in infinite depth fluid. Oscillations
of 3D droplets have been a subject of interest since the works of Rayleigh,14 and have been studied
both experimentally and analytically, see, for example, Ref. [15]. It is yet unclear whether there is
a relation between dynamics of 2D and 3D droplets.
The text is organized as follows. In the first three sections, we describe the motion integrals

relevant to dropletmechanics, the conformal variables approach, and the equation (10) describing
a nonlinear traveling wave. Section 4 describes the series solution for infinitesimal waves that are
employed as the initial guess in the Newton conjugate-residual (CR) method10,11 in Section 5. The
main results and conclusions are described in Section 7.

2 PROBLEM FORMULATION

We consider the motion of a 2D ideal fluid in a bounded domain. The velocity field is given by
the gradient of the velocity potential, 𝜑(𝐫, 𝑡), where 𝐫 = (𝑥, 𝑦)𝑇 ∈ .
The Hamiltonian is the sum of kinetic and potential energy due to the surface tension:

 =
1

2 ∬
𝐷

(∇𝜑)
2
𝑑𝑥𝑑𝑦 + 𝜎 ∫

𝜕𝐷

𝑑𝑙, (1)

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12663 by U
niversity A

t B
uffalo (Suny), W

iley O
nline L

ibrary on [24/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHERNYAVSKY and DYACHENKO 3

where ∇ is the 2D gradient and 𝜎 is the surface tension coefficient. The boundary of the fluid
domain, 𝜕, also known as the free surface, is a time-dependent curve in 2D.
When the fluid is at rest, the shape of the droplet is a perfect disc, a shape that attains the least

perimeter given a fixed volume 𝜇; when detached from the body of fluid, droplet carries away
angular momentum  that is conserved:

𝜇 = ∬
𝐷

𝑑𝑥𝑑𝑦 and  = ∬
𝐷

[𝐫 × ∇𝜑] 𝑑𝑥𝑑𝑦. (2)

A semi-infinite periodic strip 𝑤 = 𝑢 + 𝑖𝑣 ∈ {−𝜋 ≤ 𝑢 < 𝜋, 𝑣 ≤ 0} is conformally mapped to the
fluid domain 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝐷 by the complex function 𝑧(𝑤, 𝑡). The invariant quantities associated
with the flowmay be expressed in terms of conformal variables as 1𝐷 integrals over the free surface
𝑤 = 𝑢 (𝑣 = 0); for example, the Hamiltonian becomes

 =
1

2 ∬
𝐷

(∇𝜑)
2
𝑑𝑥𝑑𝑦 + 𝜎 ∫

𝜕𝐷

𝑑𝑙 =
1

2

𝜋

∫
−𝜋

𝜓�̂�𝜓 𝑑𝑢 + 𝜎

𝜋

∫
−𝜋

|𝑧𝑢|𝑑𝑢, (3)

where �̂� is the Hilbert transform, and �̂� = −�̂�𝜕𝑢. Here, 𝜓(𝑢, 𝑡) = 𝜑(𝑥(𝑢, 𝑡), 𝑦(𝑢, 𝑡), 𝑡) is the veloc-
ity potential at the free surface. The total volume of an incompressible fluid is proportional
to the mass of the fluid 𝜇, a trivial constant of motion, and the angular momentum  , given
by

𝜇 = ∬
𝐷

𝑑𝑥 𝑑𝑦 =
1

4𝑖

𝜋

∫
−𝜋

[𝑧�̄�𝑢 − �̄�𝑧𝑢] 𝑑𝑢, (4)

 = ∬
𝐷

[𝐫 × ∇𝜙] 𝑑𝑥𝑑𝑦 = −
1

2 ∫
𝜕𝐷

𝑟2
𝜕𝜃

𝜕𝐧
𝑑𝑙 = −

1

2

𝜋

∫
−𝜋

|𝑧|2𝜓𝑢 𝑑𝑢, 𝑑
𝑑𝑡

= 0, (5)

where 𝑟 =
√
𝑥2 + 𝑦2 and 𝐧 is the unit normal to the free surface.

3 TRAVELINGWAVE

The implicit form of complex equations of motion is given by:

𝑧𝑡�̄�𝑢 − �̄�𝑡𝑧𝑢 = Φ̄𝑢 − Φ𝑢, (6)

𝜓𝑡�̄�𝑢 − 𝜓𝑢�̄�𝑡 +
Φ2𝑢
2𝑧𝑢

= 𝑖𝜎𝜕𝑢

(
�̄�𝑢|𝑧𝑢|

)
, (7)

whereΦ = 𝜓 + 𝑖�̂�𝜓 =∶ 2�̂�𝜓 is the complex potential and we defined the projection operator, �̂� =
1

2
(1 + 𝑖�̂�).
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4 CHERNYAVSKY and DYACHENKO

A travelingwave on the free surface of a disc is obtained by seeking conformalmap andpotential
in the form:

𝑧(𝑢, 𝑡) = 𝑒−𝑖Ω𝑡𝑧(𝑢 − Ω𝑡) and Φ(𝑢, 𝑡) = 𝑖Ω�̂�|𝑧|2 − 𝛽𝑡, (8)

where 𝛽 is the Bernoulli constant. We note that the equations of motion are invariant under
the change of variables 𝑢 → 𝑢 − Ω𝑡, and thus, the solution may be sought in the form 𝑧 = 𝑧(𝑢).
Substitution of (8) in the equations (6) and (7) leads to an equation for traveling waves:

2𝛽𝑦𝑢 −
Ω2

2

[
𝑥�̂�|𝑧|2 − �̂�(

𝑦�̂�|𝑧|2)] − 𝜎𝜕𝑢[ 𝑥𝑢|𝑧𝑢| − �̂�
(
𝑦𝑢|𝑧𝑢|

)]
= 0, (9)

or, in the complex form,

2𝑖𝛽𝑧𝑢 + Ω
2�̂�

[
𝑧�̂�|𝑧|2] + 2𝜎𝜕𝑢�̂�[ 𝑧𝑢|𝑧𝑢|

]
= 0. (10)

For a traveling wave solution, kinematic constants are related via the formula

𝜇𝛽 = Ω + 𝜎
2
𝐿, (11)

where

𝐿 = ∫
𝜋

−𝜋

|𝑧𝑢|𝑑𝑢 (12)

is the perimeter of the droplet.

4 ASYMPTOTIC SERIES FOR SMALLWAVES

Let𝑤 = 𝑢 + 𝑖𝑣 ∈ ℂ−, and recall that 𝑒−𝑖𝑤 is a conformal map from a semi-infinite strip−𝜋 < 𝑢 <
𝜋 and 𝑣 < 0 to a unit disc. The function 𝑧(𝑢) describing the shape of a small amplitude wave is
represented by an infinite Fourier series,

𝑧(𝑢) = 𝑒−𝑖𝑢

(
1 +

∞∑
𝑘=1

𝑎𝑘𝑒
−𝑖𝑘𝑢

)
, (13)

where𝑎𝑘 are the Fourier coefficients. Unless the solution is strongly nonlinear, the series is rapidly
convergent, and asymptotic solution of theEquation (10) can be obtained by a series expansion (13)
assuming |𝑎2|≪ |𝑎1|.
The first-order approximation is given by

𝑧 = 𝑒−𝑖𝑢
(
1 + 𝑎𝑘𝑒

−𝑖𝑘𝑢
)
, (14)

where 𝑘 ≥ 2 is an integer representing the number of lobes in the solution. When ansatz (14) is
plugged into the dynamic condition (7), we find that the Bernoulli constant, 𝛽, and frequency,Ω,
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CHERNYAVSKY and DYACHENKO 5

must be expanded in series keeping 𝑂(𝑎𝑘) terms as follows;

𝛽 = 𝜎 + 𝑂(𝑎2
𝑘
), Ω2 =

(𝑘2 − 1)𝜎

𝑘
+ 𝑂(𝑎2

𝑘
). (15)

Dispersion is the relation between frequency of rotation, Ω(𝑘), and wave number. As shown in
Ref. [8], it can be obtained from (7) via asymptotic expansion in 𝑎𝑘. The nonlinear dispersion
relation is obtained numerically.
The second-order approximation to the solutions of (10) can be found by keeping the first two

terms in the Fourier expansion (13). We will consider the case of 𝑘 = 2, but generalization to
arbitrary number of lobes 𝑘 can be done analogously. We now seek solution in the form:

𝑧 = 𝑒−𝑖𝑢
(
1 + 𝑎2𝑒

−2𝑖𝑢 + 𝑎4𝑒
−4𝑖𝑢

)
, (16)

and substitute it into Equation (10) for traveling waves to match the corresponding terms in
the expansion. We expand Equation (10) in Fourier series and require that the first three series’
coefficients vanish, which results in the following expressions:

𝑒−𝑖𝑢
[
2(𝛽 − 𝜎) +

1

128

(
64(9𝜎 + 4Ω2)𝑎2

2

)
+ 𝑂(𝑎4

2
)

]
(determines 𝛽)

+ 𝑒−3𝑖𝑢𝑎2

[
(6𝛽 − 9𝜎 + 2Ω2) +

(
9

8
(−9𝑎2

2
+ 20𝑎4)𝜎 + 4𝑎4Ω

2

)
+ 𝑂(𝑎4

2
)

]
(determines Ω2)

+ 𝑒−5𝑖𝑢
[
128

(
5(8𝑎4𝛽 + 9𝑎

2
2
𝜎 − 20𝑎4𝜎) + 8(𝑎

2
2
+ 2𝑎4)Ω

2
)
+ 𝑂(𝑎4

2
)
]
, (determines 𝑎4)

thus the second-order approximation for theBernoulli constant𝛽 and frequencyΩ are determined
by

𝛽 = 𝜎

(
1 −

15

4
𝑎2
2

)
+ 𝑂(𝑎4

2
), Ω2 = 𝜎

(
3

2
−
25

4
𝑎2
2

)
+ 𝑂(𝑎4

2
),

and 𝑎4 =
19

12
𝑎2
2
. The first- and second-order approximations are used to provide the initial

guess for the Newton’s method applied to the fully nonlinear equation (10). The discus-
sion of fully nonlinear solutions and implementation of Newton’s method is presented in the
following sections.
In a more general case, 𝑘 ≥ 2, the second-order approximation is found analogously:

𝑧 = 𝑒−𝑖𝑢(1 + 𝑎𝑘𝑒
−𝑖𝑘𝑢 + 𝑎2𝑘𝑒

−2𝑖𝑘𝑢) + 𝑂(𝑎3
𝑘
), (17)

and by repeating the same steps to keep orders up to 𝑂(𝑎2
𝑘
), we obtain

𝛽 =

(
1 −

𝑎2
𝑘

4
(𝑘 + 1)(3𝑘 − 1)

)
𝜎 + 𝑂(𝑎4

𝑘
), (18a)

Ω2 =
𝑘2 − 1

4𝑘(1 + 2𝑘2)

(
4 + 8𝑘2 + 𝑎2

𝑘
(1 + 𝑘)(6 − 𝑘(22 + 𝑘 + 𝑘2))

)
𝜎 + 𝑂(𝑎4

𝑘
), (18b)

𝑎2𝑘 =
(1 + 𝑘)((7 + 2𝑘)𝑘 − 3)

4(1 + 2𝑘2)
𝑎2
𝑘
+ 𝑂(𝑎4

𝑘
). (18c)
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6 CHERNYAVSKY and DYACHENKO

Conformal map (17) with parameters (18) can serve as an initial guess for numerical iterative
procedure such as Newton’s method.

5 NEWTON’S METHOD

The nonlinear solutions of (10) are found by applying Newton’s iterations. Given an initial guess,
𝑧(0)(𝑢), or an approximation, 𝑧(𝑚) at an iteration 𝑚, we may write the exact solution of (10) as
follows:

𝑧 = 𝑧(𝑚) + 𝛿𝑧, (19)

where 𝑧 is the unknown exact solution of (10), 𝑚 ≥ 0 is the iteration number, and 𝛿𝑧 is the
correction term to be determined. The formula (19) is substituted into Equation (10) assuming||𝛿𝑧||≪ ||𝑧(𝑚)|| and only the linear terms in 𝛿𝑧 are kept:

2𝑖𝛽𝛿𝑧𝑢 + Ω
2�̂�

[
𝛿𝑧�̂�

|||𝑧(𝑚)|||2 + 𝑧(𝑚)�̂�(𝑧(𝑚)𝛿�̄� + �̄�(𝑚)𝛿𝑧)
]

+𝜎𝜕𝑢�̂�

⎡⎢⎢⎢⎣
𝑧
(𝑚)
𝑢|||𝑧(𝑚)𝑢

|||3
(
�̄�
(𝑚)
𝑢 𝛿𝑧𝑢 − 𝑧

(𝑚)
𝑢 𝛿�̄�𝑢

)⎤⎥⎥⎥⎦ + �̂�(𝑧
(𝑚)) = 0,

where 𝑁(𝑧) is defined as follows:

�̂�(𝑧) ∶= 2𝑖𝛽𝑧𝑢 + Ω
2�̂�

[
𝑧�̂�|𝑧|2] + 2𝜎𝜕𝑢�̂�[ 𝑧𝑢|𝑧𝑢|

]
, (20)

which is exactly the left-hand side of Equation (10). It is often more convenient to implement
iterations for a real unknown function, and we may recall that the components of the conformal
map are not independent and are related via the Hilbert transform, that is, since 𝑧 = 𝑥 + 𝑖𝑦 and
𝛿𝑧 = 𝛿𝑥 + 𝑖𝛿𝑦, then

𝑥 = −�̂�𝑦, 𝛿𝑥 = −�̂�[𝛿𝑦],

and the linearized equation (20) is equivalent to an auxiliary real equation for one real unknown
function 𝛿𝑦 given by

𝐿1(𝑦)𝛿𝑦 + 𝐿0(𝑦) = 0, (21)

where we have defined the operators 𝐿0 and its linearization 𝐿1(𝑦) as follows:

𝐿0(𝑦) ∶= −2𝛽𝑦𝑢 +
1

2
Ω2

(
𝑥�̂�|𝑧|2 − �̂�[

𝑦�̂�|𝑧|2]) + 𝜎𝜕𝑢( 𝑥𝑢|𝑧𝑢| − �̂�
[
𝑦𝑢|𝑧𝑢|

])
, (22)

𝐿1(𝑦)𝛿𝑦 ∶= −2𝛽𝛿𝑦𝑢 +
Ω2

2

(
𝛿𝑥�̂�|𝑧|2 + 𝑥�̂�(𝑥𝛿𝑥 + 𝑦𝛿𝑦) − �̂�[

𝛿𝑦�̂�|𝑧|2 + 𝑦�̂�(𝑥𝛿𝑥 + 𝑦𝛿𝑦)]) (23)

+ 𝜎𝜕𝑢

(
−
𝑦𝑢|𝑧𝑢|3 (𝑥𝑢𝛿𝑦𝑢 − 𝑦𝑢𝛿𝑥𝑢) + �̂�

[
𝑥𝑢|𝑧𝑢|3 (𝑥𝑢𝛿𝑦𝑢 − 𝑦𝑢𝛿𝑥𝑢)

])
. (24)
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CHERNYAVSKY and DYACHENKO 7

When Hilbert transform is applied to Equation (21), we obtain the linear equation for 𝛿𝑦:

�̂�𝐿1𝛿𝑦 = −�̂�𝐿0 (25)

with an operator,𝐻𝐿1, which is self-adjoint with respect to the standard inner product:

(𝑓, 𝑔) =

𝜋

∫
−𝜋

𝑓(𝑥)𝑔(𝑥)𝑑𝑥 (26)

for real-valued 𝑓(𝑥) and 𝑔(𝑥). The resulting linear system is solved by means of the CR method.
We solve (21) numerically using a Fourier pseudospectral method to approximate the function 𝛿𝑦.
The projection operator �̂�, Hilbert transform �̂�, and differentiation with respect to 𝑢 are applied
as Fourier multipliers. At each Newton iteration, a new linear system is solved with CR. Newton’s
iterations are performed until a required tolerance, 𝜀, is attained: ‖�̂�(𝑧(𝑚))‖ ≤ 𝜀.
The second-order approximation (17) is used as an initial guess, 𝑧(0), to initiate the Newton’s

iterations. Once a nonlinear solution is determined with a given set of parameters, it is used to
follow the solution branch to strongly nonlinear waves by parameter continuation, either in 𝛽 or
Ω2, while keeping surface tension 𝜎 fixed.
The constraint (11) relating the physically relevant quantities 𝜇 (see (4)),  (see (5)), and 𝐿

(see (12)) is used to determine the value of Ω2 if 𝛽 is known, or vice versa:

−𝑖𝛽 ∫
𝜋

−𝜋

𝑧𝑧𝑢 − 𝑧𝑧𝑢𝑑𝑢 + 2Ω
2 ∫

𝜋

−𝜋

|𝑧|2�̂�|𝑧|2𝑑𝑢 − 2𝜎 ∫ 𝜋

−𝜋

|𝑧𝑢|𝑑𝑢 = 0. (27)

The solutions of (10) enjoy two symmetries, one is related to the freedom of choosing the phase
shift in the rotation angle, and the second symmetry is related to rescaling of the droplet surface.
The choice of phase shift is fixed by seeking only even 𝑦(𝑢), and in order to hold the droplet area
𝜇 fixed, we rescale 𝑧(𝑢), 𝛽, 𝐿, and  once a solution of (10) is obtained,

𝑧(𝑢) →
𝑧

𝜈
, 𝜇 →

𝜇

𝜈2
, 𝐿 →

𝐿

𝜈
,  →


𝜈4
. (28)

For example, choosing 𝜈 =
√
𝜇∕𝜋 ensures that 𝜇 = 𝜋 is preserved. The number of Fourier modes

that we considered is limited by 𝑁 = 65536, and the magnitude of the Fourier mode at series
truncation is 10−9. The relative tolerance for solving the linear system (21) in the CR method is
10−2, and the nonlinear residual for Newton’s iterations 𝜀 = 10−9.
A higher number of modes (up to 𝑁 = 65536) is required because even though the solution

profiles may appear smooth, the distribution of points is not equal. There is a scarcity of points
near the edges of the lobes, whereas the number of points is dense in between the lobes. To
achieve a more accurate Fourier approximation, one could consider using auxiliary coordinate
transformation.16

6 MAIN RESULTS

The nonlinear waves obtained with Newton CR method are illustrated in Figure 1 with 𝑘 = 4
and 𝑘 = 25 lobes. In addition, we show parameter curvesΩ2 versus𝐻∕𝜆 (see Figure 2, left) and 
versus𝐻∕𝜆 (see Figure 2, right). Here,𝐻 denotes the height of thewave, and 𝜆 is the spatial period.
We illustrate two typical solutions of the nonlinear equation (10) by showing the shape of the

free surface and the velocity field in Figure 3. We find that a traveling wave becomes elongated
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8 CHERNYAVSKY and DYACHENKO

F IGURE 1 (Left panel) The shape of a perturbed droplet with 𝑘 = 4 and 𝑘 = 25. As the number of lobes 𝑘
grows, the solution appears to converge to the Crapper wave,12 and approaches a profile similar to the limiting
wave with self-intersecting profile. However, when the number of lobes is small, the limiting scenario remains
unclear. (Right panel): Wave steepness𝐻∕𝜆 of self-intersecting solution approaches the value 0.73 associated with
the limiting Crapper wave.

F IGURE 2 The left panel shows the square of the rotation speed Ω2 as a function of steepness𝐻∕𝜆, and the
right panel shows the angular momentum,  , as a function of steepness𝐻∕𝜆.

F IGURE 3 (Left panel) shows a two-lobed (𝑘 = 2) solution with𝐻∕𝜆 ≈ 0.54, and the (right panel) shows a
three-lobed (𝑘 = 3) solution with𝐻∕𝜆 ≈ 0.62. The droplet shape is marked by dark violet line (left) and orange
line (right), and the light violet (left) and pink (right) lines corresponds to a curve inside the fluid at 𝑣 = −0.005.
The velocity field is represented by black arrows.

as the steepness grows, and the number of Fourier modes necessary to resolve the solution grows
with wave steepness (see Figure 4), indicating the existence of a singularity in the analytic con-
tinuation of 𝑧(𝑤) to the upper half-plane𝑤 ∈ ℂ+. The nature of this singularity and the existence
of a limiting wave are the subject of ongoing research.
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CHERNYAVSKY and DYACHENKO 9

F IGURE 4 The Fourier spectrum for two nonlinear waves with two lobes (𝑘 = 2): (Left panel) shows the
magnitude of Fourier coefficients for a wave with 𝐻∕𝜆 ≈ 0.06, and (right panel) corresponds to 𝐻∕𝜆 ≈ 0.54.

The numerical simulations and theoretical considerations suggest that a solution with suffi-
ciently many lobes approaches the Crapper wave as the number of lobes grows (Figure 1). The
right panel of Figure 1 indicates that steepness of the self-touching (limiting) Crapper wave is
approached by the nonlinear solutions of (10) as the number of lobes 𝑘 increases. This can be
explained as follows: the wavelength is given by 𝜆 = 2𝜋∕𝑘, and as it becomes small compared to
the perimeter of the droplet (when 𝑘 grows), the effects of local curvature become less significant
and vanish in the limit 𝑘 → ∞. Another open question concerns the number of lobes for which
self-touching of neighboring waves occurs (Crapper scenario) versus the presently unknown lim-
iting scenario for few lobes, for example, 𝑘 = 2 and 𝑘 = 3 for which no indication of a tendency
to self-intersect was observed.

7 CONCLUSION

Breaking of water waves in deep ocean is associated with generation of water droplet spray. The
latter partially accounts for the energy–momentum transfer in wave turbulence. The physical
processes that generate water spray have been observed in ocean,17 as well as theoretically.18 As
plunging breaker develops on the crest of an ocean wave, there is an abrupt growth of small scale
features, and several physical mechanisms suddenly come into play.19 The force of the surface
tension, normally having little effect on long gravity waves, becomes one of the dominant forces
at the crest of a breaking wave. The detachment of a water droplet from a plunging breaker is a
complicated and nonlinear process, and the presentwork does notmake an attempt to understand
it to the full extent.
We considered a problem of deformation of a fluid disc with a free boundary subject to the force

of surface tension. We found that a conformal map associated with such a flow satisfies a pseu-
dodifferential equation that is similar to Babenko equation for the Stokes wave. We demonstrate
the results of numerical simulation with initial data close to linear waves, and observe excellent
agreement for small amplitude waves, and report significant deviations as amplitude grows.
The nonlinear equation (9), or its complex form (10), are solved by the Newton CR method10,11

that is also applicable to the Stokes wave problem. The present work is a precursor to further
investigation of nonlinear waves, and of particular interest are the questions of existence of
the limiting wave, its nature, and singularities. One may speculate that the limiting wave will
not form an angle on the surface, because it would make the potential energy grow; yet, the
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10 CHERNYAVSKY and DYACHENKO

numerical simulations suggest the breaking of a droplet (for small number of lobes), and a
tendency to develop a self-touching solution like the Crapper wave (for large number of lobes).
The study of limiting scenarios is the subject of ongoing work.
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