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CONVEX RELAXATIONS OF INTEGRAL VARIATIONAL
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SUM-OF-SQUARES OPTIMIZATION*

ALEXANDER CHERNYAVSKY\dagger ¶, JASON J. BRAMBURGER\ddagger ¶,
GIOVANNI FANTUZZI\S , AND DAVID GOLUSKIN¶

Abstract. We present a method for finding lower bounds on the global infima of integral
variational problems, wherein

\int 
\Omega f(x,u(x),\nabla u(x))dx is minimized over functions u : \Omega \subset \BbbR n \rightarrow 

\BbbR m satisfying given equality or inequality constraints. Each constraint may be imposed over \Omega 
or its boundary, either pointwise or in an integral sense. These global minimizations are generally
nonconvex and intractable. We formulate a particular convex maximization, here called the pointwise
dual relaxation (PDR), whose supremum is a lower bound on the infimum of the original problem.
The PDR can be derived by dualizing and relaxing the original problem; its constraints are pointwise
equalities or inequalities over finite-dimensional sets rather than over infinite-dimensional function
spaces. When the original minimization can be specified by polynomial functions of (x,u,\nabla u), the
PDR can be further relaxed by replacing pointwise inequalities with polynomial sum-of-squares (SOS)
conditions. The resulting SOS program is computationally tractable when the dimensions m,n and
the number of constraints are not too large. The framework presented here generalizes an approach of
Valmorbida, Ahmadi, and Papachristodoulou [IEEE Trans. Automat. Control , 61 (2016), pp. 1649--
1654]. We prove that the optimal lower bound given by the PDR is sharp for several classes of
problems, whose special cases include leading eigenvalues of Sturm--Liouville problems and optimal
constants of Poincar\'e inequalities. For these same classes, we prove that SOS relaxations of the
PDR converge to the sharp lower bound as polynomial degrees are increased. Convergence of SOS
computations in practice is illustrated for several examples.

Key words. calculus of variations, convex relaxation, polynomial optimization, sum-of-squares
programming
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1. Introduction. Finding the globally optimal solution to nonconvex integral
variational problems is often intractable, even by computational methods. One way
to study such problems is by convex relaxation---that is, by formulating an easier
convex problem whose optimum is a one-sided (and perhaps sharp) bound on the
global optimum of the original problem. In the present work, we study and apply
a general approach to relaxing integral variational problems. The relaxation can be
chosen to give a convex problem of either infinite or finite dimension, and in many
cases the finite-dimensional relaxations can be solved computationally using tools of
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482 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

polynomial optimization. A broad class of variational problems to which this approach
is applicable includes minimizations of the form

(1.1) \scrF \ast := inf
u\in W 1,p

+ constraints

\int 
\Omega 

f(x,u,\nabla u)dx,

where \Omega \subset \BbbR n is open and bounded, W 1,p is the Sobolev space of functions u : \Omega \rightarrow \BbbR m

such that all components of u and their weak derivatives are integrable in the Lebesgue
space Lp for some p \geq 1, and \nabla u : \Omega \rightarrow \BbbR m\times n is the gradient tensor defined in the
weak sense. The integrand function f can be any such that the integral is well defined
for all admissible u, and, as specified in the next section, the constraints can include
pointwise or integral conditions over \Omega or its boundary \partial \Omega . In general the infimum
\scrF \ast might not be attained, meaning no global minimizer u exists.

An upper bound on (1.1) can be found by evaluating the integral for any particular
u satisfying the constraints, and local minimizers for the constrained functional can be
computed using gradient descent methods or by solving optimality conditions such as
Euler--Lagrange equations. When (1.1) is a nonconvex problem, however, any u that
is a local minimizer might not be a global minimizer. Even when global minimizers
are known to exist, in general finding them is beyond current techniques. Here we
pursue lower bounds on the global infimum \scrF \ast , which requires a different approach.

1.1. Sketch of the method. The strategy we follow is dual to the measure-
theoretic approach of [23], and it is reminiscent of the calibration method [7, section
1.2] and the translation method [17] in the calculus of variations. It consists of two
steps that, as explained shortly, can be seen as a relaxation1 of the Lagrangian dual
problem to the original minimization (1.1). The first step is to change the functional
without changing its value by adding terms that, by the divergence theorem, integrate
to zero. The term added to f(x,u,\nabla u) in the volume integral is a total divergence
of the form divx\varphi (x,u(x)) for some \varphi : \Omega \times \BbbR m \rightarrow \BbbR n. In general an equal boundary
integral must be subtracted, as in the next section's formulation, but often this can
be avoided by choosing \varphi so that the boundary integral vanishes for all admissible u.
The second step is to estimate the new integral from below by taking the pointwise
infimum of its integrand over all (u,\nabla u) arguments. In the simpler case with no
boundary integral and no side constraints on u and \nabla u, these two steps give

(1.2)

\int 
\Omega 

f(x,u,\nabla u)dx=

\int 
\Omega 

[f +\scrD \varphi ](x,u,\nabla u)dx\geq 
\int 
\Omega 

inf
y\in \BbbR m

z\in \BbbR m\times n

[f +\scrD \varphi ](x, y, z)dx,

where \scrD \varphi : \Omega \times \BbbR m \times \BbbR m\times n \rightarrow \BbbR satisfies \scrD \varphi (x,u,\nabla u) = divx\varphi (x,u(x)) by virtue of
its definition,

(1.3) \scrD \varphi (x, y, z) :=

n\sum 
i=1

\partial \varphi i

\partial xi
+

n\sum 
i=1

m\sum 
j=1

zji
\partial \varphi i

\partial yj
.

The zji terms appearing linearly in \scrD \varphi (x, y, z) correspond to \nabla u components that
arise when divx\varphi (x,u(x)) is expanded by the chain rule. This is the only remnant of
the relationship between u and \nabla u on the right-hand side of (1.2) since any values

1By a ``relaxation"" of an optimization problem, we mean an easier problem that may have the
same optimum or may give a one-sided bound on the original optimum. This differs from ``relaxation""
in variational analysis, which does not change the optimum but ensures the existence of optimizers.
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 483

(y, z) \in \BbbR m \times \BbbR m\times n are allowed at each point x \in \Omega . The more general formulation
in the next section shows how constraints from (1.1) can be incorporated into (1.2).

The lower bound in (1.2) might seem overly conservative, but in various cases there
exist \varphi for which it is an equality, as we prove here for three classes of variational
problems. For a simple example with scalar u on the one-dimensional domain \Omega =
( - \pi /3, \pi /3), consider the minimization (1.1) over u that vanishes at the boundary
points and with integrand f = u2

x  - u2  - 2u. For the bad choice of \varphi = 0, the right-
hand side of (1.2) is  - \infty because [f+\scrD \varphi ](x, y, z) = z2 - y2 - 2y is not bounded below
over (y, z) \in \BbbR \times \BbbR . However, Example 2.2 below shows that, for the optimal choice
of \varphi (x,u) = 2u2 sinx/(2 cosx - 1), the right-hand side of (1.2) is equal to 2(\pi 3  - 

\surd 
3),

which is exactly the minimum of the variational problem.
In general, there are infinitely many possible choices of \varphi giving different lower

bounds via (1.2), so it is natural to maximize the right-hand side of (1.2) over \varphi . By
minimizing each expression in (1.2) over u and then maximizing over all functions \varphi 
in some yet-unspecified set \Phi , we obtain a sketch of our approach in the simpler case
without constraints or boundary integrals:

(1.4) \scrF \ast = inf
u\in W 1,p

\int 
\Omega 

f(x,u,\nabla x)dx\geq sup
\varphi \in \Phi 

\int 
\Omega 

inf
y\in \BbbR m

z\in \BbbR m\times n

[f +\scrD \varphi ](x, y, z)dx.

Standard Lagrangian duality (see, for instance, [14]) gives a possibly different lower
bound \scrF \ast \geq \scrL \ast that is also in the form of a maximization problem with supremum \scrL \ast .
Like the original minimization, this Lagrangian dual problem is generally intractable,
but it may be relaxed to obtain easier maximization problems whose maxima are
lower bounds on \scrL \ast . The right-hand maximization in (1.4) is a particular relaxation
of the Lagrangian dual; we call it the pointwise dual relaxation (PDR) and denote it
by \scrL pdr. The PDR and its relation to the Lagrangian dual are described in subsection
2.1.2 at a level of generality that allows for constraints and boundary integrals.

The right-hand PDR in (1.4) is still too hard to solve exactly in general, although
we give solutions here for some cases. However, further relaxation leads to com-
putationally tractable maximization problems for the broad class of problems with
``polynomial data""---meaning that the integrand f and all constraints are polynomial
in the components of (x,u,\nabla u). Seeking \varphi (x,u) from a finite space of polynomials of
degree \nu or less relaxes the PDR into a linear optimization problem whose constraints
amount to pointwise nonnegativity of polynomial expressions. The optimal value \scrL \nu 

of this linear problem is a lower bound on \scrL pdr and, consequently, on \scrF \ast . Although
pointwise nonnegativity of a multivariate polynomial is NP-hard to decide in general
[37], it can be enforced by the stronger condition that the polynomial is representable
as a sum of squares (SOS) of other polynomials. Imposing these SOS conditions leads
to an SOS program---a convex maximization problem with SOS constraints and with
tunable parameters appearing only linearly in the constraints and in the optimization
objective. As detailed in section 3, the optimal value \scrL sos

\nu of this SOS program is a
lower bound on \scrL \nu . Since SOS programs can be reformulated as semidefinite pro-
grams (SDPs) and solved numerically [38, 40, 25], it is often tractable to compute the
value \scrL sos

\nu and therefore obtain a numerical lower bound on \scrF \ast .

1.2. Related work. The approach sketched above to find lower bounds on the
global minimum of a variational problem extends ideas used in [49, 50, 48, 2, 3, 4, 1]
to verify integral inequalities. Separately, [23] proposed a measure-theoretic way to
relax variational problems, wherein the original infimum \scrF \ast is bounded below by the
infimum \scrF omr of a convex minimization problem formulated using so-called occupation
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484 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

measures and boundary measures. For variational problems with polynomial data,
\scrF omr can be bounded below by an infimum \scrF \nu over sequences of moments truncated
at degree \nu , which is in turn bounded below by an infimum \scrF mom

\nu over so-called
pseudomoments that can be computed numerically via semidefinite programming.

The infima of the measure-theoretic relaxations of [23] are related to the suprema
of the dual relaxations sketched in subsection 1.1 by the inequalities

\scrF \ast \geq \scrF omr \geq \scrF \nu \geq \scrF mom
\nu \geq \geq \geq \geq (1.5)

\scrL \ast \geq \scrL pdr \geq \scrL \nu \geq \scrL sos
\nu .

Horizontal inequalities reflect relaxations: moving from left to right, constraints be-
come less restrictive in the minimizations of the top row and more restrictive in the
maximizations of the bottom row. Each vertical inequality reflects weak Lagrangian
duality, meaning that the two problems are related by swapping the order of an infi-
mum and supremum, hence the inequality. The duality \scrF \ast \geq \scrL \ast is what defines \scrL \ast ,
and \scrF mom

\nu \geq \scrL sos
\nu reflects the well-known duality between SOS programs and pseudo-

moment problems [25, 27, 26]. The inequality \scrF omr \geq \scrL pdr is shown in [16], and the
same arguments carry over to show that \scrF \nu \geq \scrL \nu .

The only quantities in (1.5) that are typically tractable to compute are \scrF mom
\nu and

\scrL sos
\nu , both of which are defined only in the case of polynomial data. In section 2 we

formulate the successive relaxations in the bottom row of (1.5) at a level of generality
that allows for boundary integral terms, as well as pointwise and integral constraints.
The works [23, 16] formulate and study \scrF omr, from which \scrF \nu and \scrF mom

\nu follow as
described in [23]. To bound \scrF \ast in applications, there is little difference in beginning
with \scrL sos

\nu or with \scrF mom
\nu because both quantities are calculated as solutions to a pair

of dual SDPs that are solved simultaneously by standard primal-dual algorithms.
For variational problems (1.1) in general, it is largely an open challenge to char-

acterize when the various inequalities in (1.5) are or are not strict, especially as one
takes \nu \rightarrow \infty for the polynomial/moment degree in the four right-most quantities.
(With finite \nu , the strict inequalities \scrL pdr >\scrL \nu and \scrF omr >\scrF \nu are typical.) Existing
partial results concern whether the relaxation from \scrF \ast to \scrF omr introduces a relaxation
gap (i.e., a strict inequality) and whether the six right-most quantities in (1.5) are
equal in the infinite-\nu limit. In [16, 24] it is proved that \scrF \ast = \scrF omr if the integrand
f satisfies certain convexity assumptions, but examples where \scrF \ast > \scrF omr are given
also. As for the six right-hand quantities in (1.5), in the infinite-\nu limits (denoted by
a subscript \infty ) the equalities

\scrF omr = \scrF \infty = \scrF mom
\infty 

= = =(1.6)

\scrL pdr = \scrL \infty = \scrL sos
\infty 

have been proved under certain conditions. When constraints place (x,u,\nabla u) values
in a compact set, the left-hand horizontal equalities in the top and bottom lines of
(1.6) are guaranteed by the Weierstrass approximation theorem. The strong duality
statement \scrF omr =\scrL pdr is proved in [16] under certain coercivity conditions, and their
arguments immediately extend to establish that \scrF \nu = \scrL \nu for every \nu , which in the
infinite-\nu limit gives the second vertical equality in (1.6). In the case of polynomial
data, for which the two right-hand quantities in (1.6) are defined, the right-hand
equalities in the top and bottom lines are proved in [23, Theorem 3] and our Theorem
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 485

3.2, respectively, under a condition slightly stronger than the compactness of (x,u,\nabla u)
values (cf. Remark 3.3). This condition is stronger than those under which the other
equalities are proven, so it suffices for all equalities in (1.6). Even outside of these
conditions, we are not aware of counterexamples to any equalities in (1.6).

1.3. Contributions. The present work makes three main contributions. First,
by making precise the ideas sketched above, section 2 explains how to formulate PDRs
that bound global optima of integral variational problems. In the case of polynomial
data, we explain how further relaxation using SOS conditions gives computationally
tractable SOS programs. Our relaxations are only slightly more general than the one-
dimensional (1D) and two-dimensional (2D) formulations in [50, 49, 48, 2, 3, 4, 1], but
this generality makes them dual to the measure-theoretic approach of [23]. We also
generalize this framework to families of integrands depending linearly on tunable pa-
rameters \lambda \in \BbbR \tau . This gives a way to relax optimizations over \lambda , where parametrized
variational problems appear in constraints such as \scrF \ast (\lambda ) \geq 0. For the case of poly-
nomial data, in section 3 we prove general results regarding the convergence of the
lower bounds \scrL sos

\nu to the PDR value \scrL pdr as \nu is raised, along with analogous results
for the generalized framework where variational problems appear in constraints.

Our second contribution is to prove in section 4 that the PDR is sharp, meaning
that \scrF \ast =\scrL pdr and likewise in the generalized framework, for three classes of problems
that include Sturm--Liouville problems and Poincar\'e inequalities. We also show that
further SOS relaxations are sharp for problems in these classes with polynomial data.

Finally, in section 5 we illustrate the numerical convergence of SOS programs that
relax PDRs. We choose three examples with features not present in most previous
computations [49, 50, 48, 2, 3, 4, 1, 23], namely, more complicated geometries or
nonconvex integrands. The observed convergence is guaranteed by our theoretical
results for the first two examples---optimal constants of the Poincar\'e inequality for
the L2 norm on 2D domains with corners and for the L4 norm on a 1D interval---but
not for a nonconvex example from [36] whose minimum is not attained.

2. Pointwise dual relaxations. The PDR approach for finding lower bounds
on the integral variational problem (1.1) can incorporate equality or inequality con-
straints on u over the domain and/or its boundary, including nonlinear integral con-
straints, pointwise constraints, and boundary conditions. Subsection 2.1 makes precise
the ideas sketched in the introduction, arriving at a PDR formulation that includes
constraints. Subsection 2.2 generalizes this framework to optimization problems in
which parametrized variational inequalities appear as constraints. Further relaxations
into SOS programs in the case of polynomial data are described in section 3.

2.1. Integral variational problems. Consider the integral variational problem
(1.1), where \Omega is a bounded open Lipschitz domain. For simplicity we assume that
the domain boundary is specified as a finite union, \partial \Omega =\cup s

i=1\partial \Omega i, where each \partial \Omega i is a
smooth compact manifold. We assume the integrand function f in (1.1) is continuous
and gives a well-defined integral over \Omega for all u\in W 1,p satisfying the constraints. For
instance, in the absence of pointwise constraints that would ensure u(x) and \nabla u(x)
are uniformly bounded, we assume that | f(x, y, z)| grows no faster than | y| p + | z| p as
| y| , | z| \rightarrow \infty . Such assumptions guarantee that the infimum in (1.1) is well defined
but not that it is finite or attained. Further assumptions to guarantee the existence
of minimizers, such as coercivity of f , are not needed---our approach bounds global
infima below whether or not they are attained. More general growth conditions and
classical results on the existence of minimizers can be found in [9].
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486 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

For the purpose of illustration throughout this section, we suppose the constraints
on u in (1.1) include one integral inequality, one pointwise equality on \Omega , and one
equality on each boundary component \partial \Omega i (i.e., one boundary condition):\int 

\Omega 

a(x,u,\nabla u)dx\geq 0,(2.1a)

c(x,u,\nabla u) = 0, x\in \Omega ,(2.1b)

di(x,u) = 0, x\in \partial \Omega i, i= 1, . . . , s.(2.1c)

We assume that the functions a, c, di are continuous and that a(x,u,\nabla u) is integrable
for all u\in W 1,p. It is straightforward to include integral constraints that are equalities,
pointwise constraints that are inequalities, and multiple constraints of each type, but
(2.1) suffices to explain how all such constraints can be incorporated.

2.1.1. A Lagrange dual problem. Lagrangian duality gives a standard way
to pose a maximization problem whose supremum \scrL \ast is a lower bound on the infi-
mum \scrF \ast of (1.1). Specifically, \scrF \ast can first be written as a minmax problem wherein
constraints are enforced by Lagrange multipliers and then bounded below by the cor-
responding maxmin problem. In what follows we keep pointwise constraints explicit
and introduce Lagrange multipliers only for integral constraints like (2.1a), so for
the variational problem (1.1) with constraints (2.1) the Lagrange dual problem is
derived by

\scrF \ast = inf
u\in W 1,p

(2.1b)-(2.1c)

sup
\eta \in \BbbR +,

\int 
\Omega 

[f  - \eta a](x,u,\nabla u)dx(2.2a)

\geq sup
\eta \in \BbbR +

inf
u\in W 1,p

(2.1b)-(2.1c)

\int 
\Omega 

[f  - \eta a](x,u,\nabla u)dx=:\scrL \ast .(2.2b)

The scalar Lagrange multiplier \eta must be in the nonnegative set \BbbR + because (2.1a)
is an integral nonnegativity constraint. (For an integral equality constraint, the La-
grange multiplier can take any value in \BbbR .) The inequality \scrF \ast \geq \scrL \ast expresses weak
duality; strong duality is said to hold if \scrF \ast =\scrL \ast .

Computing \scrL \ast is hard because the inner minimization problem in (2.2b), like the
minimization defining \scrF \ast , is generally nonconvex and intractable. We therefore relax
(2.2b) to obtain more tractable maximizations giving lower bounds on \scrL \ast that may or
may not be sharp. Subsection 2.1.2 explains the relaxations leading to the PDR, and
section 3 explains the further relaxation to SOS programs in the case of polynomial
data. Although additional Lagrange multipliers could be introduced for pointwise
constraints such as (2.1b) and (2.1c) to formulate a Lagrange dual problem in a more
standard form than (2.2b), the SOS programs ultimately obtained would be the same
as those in section 3.

2.1.2. The pointwise dual relaxation. Let v : \Omega \rightarrow \BbbR m\times n denote the weak
gradient \nabla u, and write \scrF \ast with the definition of v included as a constraint:

(2.3) \scrF \ast = inf
u\in W 1,p

v\in Lp

\int 
\Omega 

f(x,u, v)dx s.t.
\int 
\Omega 
a(x,u, v)dx\geq 0, (a)

v=\nabla u weakly on \Omega , (b)

c(x,u, v) = 0 on \Omega , (c)

di(x,u) = 0 on \partial \Omega i, i= 1, . . . , s. (d)
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 487

To derive the PDR, we first formulate a dual maxmin problem that is similar to the
Lagrange dual problem (2.2b) but includes a Lagrange-multiplier--like function used
to enforce v = \nabla u. Then, we bound the integral objective of this maxmin problem
from below by the pointwise infimum of its integrand.

The constraint v=\nabla u is imposed using the divergence theorem for vector-valued
functions x \mapsto \rightarrow \varphi (x,u(x)), where \varphi : \Omega \times \BbbR m \rightarrow \BbbR n is continuously differentiable:

(2.4)

\int 
\Omega 

divx\varphi (x,u(x))dx - 
s\sum 

i=1

\int 
\partial \Omega i

\varphi (x,u) \cdot ni(x)dS = 0.

Here, ni(x) is the outward unit normal vector on \partial \Omega i. Let \Phi denote the set of \varphi for
which the above identity holds and for which the map x \mapsto \rightarrow \varphi (x,u(x)) is differentiable
via the chain rule for all u\in W 1,p(\Omega ,\BbbR m). (See [16] for a more explicit characterization
of \Phi .) Since \scrD \varphi in (1.3) is defined in order to satisfy divx\varphi (x,u(x)) =\scrD \varphi (x,u,\nabla u),
the left-hand integrand in (2.4) can be replaced by \scrD \varphi (x,u,\nabla u). If v =\nabla u weakly,
therefore, identity (2.4) holds for all \varphi \in \Phi with the left-hand integrand replaced by
\scrD \varphi (x,u, v). The proof of [23, Lemma 1] implies that the converse is also true, so the
divergence theorem characterizes the weak gradient \nabla u. The next lemma summarizes
these observations.

Lemma 2.1. The functions u\in W 1,p(\Omega ;\BbbR m) and v \in Lp(\Omega ;\BbbR m\times n) satisfy v=\nabla u
weakly on \Omega if and only if

(2.5)

\int 
\Omega 

\scrD \varphi (x,u, v)dx - 
s\sum 

i=1

\int 
\partial \Omega i

\varphi (x,u) \cdot ni(x)dS = 0 for all \varphi \in \Phi ,

where \scrD \varphi is defined by (1.3) and \Phi is the subset of C1(\Omega \times \BbbR m;\BbbR n) such that the
divergence theorem (2.4) holds for all u\in W 1,p.

Lemma 2.1 lets us rewrite (2.3) as a minmax problem in which \varphi is a Lagrange-
multiplier--like function enforcing v=\nabla u. As in subsection 2.1.1, we also introduce a
Lagrange multiplier \eta \in \BbbR + for the integral constraint (2.3a) but keep the pointwise
constraints explicit:

(2.6) \scrF \ast = inf
u\in W 1,p

v\in Lp

(2.3c)-(2.3d)

sup
\eta \in \BbbR +

\varphi \in \Phi 

\Biggl\{ \int 
\Omega 

[f  - \eta a+\scrD \varphi ](x,u, v)dx - 
s\sum 

i=1

\int 
\partial \Omega i

\varphi (x,u) \cdot ni(x)dS

\Biggr\} 
.

The fact that (2.6) is equal to (2.2a) follows from the observation that the supremum
of the left-hand side of (2.5) over \varphi \in \Phi is zero if v =\nabla u weakly but is \infty otherwise.
Often, it is possible to constrain \varphi so that the boundary integrals in (2.6) vanish
for all u \in W 1,p that satisfy the boundary conditions di(x,u) = 0. In such cases,
the dual relaxations derived below have no boundary terms. This boundary-free
version was sketched in subsection 1.1 and is formulated precisely in subsection 2.1.3
below.

Exchanging the supremum over \eta with the infima in (2.6) gives an expression
equivalent to the Lagrange dual problem defined in (2.2b). Exchanging the suprema
over both \eta and \varphi with the infima in (2.6), therefore, gives a maxmin problem that
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488 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

bounds the optimal value \scrL \ast of the Lagrange dual problem from below, after which
taking pointwise infima of the continuous integrands produces a further lower bound:

\scrL \ast \geq sup
\eta \in \BbbR +

\varphi \in \Phi 

inf
u\in W 1,p

v\in Lp

(2.3c)-(2.3d)

\left\{   
\int 
\Omega 

[f  - \eta a+\scrD \varphi ](x,u, v)dx - 
s\sum 

i=1

\int 
\partial \Omega i

\varphi (x,u) \cdot ni(x)dS

\right\}   
(2.7a)

\geq sup
\eta \in \BbbR +

\varphi \in \Phi 

\left\{         
\int 
\Omega 

inf
y\in \BbbR m

z\in \BbbR m\times n

c(x,y,z)=0

[f  - \eta a+\scrD \varphi ](x, y, z)dx+

s\sum 
i=1

\int 
\partial \Omega i

inf
y\in \BbbR m

di(x,y)=0

 - \varphi (x, y) \cdot ni(x)dS

\right\}         .

(2.7b)

Finally, we bound the pointwise infima in (2.7b) from below by the largest con-
tinuous functions h\in C(\Omega ,\BbbR ) and \ell i \in C(\partial \Omega i,\BbbR ) satisfying

f(x, y, z) - \eta a(x, y, z) +\scrD \varphi (x, y, z) - h(x)\geq 0 on \Gamma ,(2.8a)

 - \varphi (x, y) \cdot ni(x) - \ell i(x)\geq 0 on \Lambda i, i= 1, . . . , s,(2.8b)

where \Gamma and \Lambda i are the sets on which the pointwise constraints are satisfied:

\Gamma := \{ (x, y, z)\in \Omega \times \BbbR m \times \BbbR m\times n : c(x, y, z) = 0\} ,(2.9a)

\Lambda i := \{ (x, y)\in \partial \Omega i \times \BbbR m : di(x, y) = 0\} .(2.9b)

This yields

(2.10) \scrF \ast \geq \scrL \ast \geq \scrL pdr := sup
\eta \in \BbbR +,\varphi \in \Phi ,

h\in C(\Omega ), \ell i\in C(\partial \Omega i)
(2.8a)-(2.8b)

\Biggl\{ \int 
\Omega 

h(x)dx+

s\sum 
i=1

\int 
\partial \Omega i

\ell i(x)dS

\Biggr\} 
,

which are some of the inequalities asserted in (1.5). The maximization problem in
(2.10) is what we call the PDR.

The pointwise estimates used to bound the right-hand side of (2.7a) below by
(2.7b) can be very conservative for suboptimal \varphi , often giving pointwise infima of  - \infty 
at some or all x values. In such cases there fails to exist continuous h or \ell i satisfying
(2.8). When \varphi is optimized along with h and \ell i, however, the estimates can be sharp:
the equality \scrF \ast = \scrL pdr is proved for three classes of problems in section 4 and for
some other cases in [16]. In general, it is an open challenge to characterize when
the inequality \scrF \ast \geq \scrL pdr is an equality. Nonetheless, for any particular variational
problem where one seeks an explicit lower bound on the global infimum \scrF \ast , the
PDR remains useful because often \scrL pdr can be bounded from below or, sometimes,
computed exactly.

The reason \scrL pdr gives an explicit lower bound on \scrF \ast more easily than either \scrL \ast or
the right-hand side of (2.7a) is that, while all three maximizations are convex, the PDR
does not require an inner minimization over functions u \in W 1,p; such minimizations
are generally nonconvex and intractable. Solving the PDR exactly is also typically
impossible, but the lack of an inner minimization makes it easier to derive explicit
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 489

lower bounds on \scrL pdr. One can even hope to optimize this lower bound over the
scalar \eta and the functions \varphi , h, \ell 1,. . .,\ell s, at least when the search for such functions
is restricted to finite-dimensional function spaces. Section 3 describes how this can
be done computationally by solving SOS programs when (1.1) has polynomial data.

Remark 2.4. The PDR (2.10) makes use of the fact that the volume integral of
\scrD \varphi (x,u,\nabla u) can be expressed as a boundary integral, meaning \scrD \varphi (x,u,\nabla u) is a null
Lagrangian. All null Lagrangian functions of (x,u,\nabla u) can be generated from \varphi (x,u)
in this way when m= 1 or n= 1. With m,n\geq 2, generalizing the PDR to include all
possible null Lagrangians requires letting \varphi have certain polynomial dependence on
\nabla u as well [12]. This generalization is left for future work.

2.1.3. Pointwise dual relaxation without boundary terms. For certain \varphi ,
the integral

\int 
\Omega 
divx\varphi (x,u(x))dx vanishes for all u satisfying the problem constraints,

and then the boundary integrals in (2.4) can be omitted as in the sketch of subsection
1.1. For instance, if u vanishes at the boundaries and \varphi (x, y) = | y| 2F (x) for sufficiently
regular F : \Omega \rightarrow \BbbR n, then the boundary integrals in (2.4) vanish. This is true even
when F (x) is singular on \partial \Omega , provided the singularity is weak enough, in which case
the method is well defined only without boundary integrals.

The requirement that
\int 
\Omega 
divx\varphi (x,u(x))dx = 0 for all admissible u generally ex-

cludes some \varphi \in \Phi , but it may also include some \varphi /\in \Phi whose restriction to the
boundary of \Omega is not well defined. For any given constraints on u, we denote by \widehat \Phi the
set of continuously differentiable \varphi : \Omega \times \BbbR m \rightarrow \BbbR n for which

\int 
\Omega 
divx\varphi (x,u(x))dx= 0

but which need not be well defined on \partial \Omega . The dependence of the set \widehat \Phi on boundary
conditions and other constraints is in contrast to the set \Phi , whose elements only need
to satisfy the divergence theorem identity (2.4) for all u \in W 1,p. Optimizing over
\varphi \in \widehat \Phi instead of \Phi leads to a version of the PDR (2.10) without boundary terms:

(2.11) \scrF \ast \geq \scrL \ast \geq \widehat \scrL pdr := sup
\eta \in \BbbR +,\varphi \in \widehat \Phi ,

h\in C(\Omega ) s.t. (2.8a)

\int 
\Omega 

h(x)dx.

Since neither the set \Phi nor the set \widehat \Phi contains the other, it is not clear which of \scrL pdr

and \widehat \scrL pdr is the better lower bound on \scrF \ast . However, \scrF \ast =\scrL pdr = \widehat \scrL pdr for the classes
of problems considered in section 4, which include the following example.

Example 2.2. Consider the variational problem mentioned in subsection 1.1,

(2.12) \scrF \ast = inf
u\in W 1,2

u(\pm \pi 
3 )=0

\int \pi /3

 - \pi /3

(u2
x  - u2  - 2u)dx.

For this example, the Euler--Lagrange equation uxx + u + 1 = 0 is necessary and
sufficient for global optimality [15], giving the minimizer u\ast (x) = 2cos(x)  - 1 and
the minimum \scrF \ast = 2(\pi 3  - 

\surd 
3). The PDR approach yields an exact lower bound on

\scrF \ast , either by finding an optimal \varphi \in \widehat \Phi yielding \widehat \scrL pdr \geq 2(\pi 3  - 
\surd 
3) or by finding an

optimizing sequence of \varphi \in \Phi yielding the same lower bound on \scrL pdr.
First we consider the boundary-free formulation (2.11), here with no multiplier \eta 

because there is no integral constraint. The maximum \widehat \scrL pdr is attained with

\varphi \ast (x, y) =

\biggl( 
2 sinx

2cosx - 1

\biggr) 
y2 and h\ast (x) = 1 - 2cosx.(2.13)
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490 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

These expressions are a special case of the construction in subsection 4.1 of optimal \varphi \ast 

in terms of u\ast . In general, optimal \varphi \ast is not known explicitly, but one can construct
near-optimal \varphi computationally, as done for the present problem in subsection 3.1.1.
The coefficient of y2 in (2.13) has a degree-one singularity as x approaches the bound-
ary points \pm \pi /3, but still the integral of \scrD \varphi (x,u,ux) over \Omega = ( - \pi /3, \pi /3) vanishes
for all u\in W 1,2 that go to zero at the boundaries. This \varphi \ast , therefore, belongs to the
admissible set \widehat \Phi for the boundary-free formulation (2.11), but it does not belong to
\Phi since the boundary inequality (2.8b) is not defined. With the chosen \varphi \ast and h\ast ,

(2.14) [f +\scrD \varphi \ast  - h\ast ](x, y, z) =

\biggl[ 
z +

\biggl( 
2 sinx

2cosx - 1

\biggr) 
y

\biggr] 2
+

(y - 2cosx+ 1)
2

2cosx - 1
.

This quantity is manifestly nonnegative for all (x, y, z) \in \Gamma = \Omega \times \BbbR \times \BbbR . Integrating
h\ast over \Omega gives \widehat \scrL pdr \geq 2(\pi 3  - 

\surd 
3) =\scrF \ast , showing that \scrF \ast = \widehat \scrL pdr for this example.

The formulation (2.10) that includes boundary terms can give the same sharp
lower bound on \scrF \ast , but we cannot use the function \varphi \ast in (2.13) because it is singular
on the boundary. Instead, we can move the singularities outside \Omega by choosing

\varphi (x, y) =

\biggl( 
2 sinx

2cosx - \omega 

\biggr) 
y2 and h(x) = 1 - 2cosx

\omega 
(2.15)

with parameter \omega \in (0,1). These functions are smooth on \Omega and approach the choices
in (2.13) as \omega \nearrow 1. In this limit these parametrized \varphi and h, along with the cor-
responding choices \ell 1 = \ell 2 = 0, form an optimizing sequence for (2.10) that shows
\scrL pdr \geq 2(\pi 3  - 

\surd 
3) =\scrF \ast , and so \scrF \ast =\scrL pdr.

2.2. Optimization subject to parametrized integral inequalities. The
ideas of the PDR in subsection 2.1 can be used to relax optimization problems for
a parameter \lambda \in \BbbR \tau in which parametrized integral inequalities \scrF \ast (\lambda ) \geq 0 appear as
constraints. In particular, we consider convex problems in the form

(2.16) \scrB \ast = sup
\lambda \in \BbbR \tau 

b(\lambda ) s.t. \scrF \ast (\lambda ) := inf
u\in W 1,p

(2.1a)-(2.1c)

\int 
\Omega 

f(x,u,\nabla u,\lambda )dx\geq 0,

where b :\BbbR \tau \rightarrow \BbbR is a concave cost function, and the integrand f is as in (2.1a)--(2.1c)
but also depends affinely on \lambda . The conditions (2.1a)--(2.1c) defining admissible u are
still independent of \lambda . Problems of the form (2.16) generalize the variational problems
of subsection 2.1, which can be put in the form (2.16) by letting \tau = 1, b(\lambda ) = \lambda , and
\scrF \ast (\lambda ) = inf

\int 
\Omega 
f(x,u,\nabla u)dx  - \lambda . It is straightforward to further generalize (2.16)

with more than one variational constraint.
Applying the PDR approach of subsection 2.1.2 to \scrF \ast (\lambda ) for fixed \lambda gives a lower

bound \scrL pdr(\lambda ). Replacing the constraint \scrF \ast (\lambda ) \geq 0 in (2.16) with the sufficient
condition \scrL pdr(\lambda )\geq 0 gives

(2.17) \scrB \ast \geq \scrB pdr := sup
\lambda \in \BbbR \tau 

b(\lambda ) s.t. \scrL pdr(\lambda )\geq 0.

Alternatively, the boundary-free relaxation \widehat \scrL pdr described in subsection 2.1.3 can be

used in place of \scrL pdr in (2.17), giving a different lower bound \scrB \ast \geq \widehat \scrB pdr. Using

expressions (2.10) and (2.11) for \scrL pdr and \widehat \scrL pdr lets us write
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 491

\scrB pdr = sup
\lambda \in \BbbR \tau , \eta \in \BbbR +,

\varphi \in \Phi , h\in C(\Omega ),
\ell i\in C(\partial \Omega i)

b(\lambda ) s.t. (2.8a)-(2.8b),

\int 
\Omega 

h(x)dx+

s\sum 
i=1

\int 
\partial \Omega i

\ell i(x)dS \geq 0,(2.18a)

\widehat \scrB pdr = sup
\lambda \in \BbbR \tau , \eta \in \BbbR +,

\varphi \in \widehat \Phi , h\in C(\Omega )

b(\lambda ) s.t. (2.8a),

\int 
\Omega 

h(x)dx\geq 0.(2.18b)

Problems (2.18a) and (2.18b) are convex because the cost function b is concave
and the optimization variables \lambda ,\eta ,\varphi ,h, \ell i enter the constraints only linearly. These
maximizations are exactly solvable in some simple cases, such as Example 2.3 below,
but not in general. Nonetheless, if one can find any suboptimal \lambda ,\eta ,\varphi ,h, \ell i for (2.18a)
or (2.18b), then evaluating b(\lambda ) gives a lower bound on \scrB \ast . Checking the constraints
of either problem requires verifying pointwise inequalities on finite-dimensional sets,
whereas checking the constraints of (2.16) requires verifying integral inequalities for
infinite-dimensional sets of u, which generally is much harder. The pointwise inequal-
ities can also be hard to verify, but in the case of polynomial data, (2.18a) and (2.18b)
can be further relaxed to tractable SOS programs (see subsection 3.2).

Example 2.3. The Poincar\'e inequality for functions u \in W 1,2([ - 1,1]) subject
to vanishing Dirichlet boundary conditions states that \lambda \| u\| 2L2 \leq \| ux\| 2L2 for some
constant \lambda > 0. The largest such \lambda is the solution of

(2.19) \lambda \ast = sup \lambda s.t.

\int 1

 - 1

\bigl( 
u2
x  - \lambda u2

\bigr) 
dx\geq 0 for all u\in W 1,2 : u(\pm 1) = 0.

The value \lambda \ast = \pi 2/4 can be found by solving the Euler--Lagrange equation  - uxx =
\lambda u, whose leading eigenfunction u\ast = cos(\pi x/2) saturates the Poincar\'e inequality.
Alternatively, the PDR approach can produce an exact lower bound on \lambda \ast . In the
present example, the relaxation (2.18b) gives \lambda \ast \geq \widehat \scrB pdr with

(2.20) \widehat \scrB pdr = sup
\lambda \in \BbbR ,\varphi \in \widehat \Phi 
h\in C(\Omega )

\lambda s.t. z2  - \lambda y2 +\scrD \varphi (x, y, z)\geq h(x) on ( - 1,1)\times \BbbR \times \BbbR ,\int 
\Omega 
h(x)dx\geq 0,

where \scrD \varphi (x, y, z) = \varphi x(x, y) + \varphi y(x, y)z. The maximum \widehat \scrB pdr is attained with the
optimizers h\ast = 0 and \varphi \ast (x, y) = (\pi /2) tan(\pi x/2)y2. Note that \varphi \ast =  - (u\ast 

x/u
\ast )y2 in

terms of the Euler--Lagrange solution u\ast (x), as suggested by the \varphi constructed in
subsection 4.2 for a generalization of the present example.2 This \varphi \ast is singular at the
boundary points, but it still belongs to \widehat \Phi because the integral of \scrD \varphi (x,u,ux) over
the domain vanishes for all u \in W 1,2 that go to zero at the boundaries. The second
constraint in (2.20) is trivially satisfied, and the first is satisfied for any \lambda \leq \pi 2/4; with
\lambda = \pi 2/4, the expression that must be nonnegative is equal to [z+(\pi /2) tan(\pi x/2)y]2.
This gives the lower bound \widehat \scrB pdr \geq \pi 2/4, which is the exact value of \scrB \ast and \widehat \scrB pdr in
this example. It is also the value of \scrB pdr; an optimizing sequence for (2.18b) showing
\scrB pdr \geq \pi 2/4 is h, \ell 1, \ell 2 = 0 and \varphi =

\surd 
\lambda tan(

\surd 
\lambda x)y2 with \lambda \nearrow \pi 2/4.

3. Relaxation to SOS programs for polynomial data. We now consider
the particular case in which the integral variational problem (1.1) or the integral-
constrained optimization problem (2.16) has polynomial data, meaning that all func-
tions appearing as integrands or in pointwise constraints are polynomial in (x,u,\nabla u),

2This dual formulation for the optimal Poincar\'e constant is closely related to that in [22] and
related works, including the fact that maximizers take the form \nabla u\ast /u\ast .
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492 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

and that the domain \Omega can be specified by polynomials in x. Precisely, we assume
that \Omega is a basic closed semialgebraic set defined by s polynomial inequalities,

(3.1) \Omega = \{ x\in \BbbR n : g1(x)\geq 0, . . . , gs(x)\geq 0\} .

We also assume that each gi vanishes identically on a single boundary component, so

\partial \Omega i = \{ x\in \BbbR n : gi(x) = 0 and gj(x)\geq 0 for j \not = i\} ,(3.2)

and that \nabla gi does not vanish anywhere on \partial \Omega i, so the outward unit normal vector
is well defined as ni(x) = - \nabla gi/| \nabla gi| . Then, the sets \Gamma and \Lambda i defined in (2.9a) and
(2.9b) admit the semialgebraic definitions

\Gamma = \{ (x, y, z)\in \BbbR n \times \BbbR m \times \BbbR m\times n : c(x, y, z) = 0, g1(x)\geq 0, . . . , gs(x)\geq 0\} ,(3.3a)

\Lambda i = \{ (x, y)\in \BbbR n \times \BbbR m : di(x, y) = 0, gi(x) = 0, gj(x)\geq 0 for j \not = i\} .(3.3a)

Under these assumptions, the PDRs \scrL pdr in (2.10), \widehat \scrL pdr in (2.11), \scrB pdr in (2.18a),

and \widehat \scrB pdr in (2.18b) can be further relaxed into finite-dimensional SOS programs that
are computationally tractable and give lower bounds on the exact PDR values.

3.1. Integral variational problems. For any positive integer \nu , we can bound
\scrL pdr from below by restricting the maximization in (2.10) to

\varphi \in \Phi \cap \BbbR n[x, y]\nu , h\in \BbbR [x]\nu , \ell i = qi| \nabla gi| with qi \in \BbbR [x]\nu ,(3.4)

where \BbbR n[\cdot ]\nu is the space of n-dimensional vectors of polynomials in the bracketed
variables whose degrees are at most \nu . More generally, one can choose any finite vector
space of polynomials or use rational functions with fixed nonnegative denominators
(see Remark 3.1 below). The intersection with \Phi excludes polynomials \varphi (x, y) whose
degree in y is too large to guarantee integrability of \scrD \varphi (x,u,\nabla u) for all u \in W 1,p.
Recalling that ni(x) = - \nabla gi/| \nabla gi| for each i= 1, . . . , s, we find

(3.5) \scrL pdr \geq \scrL \nu := sup
\varphi \in \Phi \cap \BbbR n[x,y]\nu 

h,qi\in \BbbR [x]\nu , \eta \in \BbbR +

L(h, q1, . . . , qs) s.t. f  - \eta a+\scrD \varphi  - h\geq 0 on \Gamma ,
\varphi \cdot \nabla gi  - qi| \nabla gi| 2 \geq 0 on \Lambda i,

where the maximization objective is

(3.6) L(h, q1, . . . , qs) :=

\int 
\Omega 

h(x)dx+

s\sum 
i=1

\int 
\partial \Omega i

qi(x)| \nabla gi(x)| dS.

The tunable polynomials h and qi appear linearly in L, so if they are expressed in
any chosen basis with tunable coefficients, then evaluating the integrals in (3.6) for
each polynomial basis function gives L as an explicit linear function of the tunable
coefficients. These integrals can be evaluated explicitly in some cases---e.g., when \Omega is
a polyhedron, a ball, or an intersection of such sets. Otherwise, they can be evaluated
numerically to find the numbers that multiply the tunable coefficients in L.

Problem (3.5) is finite-dimensional but still intractable because pointwise poly-
nomial inequalities are NP-hard to verify in general [37]. For this reason, we follow
a standard approach [41, 25] and strengthen all polynomial nonnegativity constraints
into weighted SOS constraints. Letting \Sigma [\cdot ] denote the subset of nonnegative poly-
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 493

nomials in the bracketed variables that can be written as sums of squares of other
polynomials, we consider the sets

\scrQ (\Gamma ) :=

\Biggl\{ 
\rho c+ \sigma 0 +

s\sum 
i=1

gi\sigma i : \sigma k \in \Sigma [x, y, z], \rho \in \BbbR [x, y, z]

\Biggr\} 
,(3.7a)

\scrQ (\Lambda i) :=

\left\{   \rho 1di + \rho 2gi + \sigma 0 +
\sum 
j \not =i

gi\sigma i : \sigma k \in \Sigma [x, y], \rho j \in \BbbR [x, y]

\right\}   .(3.7b)

By design, every polynomial in \scrQ (\Gamma ) is nonnegative on \Gamma since c= 0 and gi \geq 0 on \Gamma ,
and \sigma i \geq 0. Similarly, every polynomial in \scrQ (\Lambda i) is nonnegative on \Lambda i. (The converse
statements are not always true; see [39, Example 5.6] for a counterexample.) We let
\scrQ \nu denote the restriction of these polynomial sets to degrees no larger than \nu :

\scrQ \nu (\Gamma ) =\scrQ (\Gamma )\cap \BbbR [x, y, z]\nu , \scrQ \nu (\Lambda i) =\scrQ (\Lambda i)\cap \BbbR [x, y]\nu .(3.8)

Requiring a polynomial to belong to a finite-degree set such as \scrQ \nu (\Gamma ) or \scrQ \nu (\Lambda i) is a
weighted SOS condition, which can be included as a constraint in an SOS program.

The constraints of (3.5), which enforce polynomial nonnegativity on semialgebraic
sets, can be strengthened into weighted SOS constraints to obtain

(3.9) \scrL \nu \geq \scrL sos
\nu := sup

\varphi \in \Phi \cap \BbbR n[x,y]\nu 
h,qi\in \BbbR [x]\nu , \eta \in \BbbR +

L(h, q1, . . . , qs) s.t. f  - \eta a+\scrD \varphi  - h\in \scrQ \nu (\Gamma ),
\varphi \cdot \nabla gi  - qi| \nabla gi| 2 \in \scrQ \nu (\Lambda i).

This is an SOS program, provided L(h, q1, . . . , qs) is expressed as an explicit linear
function of the tunable coefficients of h and qi as described after (3.6). We likewise
define \widehat \scrL sos

\nu as the SOS program that relaxes the boundary-free formulation \widehat \scrL pdr,

(3.10) \widehat \scrL sos
\nu := sup

\varphi \in \widehat \Phi \cap \BbbR n[x,y]\nu ,
h\in \BbbR [x]\nu , \eta \in \BbbR +

L(h) s.t. f  - \eta a+\scrD \varphi  - h\in \scrQ \nu (\Gamma ).

The computational cost of the SOS programs (3.9) and (3.10) rises with increasing
dimension n of \Omega , dimension m of u, maximum degree \nu , and, in the case of (3.9),
the number of boundary components s. When these integers are not too large, the
value of \scrL sos

\nu or \widehat \scrL sos
\nu can be computed numerically to obtain an explicit lower bound

on \scrF \ast . This generally is not possible for the other problems in the sequence \scrL \ast \geq 
\scrL pdr \geq \scrL \nu \geq \scrL sos

\nu of dual relaxations.
Raising the degree \nu enlarges the polynomial spaces in (3.5) and (3.9), so

\scrL pdr \geq \scrL \infty \geq \cdot \cdot \cdot \geq \scrL \nu +1 \geq \scrL \nu \geq \cdot \cdot \cdot 

\geq \geq \geq (3.11)

\scrL sos
\infty \geq \cdot \cdot \cdot \geq \scrL sos

\nu +1 \geq \scrL sos
\nu \geq \cdot \cdot \cdot ,

where the \infty subscript denotes the \nu \rightarrow \infty limit. (Analogous inequalities relate the
boundary-free relaxations \widehat \scrL pdr, \widehat \scrL \nu , and \widehat \scrL sos

\nu .) In general \scrL sos
\nu and \scrL \nu are strictly

smaller than \scrL pdr for fixed \nu , but one hopes that \scrL sos
\infty =\scrL pdr. When this is true and

\scrF \ast =\scrL pdr, computing \scrL sos
\nu with increasing \nu gives arbitrarily sharp lower bounds on

the global minimum \scrF \ast of the original variational problem (1.1). Two theorems that
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494 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

guarantee \scrL sos
\infty =\scrL pdr under different conditions are stated in subsection 3.1.2 below.

First, subsection 3.1.1 demonstrates convergence in a computational example.

Remark 3.1. The SOS program (3.9) can be generalized for nonpolynomial \varphi 
that are semialgebraic functions. In the case of rational \varphi , where the numerator
is a tunable polynomial and the denominator D is a fixed nonnegative polynomial,
one simply multiplies the nonnegativity constraints (2.8a) and (2.8b) by D2 and D,
respectively, to obtain polynomial inequalities that can be strengthened into SOS
conditions. It can be shown that, for any \scrL sos

\nu value obtained with polynomial \varphi ,
there exists a degree \nu \prime (dependent on D) for the numerator such that rational \varphi give
a value at least as large as \scrL sos

\nu . Therefore, convergence \scrL sos
\nu \nearrow \scrL pdr established in

subsection 3.1.2 for polynomial \varphi implies convergence with rational \varphi for any fixed
D, as long as zeros of D do not introduce singularities that make \varphi inadmissible.
Similar statements apply to the boundary-free formulation and to the SOS programs
of subsection 3.2. As demonstrated in section 5, using rational \varphi with a good choice
of D can greatly accelerate convergence of the various SOS relaxations.

3.1.1. A computational example. Consider once again the variational prob-
lem (2.12), for which it was shown in Example 2.2 that both \widehat \scrL pdr and \scrL pdr are sharp

lower bounds on \scrF \ast = 2(\pi /3 - 
\surd 
3). The optimal \varphi (x, y) giving \widehat \scrL pdr and the opti-

mizing sequence of \varphi (x, y) giving \scrL pdr in Example 2.2 are polynomial in y but not
in x, so they cannot be found by solving the SOS programs (3.9) or (3.10). To show
that polynomial \varphi found by computing \scrL sos

\nu nonetheless give excellent lower bounds
on \scrL pdr, we have computed \scrL sos

\nu for all odd polynomial degrees \nu \leq 101.
For this example, the semialgebraic sets (3.3) must encode the domain ( - \pi 

3 ,
\pi 
3 )

and its endpoints. This can be done by letting g1,2(x) =
\pi 
3 \pm x, so

\Gamma = \{ (x, y, z)\in \BbbR 3 : \pi 
3 + x\geq 0, \pi 

3  - x\geq 0\} ,(3.12a)

\Lambda 1,2 = \{ (x, y)\in \BbbR 2 : \pi 
3 \pm x= 0, \pi 

3 \mp x\geq 0, y= 0\} = \{ (\mp \pi 
3 ,0)\} .(3.12b)

Since \Lambda 1 and \Lambda 2 are singletons, the corresponding weighted SOS constraints in (3.9)
can be replaced by inequalities in which the polynomials q1, q2 are simply numbers.
The Lagrange multiplier \eta in (3.9) does not enter because the variational problem
(2.12) has no integral constraints. With these simplifications, (3.9) becomes

\scrL sos
\nu = sup

\varphi \in \Phi \cap \BbbR [x,y]\nu 
h\in \BbbR [x]\nu , q1,q2\in \BbbR 

\Biggl\{ \int \pi /3

 - \pi /3

h(x)dx+ q1 + q2

\Biggr\} 
(3.13)

s.t. z2  - y2  - 2y+\varphi x(x, y) +\varphi y(x, y)z  - h(x)\in \scrQ \nu (\Lambda ) ,
\varphi ( - \pi /3,0) - q1 \geq 0,
 - \varphi (\pi /3,0) - q2 \geq 0.

Polynomials \varphi \in \Phi can be at most quadratic in y since the variational problem (2.12)
is posed over u \in W 1,2, and the arguments introducing \varphi in subsection 2.1.2 rely
on x \mapsto \rightarrow \scrD \varphi (x,u(x),\nabla u(x)) being integrable. We therefore let \varphi (x, y) = F (x)y2 with
tunable polynomial F (x) \in \BbbR [x]\nu . The resulting SOS program was solved using the
software described at the start of section 5.

Figure 1 shows the computed \scrL sos
\nu values for \nu up to 101, as well as their decreasing

distance from the value \scrF \ast that they bound from below. These computations are
carried out in (multiple precision) floating point arithmetic and so are subject to
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 495

Fig. 1. Left: Lower bounds \scrL \mathrm{s}\mathrm{o}\mathrm{s}
\nu on the minimum \scrF \ast = 2(\pi 

3
 - 

\surd 
3) ( ) of the variational

problem (2.12), computed by solving the SOS program (3.13) with \varphi (x, y) = F (x)y2 and polynomial

F of odd degrees \nu \leq 101. Middle: Gap between \scrF \ast and \scrL \mathrm{s}\mathrm{o}\mathrm{s}
\nu . Right: The optimal F ( ) given

by (2.13), along with F that is optimal among polynomials of degree \nu = 11 ( ) and \nu = 21

( ). Each F is odd and so is shown over only half its domain.

numerical error, but the SDP solver tolerances suggest errors smaller than plotting
precision [51]. Convergence of the exact \scrL sos

\nu values to \scrF \ast is guaranteed by Theorem
4.1 below, although this theorem does not estimate the rate of convergence, which
appears to be linear for large \nu . As \nu is raised, the F (x) polynomials appear to
converge pointwise to F \ast (x) = 2 sinx

2 cosx - 1 , which is the x-dependent part of the optimal
\varphi \ast given in (2.13). Similarly, the h polynomials (not plotted for brevity) appear to
converge to the optimal h\ast in (2.13).

The relatively slow convergence of \scrL sos
\nu toward \scrF \ast in this example is explained

by the F polynomials trying, in some sense, to approximate the function F \ast that
is singular at x = \pm \pi /3. This naturally suggests that convergence of lower bounds
may be accelerated by using rational \varphi that are singular at the boundaries; for the
present example, we may take \varphi (x, y) = F (x)y2/(\pi 2/9 - x2). Such singular \varphi can be
used only in the boundary-free formulation \widehat \scrL pdr. The SOS relaxation (3.10) can be
generalized to this case as explained in Remark 3.1, and it exhibits significantly faster
convergence as \nu is raised: solving the SOS program with rational \varphi of numerator
degree \nu = 5 gives a lower bound on \scrF \ast that is sharp to 4 digits, which is already
much better than \widehat \scrL sos

\nu for polynomial \varphi of degree \nu = 101.

3.1.2. Convergence of SOS relaxations. Lower bounds \scrL sos
\nu on \scrL pdr obtained

with the SOS relaxations described above can be guaranteed to converge to \scrL pdr in
at least two cases. The first case requires a priori constraints that place the values
of (x,u,\nabla u) in a compact subset of \Omega \times \BbbR m \times \BbbR m\times n. This is made precise by the
following theorem, whose proof is given in Appendix A. The proof follows a standard
argument where near-optimal solutions to the PDR problem (2.10) are approximated
by polynomials, and then Putinar's Positivstellensatz [44] guarantees weighted SOS
representations of polynomials that are positive on compact sets.

Theorem 3.2. If there exist r0, . . . , rs \in \BbbR such that r20  - | (x, y, z)| 2 \in \scrQ (\Gamma ) and
r2i  - | (x, y)| 2 \in \scrQ (\Lambda i) for i= 1, . . . , s, then \scrL sos

\nu \nearrow \scrL pdr as \nu \rightarrow \infty .

Remark 3.3. The assumption of Theorem 3.2 implies | (x, y, z)| 2 \leq r20 on \Gamma and
| (x, y)| 2 \leq r2i on \Lambda i, so a necessary (but not sufficient) condition for the theorem to
apply is that the sets \Gamma and \Lambda i are compact. This can happen only if the variational
problem (1.1) has pointwise constraints that uniformly bound | u| and | \nabla u| . Con-
straints implying uniform bounds can often be added to a variational problem, but
usually it is unclear a priori how large these bounds should be in order to not change
the optimizer. When pointwise constraints do render \Gamma and \Lambda i compact, Theorem
3.2 either applies or can be made applicable. Although it is possible for \Gamma and \Lambda i
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496 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

to be compact without having r20  - | (x, y, z)| 2 \in \scrQ (\Gamma ) and r2i  - | (x, y)| 2 \in \scrQ (\Lambda i) [26,
Chapter 2], in such cases one can add the constraints r20  - | (x, y, z)| 2 \geq 0 and r2i  - 
| (x, y)| 2 \geq 0 to the semialgebraic definitions (3.3) of the sets \Gamma and \Lambda i, respectively,
with r0 and ri sufficiently large that the compact sets themselves do not change.
This meets the assumptions of Theorem 3.2 without changing \scrF \ast or \scrL pdr; only \scrL sos

\nu 

changes by the enlargement of the polynomial sets \scrQ \nu (\Gamma ) and \scrQ \nu (\Lambda i) in (3.9).

The second case in which we can guarantee \scrL sos
\nu \nearrow \scrL pdr is when u satisfies ho-

mogeneous Dirichlet boundary conditions and the PDR problem (2.10) admits an
optimizing sequence such that inequality (2.8a) is polynomial in (y, z) and is strictly
satisfied in the sense of the second condition in Theorem 3.4 below. The assumptions
of this theorem hold, for instance, for the variational problem of Example 2.2 with
the optimizing sequence constructed there.

Theorem 3.4. Suppose that u vanishes on all boundary components \partial \Omega i. Then,
\scrL sos
\nu \nearrow \scrL pdr as \nu \rightarrow \infty if

1. there exists r \in \BbbR such that r2  - \| x\| 2 \in \scrQ (\Omega );
2. problem (2.10) admits a maximizing sequence \{ (\eta k,\varphi k, hk, \ell k1 , . . . , \ell 

k
s)\} k\geq 1 where

\varphi k(x, y) is polynomial in y and where there exists a polynomial vector m(y, z)
and continuous symmetric-matrix-valued function Hk with Hk(x) \succ 0 on \Omega 
such that, for all (x, y, z)\in \Gamma ,

(3.14) f(x, y, z)+\scrD \varphi k(x, y, z) - \eta ka(x, y, z) - hk(x) =m(y, z)\sansT Hk(x)m(y, z).

Proof. Details of the proof are given in Appendix B. Briefly, since \Omega is compact
and \varphi k is polynomial in y, the Weierstrass approximation theorem can be used to
show that there exist polynomials (\eta k,\varphi k, hk, qk1 , . . . , q

k
s ) such that

(a)
\int 
\Omega 
hk dx+

\sum s
i=1

\int 
\partial \Omega i

qki | \nabla gi| dS \nearrow \scrL pdr,

(b) \varphi k \cdot \nabla gi  - qki | \nabla gi| 2 > 0 on \Lambda i = \partial \Omega i \times \{ 0\} , and
(c) identity (3.14) holds with a positive definite polynomial matrix Hk.

Condition (a) implies that \scrL sos
\nu \nearrow \scrL pdr if (\eta 

k,\varphi k, hk, qk1 , . . . , q
k
s ) is feasible for the SOS

program (3.9) for some \nu . This is true because Putinar's Positivstellensatz [44] and
condition (b) imply \varphi k \cdot \nabla gi - qki | \nabla gi| 2 \in \scrQ \nu (\Lambda i) for large enough \nu . Similarly, thanks
to condition (c), one can apply to Hk a Positivstellensatz for polynomial matrices
that are positive definite on compact sets [47] to obtain f +\scrD \varphi k  - \eta ka - hk \in \scrQ \nu (\Gamma )
for large enough \nu .

To show convergence \widehat \scrL sos
\nu \nearrow \widehat \scrL pdr for the boundary-free relaxations, Theorem 3.2

cannot easily be adapted because its proof relies on uniform polynomial approximation
of possibly nonpolynomial \varphi \in \Phi . This is not generally possible when the set \Phi is
replaced by \widehat \Phi , which includes singular \varphi . With homogeneous Dirichlet boundary
conditions, however, the following theorem extends Theorem 3.4 to the boundary-free
case, provided that \widehat \scrL pdr admits an optimizing sequence of nonsingular \varphi .

Theorem 3.5. Suppose that u vanishes on all boundary components \partial \Omega i. Then,\widehat \scrL sos
\nu \nearrow \widehat \scrL pdr as \nu \rightarrow \infty if

1. there exists r \in \BbbR such that r2  - \| x\| 2 \in \scrQ (\Omega ),
2. assumption 2 of Theorem 3.4 holds with each \varphi k \in \Phi \cap \widehat \Phi .

Proof. Assumption 2 implies \varphi k(x, y) =
\sum 

\alpha c\alpha (x)y
\alpha for some coefficients c\alpha \in 

C1(\Omega ;\BbbR n) with
\sum s

i=1

\int 
\partial \Omega i

c0(x) \cdot ni(x)dS = 0. The latter sum is a continuous lin-

ear functional on C1(\Omega ;\BbbR n), so an extension [43, Proposition 2] of Weierstrass's
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 497

approximation theorem lets the c\alpha be approximated by polynomials p\alpha satisfying\sum s
i=1

\int 
\partial \Omega i

p0(x) \cdot ni(x)dS = 0. This gives a polynomial \varphi \in \widehat \Phi approximating \varphi k, after
which the proof can be completed using the argument in Appendix B.

3.2. Optimization subject to parametrized integral inequalities. Recall
that the optimization problem (2.16) defining \scrB \ast can be relaxed into \scrB pdr or \widehat \scrB pdr by
replacing the integral inequality \scrF \ast (\lambda )\geq 0 with the stronger constraints \scrL pdr(\lambda )\geq 0

or \widehat \scrL pdr(\lambda )\geq 0. Strengthening these constraints further by requiring nonnegativity of

the SOS relaxations \scrL sos
\nu (\lambda ) or \widehat \scrL sos

\nu (\lambda ) defined in (3.9) and (3.10) gives

\scrB pdr \geq \scrB sos
\nu := sup

\lambda \in \BbbR \tau , \eta \in \BbbR +

\varphi \in \Phi \cap \BbbR n[x,y]\nu 
h,qi\in \BbbR [x]\nu 

b(\lambda ) s.t. f +\scrD \varphi  - \eta a - h\in \scrQ \nu (\Gamma ),

\varphi \cdot \nabla gi  - qi | \nabla gi| 2 \in \scrQ \nu (\Lambda i),
L(h, q1, . . . , qs)\geq 0,

(3.15a)

\widehat \scrB pdr \geq \widehat \scrB sos
\nu := sup

\lambda \in \BbbR \tau , \eta \in \BbbR +,

\varphi \in \widehat \Phi \cap \BbbR n[x,y]\nu ,
h\in \BbbR [x]\nu 

b(\lambda ) s.t. f +\scrD \varphi  - \eta a - h\in \scrQ \nu (\Gamma ),
L(h)\geq 0.

(3.15b)

Here, L(h, q1, . . . , qs) is a known linear function of the tunable coefficients of h and
the qi, as described after (3.6), and L(h) simply omits the qi. Problems (3.15a) and
(3.15b) are SOS programs if the objective b(\lambda ) is linear, and they can be converted to
SOS programs if b(\lambda ) is a concave quadratic function. These cases, therefore, can be
implemented using existing software for SOS programming. For more general concave
b(\lambda ), problems (3.15a) and (3.15b) can be converted into convex problems with linear
inequalities and semidefinite constraints, which may be solved with standard interior-
point algorithms if the gradient and Hessian of b can be computed efficiently.

The assumptions needed to prove \scrL sos
\nu \nearrow \scrL pdr in Theorems 3.2 and 3.4 can be

strengthened slightly to conclude that \scrB sos
\nu \nearrow \scrB pdr in at least two cases. The first case

requires the assumptions of Theorem 3.2, which cannot hold unless (u,\nabla u) values are
constrained to lie in compact sets, along with a particular ``strict feasibility"" condition.
This is made precise by Theorem 3.6 below. The second case requires the assumptions
of Theorem 3.4 along with an assumption about either strict feasibility or the form
of the optimizer. This is made precise by Theorem 3.7.

Theorem 3.6. Suppose the assumptions of Theorem 3.2 hold. Then, \scrB sos
\nu \nearrow \scrB pdr

as \nu \rightarrow \infty if there exist (\lambda ,\eta ,\varphi ,h, \ell 1, . . . , \ell s) feasible for (2.18a) and \gamma > 0 such that

(3.16)

\int 
\Omega 

h(x)dx+

s\sum 
i=1

\int 
\partial \Omega i

\ell i dS \geq \gamma .

Theorem 3.7. Suppose that u vanishes on all boundary components \partial \Omega i. Then,
\scrB sos
\nu \nearrow \scrB pdr as \nu \rightarrow \infty if the assumptions of Theorem 3.4 are satisfied and at least

one of the following two conditions holds:
3a. The maximizing sequence satisfying assumption 2 of Theorem 3.4 has all \ell ki =

0 and has \varphi k(x, y) depending polynomially on y with \varphi k(x,0) = 0.
3b. There exist (\lambda 0, \eta 0,\varphi 0, h0, \ell 01, . . . , \ell 

0
s) feasible for (2.18a) and \gamma > 0 such that

\varphi 0(x, y) depends polynomially on y and

(3.17)

\int 
\Omega 

h0(x)dx+

s\sum 
i=1

\int 
\partial \Omega i

\ell 0i (x)dS \geq \gamma .

The proof of Theorem 3.6 is given in Appendix C. It is a standard argument, simi-
lar to the proof of Theorem 3.2, where one takes convex combinations of near-optimal

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/2

4/
23

 to
 1

28
.2

05
.1

13
.1

73
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



498 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

feasible points with the strictly feasible point satisfying (3.16) and then approxi-
mates these combinations with polynomials and applies Putinar's Positivstellensatz
[44]. The proof of Theorem 3.7 is analogous but uses the approximation arguments
and Positivstellensatz from the proof of Theorem 3.4 rather than Theorem 3.2. We
omit the proof of Theorem 3.7 for brevity but note its one complication beyond the
proof of Theorem 3.4: under assumption 3a, one must approximate nonpolynomial
hk with polynomial h satisfying

\int 
\Omega 
h(x)dx=

\int 
\Omega 
hk(x)dx by invoking the same exten-

sion of Weierstrass's approximation theorem used to prove Theorem 3.5. This same
approximation argument can be combined with Theorem 3.5 to obtain a convergence
guarantee \widehat \scrB sos

\nu \nearrow \widehat \scrB pdr for the boundary-free relaxations, as stated in the following

corollary. We observe convergence of \widehat \scrB sos
\nu to \widehat \scrB pdr (in fact, to \scrB \ast ) in all computational

examples of section 5, even when the assumptions of the corollary are not satisfied.

Corollary 3.8. Under the assumptions of Theorem 3.5, \widehat \scrB sos
\nu \nearrow \widehat \scrB pdr.

4. Sharpness of relaxations for three classes of problems. This section
proves that the PDR method is sharp for three classes of problems: integral variational
problems with quadratic integrand, optimization problems giving principal eigenval-
ues of elliptic operators, and optimization problems giving optimal constants of the
Poincar\'e inequality for Lp norms on 1D domains with even p. In all cases, admissible
functions u are constrained to vanish at the boundaries. For each class of problem,
SOS relaxations also give arbitrarily sharp bounds as their polynomial degrees are
raised. These sharpness results rely on optimal \varphi constructed semiexplicitly in terms
of solutions to Euler--Lagrange equations.

4.1. Variational problems with quadratic integrand. Consider integral
variational problems of the form

(4.1) \scrF \ast = inf
u\in W 1,2

0 (\Omega )

\int 
\Omega 

\bigl[ 
\nabla u \cdot A(x)\nabla u+ b(x)u2  - 2c(x)u

\bigr] 
dx,

whereW 1,2
0 is the subspace ofW 1,2 containing functions u that vanish at the boundary

of \Omega . We make the following assumptions:
(A1) \Omega is an open bounded Lipzchitz domain.
(A2) A :\BbbR n \rightarrow \BbbS n is smooth, where \BbbS n is the space of n\times n symmetric matrices.
(A3) Uniform ellipticity: There is \omega > 0 such that \omega I \preceq A(x)\preceq \omega  - 1I for all x\in \Omega .
(A4) b :\BbbR n \rightarrow \BbbR is smooth.
(A5) c :\BbbR n \rightarrow \BbbR is smooth and strictly positive on \Omega .
(A6) A and b are such that

(4.2) \lambda \ast = min
u\in W 1,2

0 (\Omega )\int 
\Omega 
u2dx=1

\int 
\Omega 

\bigl[ 
\nabla u \cdot A(x)\nabla u+ b(x)u2

\bigr] 
dx> 0.

The last assumption (A6) can be verified by using the PDR approach to bound \lambda \ast 

below; these bounds can be made arbitrarily sharp, as proved in the next subsection.
Under assumptions (A1)--(A6), the global minimum \scrF \ast of (4.1) is attained by a

unique minimizer u\ast [15, Chapter 8] that solves the elliptic Euler--Lagrange PDE

(4.3)  - \nabla \cdot (A(x)\nabla u\ast ) + b(x)u\ast = c(x) on \Omega ,

subject to the Dirichlet boundary condition u\ast = 0 on \partial \Omega . Provided the domain \Omega is
not too complicated or high-dimensional, this PDE can be solved by standard numer-
ical methods, and then \scrF \ast can be calculated as  - 

\int 
\Omega 
c(x)u\ast (x)dx. Alternatively, the
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 499

following Theorem 4.1 guarantees that PDRs bound \scrF \ast below with arbitrary accu-
racy. The proof of this theorem exploits properties of the optimizer u\ast for problems
of the form (4.1) on Lipschitz domains, which are summarized in Proposition 4.2.

Theorem 4.1. Suppose problem (4.1) satisfies assumptions (A1)--(A6). Then
there is the following:

1. \scrL pdr = \widehat \scrL pdr = \scrF \ast . In particular, there exist hk \in C(\Omega ) and F k \in C(\Omega ;\BbbR n)
such that, with \varphi k = F k(x)y2, the sequence \{ (\varphi k, hk)\} k\geq 1 is maximizing for\widehat \scrL pdr and \{ (\varphi k, hk,0, . . . ,0)\} k\geq 1 is maximizing for \scrL pdr.

2. If A,b, c are polynomial and \Omega is semialgebraic with r2  - \| x\| 2 \in \scrQ (\Omega )
for some r \in \BbbR , then, with \varphi (x, y) = F (x)y2 and degree-\nu polynomials F (x)
and h(x), the SOS relaxations \scrL sos

\nu and \widehat \scrL sos
\nu converge to \scrF \ast as \nu \rightarrow \infty .

Proposition 4.2. Let \Omega be an open bounded Lipschitz domain. The optimizer
u\ast for problem (4.1) is smooth and strictly positive on \Omega .

Proof of Proposition 4.2. The smoothness of u\ast is given by the regularity theory
for elliptic PDEs [15, section 6.3.2]. For positivity of u\ast , note first that optimal \lambda and
u for (4.2) depend continuously on the domain, as can be shown using the arguments
in [46]. Fix any smooth domain \Omega \prime \supset \Omega such that the minimum \lambda \prime of problem (4.2)
on \Omega \prime is strictly positive. The corresponding minimizer w is smooth, positive on
\Omega \prime , and satisfies  - \nabla \cdot (A\nabla w) + bw = \lambda \prime w [15, section 6.5.1]. This equation for w
and (4.3) for u\ast imply that the smooth function v = u\ast /w satisfies the elliptic PDE
 - \nabla \cdot (A\nabla v) - 2w - 1\nabla w \cdot A\nabla v+ \lambda \prime w=w - 1c on \Omega . Since \lambda \prime > 0, the strong maximum
principle [15, section 6.4.2] implies v > 0 on \Omega , and thus u\ast =wv > 0 on \Omega .

Proof of Theorem 4.1. We construct a sequence \{ (\varphi k, hk)\} k\geq 1 that satisfies

the constraint of (2.11) and has
\int 
\Omega 
hk(x)dx \nearrow \scrF \ast , which shows \widehat \scrL pdr = \scrF \ast . In

the case of polynomial data, for which \widehat \scrL sos
\nu is defined, our sequence also satisfies

the assumptions of Theorem 3.5 so that \widehat \scrL sos
\nu \nearrow \widehat \scrL pdr. The corresponding sequence

\{ (\varphi k, hk,0, . . . ,0)\} k\geq 1 satisfies the constraints of (2.10), so \scrL pdr = \scrF \ast , and for poly-
nomial data it also satisfies the assumptions of Theorem 3.4, so \scrL sos

\nu \nearrow \scrL pdr.
With \varphi k(x, y) = F k(x)y2, the constraint of (2.11) for problem (4.1) is inequality

(2.8a):

(4.4) z\sansT A(x)z + b(x)y2  - 2c(x)y+\nabla \cdot F k(x)y2 + 2yF k(x) \cdot z  - hk(x)\geq 0

for all (x, y, z)\in \Gamma =\Omega \times \BbbR \times \BbbR n. (The multiplier \eta in (2.8a) does not enter since there
is no integral constraint in (4.1).) This inequality can be written in the matrix form

m(y, z)\top Hk(x)m(y, z)\geq 0 with m(y, z) =
\bigl[ 
1 y z

\bigr] \top 
and

(4.5) Hk(x) :=

\left[   - hk(x)  - c(x) 01\times n

 - c(x) b(x) +\nabla \cdot F k(x) F k(x)\top 

0n\times 1 F k(x) A(x)

\right]  .

To satisfy both (4.4) and assumption 2 of Theorem 3.5, we seek functions F k and
hk such that Hk(x) is positive definite on \Omega . Since A(x) is positive definite on \Omega by
(A3), it suffices to check the positive definiteness of the Schur complement

(4.6) Hk(x)/A(x) =

\biggl[ 
 - hk(x)  - c(x)
 - c(x) b(x) +\nabla \cdot F k(x) - F k(x) \cdot A - 1(x)F k(x)

\biggr] 
.
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500 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

Let \Omega k \supset \Omega denote the k - 1 neighborhood of \Omega , meaning the set of points whose
distance from \Omega is less than k - 1. The set \Omega k is open and Lipschitz for sufficiently
large k [11]. We choose

(4.7) F k(x) = - A(x)\nabla uk(x)

uk(x)
,

where uk is the minimizer of problem (4.1) on domain \Omega k. Let k be large enough
for \Omega k to be Lipschitz and for assumptions (A1)--(A6) to hold with \Omega replaced by
\Omega k. The function uk satisfies the PDE (4.3) on \Omega k and is both smooth and positive
on \Omega \subset \Omega k by Proposition 4.2. With F k as in (4.7) and uk satisfying (4.3), the
lower right entry of (4.6) becomes c(x)/uk(x), which is a strictly positive continuous
function on \Omega by virtue of assumption (A5) and the strict positivity of uk. We choose
hk(x) =  - c(x)uk(x) - k - 1, in which case the matrix Hk/A is positive definite on \Omega 
because its determinant and trace are positive.

To show
\int 
\Omega 
hk(x)dx\nearrow \scrF \ast , observe that

(4.8)

\int 
\Omega 

hk(x)dx=

\int 
\Omega 

\bigl[ 
 - c(x)uk(x) - k - 1

\bigr] 
dx\geq 

\int 
\Omega k

\bigl[ 
 - c(x)uk(x) - k - 1

\bigr] 
dx

since cuk \geq 0 on \Omega k. The right-hand integral is the minimum of (4.1) on the domain
\Omega k by the definition of uk. This integral converges to \scrF \ast as k\rightarrow \infty because minimizers
of (4.1) depend continuously on the domain, as follows since minimizers solve elliptic
Euler--Lagrange equations with continuous domain dependence [46].

4.2. Principal eigenvalues of elliptic operators. Consider the optimization

(4.9) \lambda \ast := sup
\lambda \in \BbbR 

\lambda s.t. inf
u\in W 1,2

0

\int 
\Omega 

\bigl( 
\nabla u \cdot A(x)\nabla u+ [b(x) - \lambda c(x)]u2

\bigr) 
dx\geq 0,

where a parametrized variational integral appears in the constraint. Let \Omega , A, b, and
c satisfy the same assumptions (A1)--(A5) made in subsection 4.1. The optimal value
\lambda \ast is the principal eigenvalue of the elliptic eigenvalue problem

(4.10)  - \nabla \cdot (A(x)\nabla u) + b(x)u= \lambda c(x)u on \Omega ,

subject to the Dirichlet boundary condition u = 0 on \partial \Omega . When \Omega is a simple
low-dimensional domain, \lambda \ast can be approximated numerically using standard dis-
cretization techniques for PDEs and eigenvalue computations. The following theorem
guarantees that PDRs approximate \lambda \ast from below with arbitrary accuracy.

Theorem 4.3. Suppose problem (4.9) satisfies assumptions (A1)--(A5) in subsec-
tion 4.1. Then there is the following:

1. \scrB pdr = \widehat \scrB pdr = \lambda \ast . In particular, there exist \lambda k \in \BbbR and F k \in C(\Omega ;\BbbR n) such

that, with \varphi k = F k(x)y2, the sequence \{ (\lambda k,\varphi k,0)\} k\geq 1 is maximizing for \widehat \scrB pdr

and \{ (\lambda k,\varphi k,0,0, . . . ,0)\} k\geq 1 is maximizing for \scrB pdr.
2. If A,b, c are polynomial and \Omega is semialgebraic with r2  - \| x\| 2 \in \scrQ (\Omega ) for

some r \in \BbbR , then, with h = 0 and \varphi (x, y) = F (x)y2 for degree-\nu polynomial
F (x), the SOS relaxations \scrB sos

\nu and \widehat \scrB sos
\nu converge to \lambda \ast as \nu \rightarrow \infty .

Proof. The proof is similar to that of Theorem 4.1, so we only sketch the main
ideas required to prove that \widehat \scrB pdr = \lambda \ast . Choose hk = 0, so the

\int 
\Omega 
hk(x)dx \geq 0
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 501

constraint in (2.18b) is satisfied. It remains to check inequality (2.8a), which for
problem (4.9) and \varphi (x, y) = F k(x)y2 can be written in the matrix form

(4.11)

\biggl[ 
y
z

\biggr] \top \biggl[ 
 - \lambda k +\nabla \cdot F k(x) F k(x)\top 

F k(x) A(x)

\biggr] \biggl[ 
y
z

\biggr] 
\geq 0 for all (x, y, z)\in \Omega \times \BbbR \times \BbbR n.

Using the Schur complement as in the proof of Theorem 4.1, one can verify that the
x-dependent matrix in this inequality is positive definite on \Omega after setting

(4.12) F k(x) = - A(x)\nabla uk(x)

uk(x)
and \lambda k = \mu k  - 1

k
,

where uk and \mu k are the principal eigenfunction and eigenvalue for problem (4.10) on
\Omega k, the k - 1 neighborhood of \Omega . Note that F k(x) is continuous on \Omega because uk is
strictly positive on that set [15, section 6.5.1]. The convergence \lambda k \nearrow \lambda \ast as k \rightarrow \infty 
follows from the continuity of principal eigenvalues of elliptic operators with respect
to domain perturbations [6, 18, 21], which ensures that \mu k \nearrow \lambda \ast .

4.3. Optimal \bfitL 2\bfitq Poincar\'e inequalities on intervals. Consider the problem

(4.13) \lambda \ast = sup\lambda s.t. inf
u\in W 1,2q

0 (\Omega )

\int 
\Omega 

\Bigl( 
| \nabla u| 2q  - \lambda u2q

\Bigr) 
dx\geq 0,

where 2q is a positive even integer. This \lambda \ast is the optimal constant in the Poincar\'e
inequality \| u\| 2qL2q \leq \lambda  - 1\| \nabla u\| 2qL2q for u \in W 2q

0 , as well as the principal eigenvalue of
the nonlinear eigenproblem

(4.14)  - (2q - 1)\nabla \cdot (| \nabla u| 2q - 2\nabla u) = \lambda u2q - 1

for the 2q-Laplacian operator\nabla \cdot (| \nabla u| 2q - 2\nabla u) [29]. When the domain is a 1D interval,
the following theorem guarantees that PDRs give arbitrarily sharp lower bounds on
\lambda \ast . This is of interest as it pertains to the sharpness of the PDR approach, although
to compute \lambda \ast numerically there is a more explicit formula for 1D intervals [28].

Theorem 4.4. For problem (4.13) on a bounded open interval \Omega \subset \BbbR , there is
the following:

1. \widehat \scrB pdr = \scrB pdr = \lambda \ast . In particular, there exist F k \in C(\Omega ) and \lambda k \in \BbbR such that

with \varphi k = F k(x)y2q the sequence \{ (\lambda k,\varphi k,0)\} k\geq 1 is maximizing for \widehat \scrB pdr, and
\{ (\varphi k, hk,0, . . . ,0)\} k\geq 1 is maximizing for \scrB pdr.

2. Consider a semialgebraic definition of \Omega for which r2 - x2 \in \scrQ (\Omega ). With h= 0
and \varphi (x, y) = F (x)y2q for degree-\nu polynomial F (x), the SOS relaxations \scrB sos

\nu 

and \widehat \scrB sos
\nu converge to \lambda \ast as \nu \rightarrow \infty .

Proof of Theorem 4.4. Set hk = 0 so that the constraint
\int 
\Omega 
hk(x)dx\geq 0 in (2.18b)

is satisfied. For any fixed integer q \geq 1, let \varphi k(x, y) = F k(x)y2q. Inequality (2.8a)
reads

(4.15) z2q  - \lambda ky2q + F k
x y

2q + 2qF k(x)y2q - 1z \geq 0

and must hold for all (x, y, z) \in \Gamma = \Omega \times \BbbR \times \BbbR . For each j = 1,2, . . . , q  - 1, we will
add and subtract the terms 2Gk

j (x)y
2q - 2jz2j on the left-hand side of the pointwise
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502 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

inequality (4.15) so that we can rewrite it in matrix form m(y, z)\top Hk(x)m(y, z) \geq 0

with m(y, z) =
\bigl[ 
yq yq - 1z yq - 2z2 . . . yzq - 1 zq

\bigr] \top 
and

Hk(x) =

\left[               

F k
x (x) - \lambda k qF k(x)  - Gk

1(x) 0 \cdot \cdot \cdot 0 0 0
qF k(x) 2Gk

1(x) 0  - Gk
2(x) \cdot \cdot \cdot 0 0 0

 - Gk
1(x) 0 2Gk

2(x) 0 \cdot \cdot \cdot 0 0 0
0  - Gk

2(x) 0 2Gk
3(x) \cdot \cdot \cdot 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 \cdot \cdot \cdot 2Gk
q - 2(x) 0  - Gk

q - 1(x)
0 0 0 0 \cdot \cdot \cdot 0 2Gk

q - 1(x) 0
0 0 0 0 \cdot \cdot \cdot  - Gk

q - 1(x) 0 1

\right]               
.

(4.16)

We seek functions F k,Gk
1 , . . . ,G

k
q - 1 and scalars \lambda k \nearrow \lambda \ast such that Hk(x) \succ 0 on \Omega .

While Hk \succeq 0 suffices for part 1 of the theorem, Hk \succ 0 lets Corollary 3.8 be applied
to ensure the convergence of SOS relaxations in part 2.

For each k let

(4.17) F k(x) = - (1 - 2\varepsilon )

\biggl( 
uk
x

uk

\biggr) 2q - 1

 - \varepsilon , Gk
j (x) = (1 - 2\varepsilon )(q - j)

\biggl( 
uk
x

uk

\biggr) 2q - 2j

+ \varepsilon 

with \varepsilon > 0 to be chosen later. Let \lambda k = \mu k  - k - 1, where (\mu k, uk) is the principal
eigenvalue--eigenfunction pair for the following nonlinear eigenproblem on the k - 1

neighborhood \Omega k \supset \Omega :

(4.18) (1 - 2\varepsilon )(2q - 1)(uk
x)

2q - 2uk
xx + \mu k(uk)2q - 1 = 0 on \Omega k, uk = 0 on \partial \Omega k.

Since uk is smooth and positive on \Omega k [5], the functions F k and Gk
j are continuous

on \Omega . Moreover, applying (4.18) gives F k
x (x) = \mu k + (1 - 2\varepsilon )(2q  - 1)(uk

x/u
k)2q. The

matrix Hk(x) then can be written as Hk(x) = Hk
1 + (1 - 2\varepsilon )Dk(x)H2D

k(x), where
Dk(x) =Diag([uk

x/u
k]q, [uk

x/u
k]q - 1, . . . , 1) and

Hk
1 =

\left[               

1
k  - q\varepsilon  - \varepsilon 0 0 \cdot \cdot \cdot 0 0 0

 - q\varepsilon 2\varepsilon 0  - \varepsilon 0 \cdot \cdot \cdot 0 0 0
 - \varepsilon 0 2\varepsilon 0  - \varepsilon \cdot \cdot \cdot 0 0 0
0  - \varepsilon 0 2\varepsilon 0 \cdot \cdot \cdot 0 0 0
0 0  - \varepsilon 0 2\varepsilon \cdot \cdot \cdot 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 \cdot \cdot \cdot 2\varepsilon 0  - \varepsilon 
0 0 0 0 0 \cdot \cdot \cdot 0 2\varepsilon 0
0 0 0 0 0 \cdot \cdot \cdot  - \varepsilon 0 2\varepsilon 

\right]               
,(4.19a)
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 503

Hk
2 =

\left[               

(2q - 1)  - q  - (q - 1) 0 0 \cdot \cdot \cdot 0 0 0
 - q (2q - 2) 0  - (q - 2) 0 \cdot \cdot \cdot 0 0 0

 - (q - 1) 0 (2q - 4) 0  - (q - 3) \cdot \cdot \cdot 0 0 0
0  - (q - 2) 0 (2q - 6) 0 \cdot \cdot \cdot 0 0 0
0 0  - (q - 3) 0 (2q - 8) \cdot \cdot \cdot 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 \cdot \cdot \cdot 4 0  - 1
0 0 0 0 0 \cdot \cdot \cdot 0 2 0
0 0 0 0 0 \cdot \cdot \cdot  - 1 0 1

\right]               
.

(4.19b)

Choose any positive \varepsilon < min\{ 1
2 , k

 - 1(q + 1) - 1\} so that the matrix Hk
1 is diagonally

dominant. Since its first and last rows are strictly diagonally dominant and Hk
1 is

irreducible, we have Hk
1 \succ 0. Similarly, Hk

2 \succeq 0 because it has positive diagonal entries
and is row diagonally dominant (all row sums vanish). The matrix Dk(x)Hk

2D
k(x)

is therefore positive semidefinite for all x \in \Omega , so Hk(x) \succ 0 on \Omega . To conclude the
proof, observe that \mu k \nearrow \lambda \ast as k \rightarrow \infty by the domain monotonicity and continuity
properties of 2q-Laplacian operators [10, Lemma 2.2], so \lambda k \nearrow \lambda \ast also.

5. Computational examples displaying convergence. This section reports
SOS computations giving lower bounds on the exact optima of various example prob-
lems. In each case, the computed bounds appear to become sharp as the polynomial
degree is raised. This convergence is guaranteed by Theorems 4.3 and 4.4 for the ex-
amples of subsections 5.1 and 5.2, respectively, whereas in subsection 5.3 convergence
is observed numerically but has not been proved by our analysis. In all computations
we use a modified version3 of YALMIP [30, 31] to reformulate SOS programs as SDPs
and to interface with SDPA-GMP [51], which solves the SDP in multiple precision
arithmetic to overcome numerical ill-conditioning.

5.1. Optimal Poincar\'e inequalities for the \bfitL 2 norm on 2D domains. For
a first computational test of PDRs, consider problem (4.9) with A= I2\times 2, b= 0, and
c= 1. We compute the SOS relaxations \widehat \scrB sos

\nu that bound \lambda \ast below. For \Omega we choose
two different 2D domains with corners, one a lens shape bounded by parabolas and
one a crescent bounded by circular arcs. These domains are shown in Figure 2, and
their semialgebraic definitions are, respectively,

\{ x\in \BbbR 2 : g1(x) := 2x1  - x2
2 + 1\geq 0, g2(x) := 1 - x2

2  - 2x1 \geq 0\} ,(5.1a)

\{ x\in \BbbR 2 : g1(x) := 1 - x2
1  - x2

2 \geq 0, g2(x) := (x1 + 1)2 + x2
2  - 2\geq 0\} .(5.1b)

For each domain, our SOS computations seek rational \varphi of the form

(5.2) \varphi (x, y) =
P (x)y2

g1(x)g2(x)
,

where P (x) is a degree-\nu polynomial in x \in \BbbR 2 whose coefficients are tunable in
the SOS program. The derivation of polynomial SOS conditions for rational \varphi is as
described in Remark 3.1. The rational form (5.2) of \varphi is motivated by the optimal

3Available at https://github.com/aeroimperial-optimization/aeroimperial-yalmip.
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\widehat \scrB \mathrm{s}\mathrm{o}\mathrm{s}
\nu 

\nu Lens Crescent
1 0.0000 0.0000
3 0.0000 26.0860
5 0.0000 35.2271
7 14.3440 35.5110
9 16.0778 35.5241
11 16.1005 35.5256
13 16.1009 35.5258

Fig. 2. Lower bounds \widehat \scrB \mathrm{s}\mathrm{o}\mathrm{s}
\nu on the optimal Poincar\'e constant \lambda \ast for the L2 norm in two di-

mensions, computed by solving SOS programs to construct rational \varphi with numerators of polynomial
degree \nu in (x1, x2) (see text). Computations were carried out for a lens-shaped domain (left) and
crescent-shaped domain (right) defined by (5.1a) and (5.1b), respectively. The literature gives an
analytical value of \lambda \ast = (2\gamma 0)2 \approx 16.100953 for the lens domain, where \gamma 0 is the smallest zero of
the Bessel function of the first kind J - 1/4 [35]. To the best of our knowledge, no analytical value is
available for the crescent domain. Tabulated values have been rounded to the precision shown.

Table 1
Lower bounds \widehat \scrB \mathrm{s}\mathrm{o}\mathrm{s}

\nu on the optimal Poincar\'e constant \lambda \ast for the L4 norm in one dimension,
computed by solving SOS programs to construct rational \varphi with numerators of polynomial degree \nu 
in x. The literature gives an analytical expression [28] whose value is \lambda \ast \approx 4.566. Values have been
rounded to the precision shown.

\nu 1 11 21 31 41 51 101 151 201\widehat \scrB \mathrm{s}\mathrm{o}\mathrm{s}
\nu 0.000 4.217 4.479 4.528 4.540 4.542 4.548 4.556 4.566

\varphi constructed in the proof of Theorem 4.3, which suggests \varphi (x, y) = F (x)y2 in the
present example with F (x) having a simple pole at the domain boundary.

The table in Figure 2 reports \widehat \scrB sos
\nu using these rational \varphi for various \nu in both

domains. The values converge quickly to \lambda \ast , which to the best of our knowledge is
known analytically only for the lens-shaped domain [35]. Since rational \varphi generalizes
polynomial ones, the convergence \widehat \scrB sos

\nu \nearrow \lambda \ast as \nu \rightarrow \infty can be guaranteed as a corollary
of Theorem 4.3. The convergence rate, however, is much faster when \varphi is rational as
in (5.2) than when it is simply a polynomial of the form P (x)y2.

5.2. Optimal Poincar\'e inequality for the \bfitL 4 norm in one dimension.
We consider problem (4.13) with 2q = 4 and \Omega = ( - 1,1), for which \lambda \ast \approx 4.566 is
known analytically [28]. Theorem 4.4 guarantees that \widehat \scrB sos

\nu \nearrow \widehat \scrB pdr = \lambda \ast . To test
this convergence in practice we formulate SOS relaxations using rational \varphi of the
form \varphi (x, y) = P (x)y2/(1 - x2)3, where the degree-\nu polynomial P is tunable in the
SOS program (cf. Remark 3.1). This rational ansatz is motivated by the optimal \varphi 
constructed in the proof of Theorem 4.4, which suggests using \varphi (x, y) = F (x)y2 with
F (x) having a third-order pole at the boundary points. Table 1 reports the resulting
values of \widehat \scrB sos

\nu , which increase toward \lambda \ast as \nu is raised. As in the previous example,
rational \varphi leads to faster convergence compared to purely polynomial \varphi .

5.3. An example that is nonconvex in the derivative. Consider the fol-
lowing integral variational problem over u : (0,1)\rightarrow \BbbR with fixed boundary values:

(5.3) \scrF \ast = inf
u\in W 1,2

u(0)=0,
u(1)= 1

2

\int 1

0

\bigl[ 
(u2

x  - 1)2 + 1
2u

2
\bigr] 
dx.
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 505

Table 2
Lower bounds \scrL \mathrm{s}\mathrm{o}\mathrm{s}

\nu on the infimum \scrF \ast \approx 0.02075 of (5.3), computed by solving SOS programs
to construct polynomial \varphi with degree \nu in x. Values have been rounded to the precision shown.

\nu 1 2 3 4 5 6 \cdot \cdot \cdot 27 28

\scrL \mathrm{s}\mathrm{o}\mathrm{s}
\nu 0.00000 0.00780 0.01897 0.01969 0.02073 0.02074 \cdot \cdot \cdot 0.02074 0.02075

The integrand is nonconvex in ux, and the infimum is not attained: minimizing se-
quences of u are increasingly oscillatory and do not have a limit in W 1,2 [36]. In this
1D example the relaxed minimization over gradient Young measures has the same
minimum [42], and a numerical method to discretize the relaxed problem appears
in [13]. We have implemented the method of [13] with increasing resolution to find
\scrF \ast \approx 0.02075. This value is in fact equal to \scrF \ast , up to the reported precision, as veri-
fied by our lower bounds. To compute lower bounds on \scrF \ast we use the relaxation \scrL sos

\nu 

defined in (3.15a) with \varphi (x, y) = P (x) +Q(x)y +R(x)y2, where P,Q,R are degree-\nu 
polynomials that are tunable in the SOS programs. Raising \nu gives lower bounds \scrL sos

\nu 

that converge quickly to 0.02075, as reported in Table 2. We note that the equality
\scrL pdr =\scrF \ast is implied for this example by [16, Theorem 5.1 and Remark 5.2], but the
numerically apparent convergence \scrL sos

\nu \nearrow \scrF \ast remains to be proved.

6. Conclusions. We have described a framework for finding lower bounds on
global infima of integral variational problems, possibly subject to integral and point-
wise constraints, by relaxing the Lagrangian dual problem into more tractable prob-
lems whose suprema give lower bounds. As proved in [16], the relaxed maximizations
obtained with this approach are weakly Lagrangian dual to the measure-theoretic re-
laxations described in [23], and they are strongly dual if certain coercivity conditions
hold. We have also extended the framework to more general optimization problems
where variational integrals appear in constraints.

In the case of problems posed with polynomial data, further relaxation steps lead
to computationally tractable SOS programs. We have proved that the solutions of
such SOS programs with increasing polynomial degree converge to the exact answers
for three particular classes of problems: variational problems with quadratic inte-
grands, optimizations constrained by variational integrals that define eigenvalues of
elliptic operators, and similar optimizations that define optimal constants of the Lp

Poincar\'e inequality in one dimension with even p. For several examples that fall in
these classes and for one that does not, we tested the SOS computational approach by
computing bounds on optima using increasing polynomial degrees. In all examples,
the computed bounds appear to converge to the exact answers to the original prob-
lems. The examples considered were simple enough that their optima could be found
by existing analytical or numerical methods so that it was possible to verify success
of the present approach. However, our approach can be applied much more broadly,
giving one-sided bounds on optima for problems that are not otherwise tractable.
Determining when these bounds are sharp is the focus of ongoing work.

In the effort to characterize the conditions under which the present approach
does and does not give sharp bounds on the optima of the original problems, our
proofs of sharpness rely on semiexplicit constructions of optimizers for the relaxed
dual problems in terms of solutions to corresponding Euler--Lagrange equations. A
less explicit approach is likely needed to characterize sharpness more generally. The
works [16, 24] take some steps in this direction, but they also give explicit examples
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506 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

in which our relaxation approach is not sharp. Further progress may be made by
better characterizing how our relaxations relate to others in the variational analysis
literature, such as the translation [17] or calibration [7, section 1.2] methods.

The dual relaxation approach studied here can be generalized in various ways.
One way is to expand the set of admissible divergence theorem identities to include
all null Lagrangians, as described in Remark 2.4. Another is to let the variational
integrals of u being studied, and the null Lagrangians employed, depend on higher
derivatives than \nabla u; special cases of this generalization have been written down pre-
viously [3, 4]. A third extension concerns boundary conditions on u that are not of
Dirichlet type. This is needed to impose periodicity of u, as well as for Neumann
conditions that require pointwise boundary constraints to depend on \nabla u rather than
only on u. We have practically implemented such boundary conditions in several
examples that will be reported in a subsequent publication, and a general approach
(without sharpness results) is discussed in [23] under the assumption that u is Lip-
schitz continuous. Extending the general framework, and proving its sharpness, for
such boundary conditions with less regular u is the subject of ongoing work. Lastly,
it remains an open problem to find ways to improve the computational efficiency and
the generality of the SOS approach we have described. Symmetries of a variational
problem, for instance, can be exploited to reduce the size of SOS programs, and the
same may be true of other types of problem structure. It should also be possible
to adapt the SOS framework to tackle problems that are not purely polynomial but
include, for example, trigonometric or exponential terms [34, 45]. A promising ap-
plication area that calls for all of these extensions is the analysis of nonlinear PDEs
through variational methods, where SOS methods are just starting to be employed
[8, 3, 20, 32, 23, 1, 19, 33].

Appendix A. Proof of Theorem 3.2. It suffices to prove that, for any \varepsilon > 0,
there exists \nu such that \scrL sos

\nu \geq \scrL pdr  - 2\varepsilon . Fix any feasible tuple (\eta \varepsilon ,\varphi \varepsilon , h\varepsilon , \ell \varepsilon 1, . . . , \ell 
\varepsilon 
s)

for (2.7b) that satisfies

(A.1)

\int 
\Omega 

h\varepsilon (x)dx+

s\sum 
i=1

\int 
\partial \Omega i

\ell \varepsilon i (x)dS \geq \scrL pdr  - \varepsilon .

We will use \varphi \varepsilon , h\varepsilon , \ell \varepsilon 1, . . . , \ell 
\varepsilon 
s to construct polynomials \varphi ,h, q1, . . . , qs such that the

tuple (\eta \varepsilon ,\varphi ,h, q1, . . . , qs) is feasible for (3.9) for sufficiently large \nu and achieves an
objective value larger than \scrL pdr  - 2\varepsilon . This will imply \scrL sos

\nu \geq \scrL pdr  - 2\varepsilon .
By assumption, the domain \Omega and the boundary sections \partial \Omega i are compact, and

| \nabla gi| is strictly positive on \partial \Omega i. Moreover, the (x, y) projection of the compact set
\Gamma , denoted \Gamma xy below, must be a compact subset of \BbbR n \times \BbbR m. Since polynomials are
dense in the space of t-times continuously differentiable functions on compact sets for
all t, we can find polynomials \varphi , h, q1,. . .,qs that satisfy

max
i=1,...,n

\| \varphi i  - \varphi \varepsilon 
i\| C1(\Gamma xy)

\leq \beta \varepsilon ,(A.2a)

\| h - h\varepsilon + \alpha 0\varepsilon \| C(\Omega ) \leq \beta \varepsilon ,(A.2b) \bigm\| \bigm\| \bigm\| qi  - \ell \varepsilon i | \nabla gi|  - 1
+ \alpha i\varepsilon | \nabla gi|  - 2

\bigm\| \bigm\| \bigm\| 
C(\partial \Omega i)

\leq \beta \varepsilon ,(A.2c)

where \alpha 0, . . . , \alpha s and \beta are strictly positive constants to be determined later.
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 507

Omitting all function arguments to simplify the notation, we may estimate

\scrD \varphi \varepsilon  - \scrD \varphi =

n\sum 
i=1

\partial 

\partial xi
(\varphi \varepsilon 

i  - \varphi i) +

n\sum 
i=1

m\sum 
j=1

\partial 

\partial yi
(\varphi \varepsilon 

i  - \varphi i)zji(A.3)

\leq 

\left(  n+

n\sum 
i=1

m\sum 
j=1

max
\Gamma 

| zji| 

\right)  \beta \varepsilon for all (x, y, z)\in \Gamma .

Thus,

f +\scrD \varphi  - \eta \varepsilon a - h\geq f +\scrD \varphi \varepsilon  - \eta \varepsilon a - h\varepsilon + \alpha 0\varepsilon  - 

\left(  1 + n+
\sum 
i,j

max
\Gamma 

| zji| 

\right)  \beta \varepsilon (A.4)

\geq \alpha 0\varepsilon  - C0\beta \varepsilon for all (x, y, z)\in \Gamma ,

where C0 := 1 + n +
\sum 

i,j max\Gamma | zji| is a positive constant that does not depend on
\alpha 0, \beta , or \varepsilon . The second inequality holds because (\eta \varepsilon ,\varphi \varepsilon , h\varepsilon , \ell \varepsilon 1, . . . , \ell 

\varepsilon 
s) is feasible for

(2.7b). Similarly, on each \Lambda i the inequality \varphi \cdot \nabla gi  - qi| \nabla gi| 2 \geq \alpha i\varepsilon  - Ci\beta \varepsilon holds
for some positive constant Ci that depends only on the particular \partial \Omega i and gi under
consideration, not on \alpha i, \beta , or \varepsilon . The details are omitted for brevity.

Now choose \alpha 0 = 2C0\beta and \alpha i = 2Ci\beta for all i= 1, . . . , s to obtain

f +\scrD \varphi  - \eta \varepsilon a - h\geq C0\beta \varepsilon on \Gamma ,(A.5a)

\varphi \cdot \nabla gi  - qi | \nabla gi| 2 \geq Ci\beta \varepsilon on \Lambda i, i= 1, . . . , s.(A.5b)

The right-hand sides of these inequalities are strictly positive and, by assumption,
r20 - | (x, y, z)| 2 \in \scrQ (\Gamma ) and r2i  - | (x, y)| 2 \in \scrQ (\Lambda i); therefore Putinar's Positivstellensatz
[44] guarantees that f +\scrD \varphi  - \eta \varepsilon a - h \in \scrQ \nu (\Gamma ) and \varphi \cdot \nabla gi  - qi| \nabla gi| 2 \in \scrQ \nu (\Lambda i) for a
sufficiently large integer \nu . In other words, the tuple (\eta \varepsilon ,\varphi ,h, q1, . . . , qs) is feasible for
the SOS program (3.9). Then, we must have

\scrL sos
\nu \geq 

\int 
\Omega 

hdx+

s\sum 
i=1

\int 
\partial \Omega i

qi | \nabla gi| dS(A.6)

\geq 
\int 
\Omega 

h\varepsilon dx - (\alpha 0 + \beta )| \Omega | \varepsilon +
s\sum 

i=1

\int 
\partial \Omega i

\ell \varepsilon i  - \beta \varepsilon | \nabla gi|  - \alpha i\varepsilon | \nabla gi|  - 1
dS

\geq \scrL pdr  - 

\Biggl[ 
1 + (2C0 + 1)| \Omega | \beta + \beta 

s\sum 
i=1

\int 
\partial \Omega i

| \nabla gi| + 2Ci | \nabla gi|  - 1
dS

\Biggr] 
\varepsilon .

The second inequality follows from elementary estimates based on (A.2a)--(A.2c),
while the last one follows from (A.1) and our choices for \alpha 0, . . . , \alpha s. Choosing a
sufficiently small positive value for \beta yields \scrL sos

\nu \geq \scrL pdr  - 2\varepsilon as desired.

Appendix B. Proof of Theorem 3.4. It suffices to prove that, for each k\geq 1,
the functions \varphi k, hk, \ell k1 , . . . , \ell 

k
s can be used to construct polynomials \varphi , h, q1,. . .,qs

(not indexed by k to lighten the notation) that are feasible for (3.9) for some integer
\nu and satisfy

(B.1)

\int 
\Omega 

hdx+

s\sum 
i=1

\int 
\partial \Omega i

qi | \nabla gi| dS \geq 
\int 
\Omega 

hk dx+

s\sum 
i=1

\int 
\partial \Omega i

\ell ki dS  - 1

k
.
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508 CHERNYAVSKY, BRAMBURGER, FANTUZZI, GOLUSKIN

Before defining these polynomials we make three observations. First, since \Lambda i =
\partial \Omega i\times \{ 0\} , the constraint \varphi \cdot \nabla gi - qi| \nabla gi| 2 \in \scrQ \nu (\Lambda i) is equivalent to \varphi (x,0) \cdot \nabla gi(x) - 
qi(x)| \nabla gi(x)| 2 \in \scrQ \nu (\partial \Omega i). Second, the positive definiteness of the matrix Hk(x)
implies that there exists \delta k > 0 such that Hk(x) \succeq \delta kI on \Omega , where I is the identity
matrix. Third, since \varphi k depends polynomially on y by assumption, we can write
\varphi k(x, y) =

\sum 
\alpha \in \BbbN m c\alpha (x)y

\alpha , where the sum has only finitely many terms and each
coefficient c\alpha : \Omega \rightarrow \BbbR n is differentiable on \Omega , including the boundary.

We now select polynomials h, p\alpha ,1, . . . , p\alpha ,n for each \alpha and q1, . . . , qs that satisfy

\| p\alpha ,i  - c\alpha ,i\| C1(\Omega ) \leq \theta k - 1,(B.2a)

\| h - hk\| C(\Omega ) \leq \theta k - 1,(B.2b) \bigm\| \bigm\| \bigm\| qi  - \ell ki | \nabla gi|  - 1
+ 2\theta Cik

 - 1 | \nabla gi|  - 2
\bigm\| \bigm\| \bigm\| 
C(\partial \Omega i)

\leq \theta k - 1,(B.2c)

where \theta is a sufficiently small positive scalar to be chosen, and

(B.3) Ci =max
\partial \Omega i

| \nabla gi| 2 +
n\sum 

j=1

max
\partial \Omega i

\bigm| \bigm| \bigm| \bigm| \partial gi\partial xj

\bigm| \bigm| \bigm| \bigm| .
The polynomial \varphi approximating \varphi k is then taken to be \varphi (x, y) =

\sum 
\alpha \in \BbbN m p\alpha (x)y

\alpha .
Choose \theta such that

(B.4) \theta \leq min
i=1,...,s

\biggl( 
| \Omega | +

\int 
\partial \Omega i

| \nabla gi| + 2Ci | \nabla gi|  - 1
dS

\biggr)  - 1

.

Using (B.2b), (B.2c), Putinar's Positivstellensatz [44], and steps analogous to those
followed in the proof of Theorem 3.2 we can establish (B.1) and also prove that
\varphi (x,0) \cdot \nabla gi(x) - qi(x)| \nabla gi(x)| 2 \in \scrQ \nu (\partial \Omega i) for a sufficiently large \nu . The details are
omitted for brevity. The main difficulty of our proof is to show that f+\scrD \varphi  - \eta ka - h\in 
\scrQ \nu (\Gamma ) since \Gamma =\Omega \times \BbbR m\times \BbbR m\times n is not compact and we cannot directly apply Putinar's
Positivstellensatz.

To overcome this obstacle, recall that since f is a polynomial we can write

(B.5) f(x, y, z) =
\sum 

\alpha \in \BbbN m

\sum 
\beta \in \BbbN m

b\alpha \beta (x)y
\alpha z\beta 

for some polynomials b\alpha ,\beta , where the sum is finite. Moreover, we have

(B.6) \scrD \varphi k =
\sum 
\alpha \in \BbbN n

n\sum 
i=1

y\alpha 
\partial c\alpha ,i
\partial xi

+
\sum 
\alpha \in \BbbN n

n\sum 
i=1

m\sum 
j=1

\alpha j c\alpha ,i y
\alpha  - \^ejzji,

so f +\scrD \varphi k  - \eta ka - hk is a polynomial in the variables y and z with coefficients that
are linear combinations of the x-dependent functions hk, b\alpha \beta , c\alpha ,i, and

\partial c\alpha ,i

\partial xi
. These

coefficients can be arranged into a symmetric matrix Fk(x), not necessarily positive
semidefinite, that satisfies

(B.7) f(x, y, z) +\scrD \varphi k(x, y, z) - \eta ka(x, y, z) - hk(x) =m(y, z)\sansT Fk(x)m(y, z).

Similarly, we can find a symmetric polynomial matrix F (x) whose entries are linear
combinations of the polynomials h, b\alpha \beta , p\alpha ,i, and

\partial p\alpha ,i

\partial xi
such that

(B.8) f(x, y, z) +\scrD \varphi (x, y, z) - \eta ka(x, y, z) - h(x) =m(y, z)\sansT F (x)m(y, z).
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RELAXATIONS OF INTEGRAL VARIATIONAL PROBLEMS 509

Since the left-hand side of (B.7) equals m(y, z)\sansT Hk(x)m(y, z) by assumption, there
exists a symmetric matrix Gk(x) that satisfies m(y, z)\sansT Gk(x)m(y, z) = 0 and Hk(x) =
Fk(x)+Gk(x). This matrixGk(x) can be approximated pointwise on \Omega by a symmetric
polynomial matrix G(x) that satisfies m(y, z)\sansT G(x)m(y, z) = 0 and  - 1

3\delta kI \preceq G(x) - 
Gk(x) \preceq 1

3\delta kI for all x in \Omega . Fix \theta in (B.2a) and (B.2b) small enough that (B.4)
holds and also such that  - 1

3\delta kI \preceq F (x) - Fk(x) \preceq 1
3\delta kI on \Omega . Then, the symmetric

polynomial matrix F (x) +G(x) is positive definite on \Omega , and, since Hk(x) = Fk(x) +
Gk(x)\succeq \delta kI on \Omega ,

(B.9) F (x) +G(x) =Hk(x) + [F (x) - Fk(x)] + [G(x) - Gk(x)]\succeq 1
3\delta kI.

We can therefore apply a matrix version of Putinar's Positivstellensatz [47] to con-
struct polynomial matrices S0(x), . . . , Ss(x) such that

(B.10) F (x) +G(x) = S0(x)
\sansT S0(x) +

s\sum 
i=1

gi(x)Si(x)
\sansT Si(x),

and therefore

f +\scrD \varphi  - \eta ka - h=m\sansT Fm=m\sansT (F +G)m=m\sansT S0S0m\underbrace{}  \underbrace{}  
=:\sigma 0

+

s\sum 
i=1

gim
\sansT S\sansT 

i Sim\underbrace{}  \underbrace{}  
=:\sigma i

.(B.11)

The polynomials \sigma 0, . . . , \sigma s are SOS by construction, showing that f+\scrD \varphi  - \eta ka - h\in 
\scrQ \nu (\Gamma ) for \nu sufficiently large. Theorem 3.4 is therefore proven.

Appendix C. Proof of Theorem 3.6. Similar to the proof of Theorem 3.2, it
suffices to show that for any \varepsilon > 0 there exists \nu such that \scrB sos

\nu \geq \scrB pdr  - 2\varepsilon . Without
loss of generality, we will assume \varepsilon is small enough that b(\lambda 0)<\scrB pdr  - 2\varepsilon .

We begin by constructing a tuple (\lambda \delta , \eta \delta ,\varphi \delta , h\delta , \ell \delta 1, . . . , \ell 
\delta 
s) that is feasible for prob-

lem (2.18a), achieves b(\lambda \delta )\geq \scrB pdr  - 2\varepsilon , and satisfies

(C.1)

\int 
\Omega 

h\delta (x)dx+

s\sum 
i=1

\int 
\partial \Omega i

\ell \delta i (x)dS \geq \delta \gamma 

for some positive constant \delta to be chosen below. To achieve these goals, fix any
(\lambda \ast , \eta \ast ,\varphi \ast , h\ast , \ell \ast 1, . . . , \ell 

\ast 
s) feasible for (2.18a) that satisfies b(\lambda \ast ) \geq \scrB pdr  - \varepsilon , and set

\delta = \varepsilon | b(\lambda 0) - \scrB pdr+ \varepsilon |  - 1. Note that \delta < 1 because of our assumptions on b(\lambda 0) and \varepsilon .
The convex combination

(\lambda \delta , \eta \delta ,\varphi \delta , h\delta , \ell \delta 1, . . . , \ell 
\delta 
s) = \delta (\lambda 0, \eta 0,\varphi 0, h0, \ell 1,0, . . . , \ell s,0)(C.2)

+ (1 - \delta )(\lambda \ast , \eta \ast ,\varphi \ast , h\ast , \ell \ast 1, . . . , \ell 
\ast 
s)

is therefore feasible for the convex problem (2.18a). The linearity of the integral
and inequality (3.16) immediately give (C.1). Finally, since b is concave and b(\lambda \ast )\geq 
\scrB pdr  - \varepsilon ,

b(\lambda \delta )\geq \delta b(\lambda 0) + (1 - \delta )b(\lambda \ast )\geq \delta b(\lambda 0) + (1 - \delta )\scrB pdr  - (1 - \delta )\varepsilon =\scrB pdr  - 2\varepsilon .(C.3)

To prove Theorem 3.6 it suffices to use the functions \varphi \delta , h\delta , \ell \delta 1, . . . , \ell 
\delta 
s to construct

polynomials \varphi , h, q1,. . .,qs such that (\lambda \delta , \eta \delta ,\varphi ,h, q1, . . . , qs) is feasible for (3.15a) when

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\nu is sufficiently large. This is done as in the proof of Theorem 3.2, except here we
select the constant \beta small enough that

\delta \gamma  - 

\Biggl[ 
(2C0 + 1)| \Omega | +

s\sum 
i=1

\int 
\partial \Omega i

| \nabla gi| + 2Ci | \nabla gi|  - 1
dS

\Biggr] 
\beta \varepsilon \geq 0.(C.4)

With this assumption, estimates similar to those in (A.6) can be combined with (C.1)
to verify the last constraint in (3.15a). The weighted SOS conditions will hold when
\nu is sufficiently large for the same reasons described in the proof of Theorem 3.2.
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