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Abstract We explain the concept of Krein signature in Hamiltonian and PT -
symmetric systems on the case study of the one-dimensional Gross–Pitaevskii
equation with a real harmonic potential and an imaginary linear potential. These
potentials correspond to the magnetic trap, and a linear gain/loss in the mean-
field model of cigar-shaped Bose–Einstein condensates. For the linearized Gross–
Pitaevskii equation, we introduce the real-valued Krein quantity, which is nonzero
if the eigenvalue is neutrally stable and simple and zero if the eigenvalue is unstable.
If the neutrally stable eigenvalue is simple, it persists with respect to perturbations.
However, if it is multiple, it may split into unstable eigenvalues under perturbations.
A necessary condition for the onset of instability past the bifurcation point requires
existence of two simple neutrally stable eigenvalues of opposite Krein signatures
before the bifurcation point. This property is useful in the parameter continuations
of neutrally stable eigenvalues of the linearized Gross–Pitaevskii equation.
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1 Introduction

We consider the prototypical example of the one-dimensional Gross-Pitaevskii
(GP) equation arising in the context of cigar-shaped Bose–Einstein (BEC) con-
densates [42, 43]. The model takes the form of the following defocusing nonlinear
Schrödinger (NLS) equation with a harmonic potential [9, 28]:

i∂tu = −∂2
xu + V (x)u + |u|2u, (1)

where u represents the complex wave function and V characterizes the external
potential. The probability density of finding atoms at a given location and time is
characterized by |u|2.

In the case of magnetic trapping of the BECs [42, 43], the potential V is real-
valued and is given by

V (x) = �2x2, (2)

where � is the ratio of longitudinal to transverse confinement strengths of the
parabolic trapping. The NLS equation (1) with the potential (2) is a Hamiltonian
system written in the symplectic form

i
∂u

∂t
= δH

δū
, (3)

where ū stands for the complex conjugate u and H is the following real-valued
Hamiltonian function

H(u) =
∫
R

[
|∂xu|2 + V (x)|u|2 + 1

2
|u|4

]
dx. (4)

When quantum particles are loaded in an open system, the external potential V

may be complex-valued [10, 18]. The intervals with positive and negative imaginary
part of V correspond to the gain and loss of quantum particles, respectively. If the
gain and loss are modeled by linear functions and the gain matches loss exactly, the
external potential is given by

V (x) = �2x2 + 2iγ x, (5)

where γ is the gain-loss strength. The NLS equation (1) with the potential (5) can
still be cast to the form (3) but the Hamiltonian function H in (4) is now complex-
valued. The complex-conjugate equation to (3) is determined by H̄ with H̄ �= H .
Hence, the NLS equation (1) with the potential (5) is not a Hamiltonian system.

Although V in (5) is not real-valued, it satisfies the following condition

V (x) = V (−x), x ∈ R. (6)



Krein Signature in Hamiltonian and PT -Symmetric Systems 467

Let us introduce the parity operator P and the time reversal operator T acting on a
function u(x, t) as follows:

Pu(x, t) = u(−x, t), T u(x, t) = u(x,−t). (7)

Then, we can see that V satisfying (6) is PT -symmetric under the simultaneous
action of operators (7). We say that the NLS equation (1) with the potential (5) is
PT -symmetric. For any solution u(x, t),

ũ(x, t) = PT u(x, t) = u(−x,−t)

is also a solution to the same NLS equation (1) with the potential (5).
Such PT -symmetric models have attracted substantial attention over the past two

decades. They were initially proposed in the context of a (non-Hermitian) variant
of quantum mechanics [6, 7] (see also review in [4]). However, their experimental
realization in both low-dimensional (e.g., dimer) [45] and high-dimensional (e.g.,
lattice) [52] settings has been confirmed in nonlinear optics. This direction has also
inspired an extensive volume of theoretical activity and even experiments in other
areas, including mechanical [5] and electrical [46] systems. Two recent reviews on
the subject can be found in [32, 50].

The concept of Krein signatures was introduced by MacKay [34] for the finite-
dimensional linear Hamiltonian systems, although the idea dates back to the works
of Weierstrass [51]. In the setting of the NLS equation (1) with the potential (2), the
linear Hamiltonian system can be formulated as the spectral problem

JLv = λv, (8)

where L is a self-adjoint unbounded operator in the space of square-integrable
functions L2(R) with a dense domain in L2(R) and J is a skew-adjoint bounded
operator in L2(R). The operators L and J are assumed to satisfy J 2 = −I and
JL + L̄J̄ = 0, thanks to the Hamiltonian symmetry.

If λ0 ∈ C is an eigenvalue of the spectral problem (8), then it is neutrally stable
if Re(λ0) = 0 and unstable if Re(λ0) > 0. Thanks to the Hamiltonian symmetry of
L and J , the eigenvalues appear in symmetric pairs relative to the axis Re(λ) = 0.
Indeed, if v is an eigenvector of the spectral problem (8) for the eigenvalue λ, then
w = −J v̄ is an eigenvector of the same spectral problem (8) with the eigenvalue
−λ̄, which follows from the following equivalent transformations of the spectral
problem (8) with v = J̄ w̄:

JLJ̄ w̄ = λJ̄ w̄ ⇔ L̄w̄ = λJ̄ w̄ ⇔ J̄ L̄w̄ = −λw̄ ⇔ JLw = −λ̄w.

For a nonzero eigenvalue λ0 ∈ C of the spectral problem (8) with the eigenvector
v0 in the domain of L, we define the Krein quantity K(λ0) by

K(λ0) := 〈Lv0, v0〉, (9)
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where 〈·, ·〉 is the standard inner product in L2(R). The Krein quantity in (9) satisfies
the following properties:

Main properties of the Krein quantity:

(1) K(λ0) is real if λ0 ∈ iR.
(2) K(λ0) is nonzero if λ0 ∈ iR\{0} is simple.
(3) K(λ0) is zero if λ0 ∈ C\{iR}.

The Krein signature is defined as the sign of the Krein quantity K(λ0) for
a simple neutrally stable eigenvalue λ0 ∈ iR\{0}. If parameters of the NLS
equation (1) change, parameters of the spectral problem (8) change, however, the
simple eigenvalue λ0 ∈ iR remains on the axis Re(λ) = 0 unless it coalesces with
another eigenvalue or a part of the continuous spectrum, thanks to the preservation
of its multiplicity and the Hamiltonian symmetry of eigenvalues. In this case, the
eigenvalue λ0 and its Krein quantity K(λ0) are at least continuous functions of the
parameters of the NLS equation (1).

It is quite typical in the parameter continuations of the spectral problem (8) to
see that the simple eigenvalue λ0 ∈ iR coalesces at a bifurcation point with another
simple eigenvalue λ′

0 ∈ iR and that both eigenvalues split into the complex plane as
unstable eigenvalues past the bifurcation point. The Krein signature is a helpful
tool towards predicting this instability bifurcation from the following necessary
condition.

Necessary condition for instability bifurcation. Under some non-
degeneracy constraints, the double eigenvalue λ0 = λ′

0 ∈ iR of the
spectral problem (8) with a bifurcation parameter ε ∈ R splits into
a pair of complex eigenvalues symmetric relative to Re(λ) = 0 for
ε > 0 only if there exist two simple eigenvalues λ0, λ

′
0 ∈ iR with

the opposite Krein signature for ε < 0.

In other words, if two neutrally stable eigenvalues of the same Krein signature
move towards each other in the parameter continuation of the spectral problem (8),
then their coalescence will not result in the onset of instability, whereas if the two
neutrally stable eigenvalues have the opposite Krein signature, their coalescence is
expected to result in the onset of instability, subject to technical non-degeneracy
constraints.

The concept of Krein signature in the infinite-dimensional setting, e.g. for the
NLS equation, was introduced independently in works [23, 37]. It was justified in a
number of mathematical publications [14, 24] and it remains a practical tool to trace
instability bifurcations in physically relevant Hamiltonian systems [41, 47] (see
review in [31]). The following completeness result is available for the Hamiltonian
systems.
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Hamiltonian–Krein Theorem. If L has finitely many negative
eigenvalues n(L) < ∞ and the rest of its spectrum is strictly
positive, then eigenvalues of the spectral problem (8) satisfy the
completeness relation

n(L) = Nreal + Ncomp + N−
imag,

where Nreal is the number of real positive eigenvalues λ, Ncomp is
the number of complex eigenvalues λ with Re(λ) > 0, and N−

imag
is the number of purely imaginary eigenvalues λ with negative
Krein signature. All numbers are accounted in their algebraic
multiplicity.

In the context of the NLS equation (1) with the potential (2), the phase invariance
introduces a symmetry and a kernel of the operator L. In this case, the negative
index n(L) has to be recomputed in a subspace of L2(R) which is J -orthogonal to
the kernel of L. See monographs [25, 39] for further mathematical details.

It was only very recently that the concept of Krein signature was extended
to the non-Hamiltonian PT -symmetric systems. The linear Schrödinger equation
with a complex-valued PT -symmetric potential was considered in [35], where the
indefinite PT -inner product with the induced PT -Krein signature was introduced
in the exact correspondence with the Krein signature for the Hamiltonian spectral
problem (8). Coupled non-Hamiltonian PT -symmetric systems were considered in
[2, 3] (see also [48]), where the linearized problem was block-diagonalized to the
form for which the Krein signature of eigenvalues can be introduced. A Hamiltonian
version of the PT -symmetric system of coupled oscillators was considered in
[11, 12], where the Krein signature of eigenvalues was introduced by using the
corresponding Hamiltonian. Finally, Krein signature of eigenvalues was defined in
[13] for the spectral problem related to the linearization of the NLS equation with
complex-valued potentials.

Compared to the Hamiltonian case in [23, 37] and to the linear PT -symmetric
Schrödinger equation in [35], it was shown in [13] that the Krein signature of
eigenvalues in the linearization of the PT -symmetric NLS equation cannot be com-
puted just from the eigenvectors in the spectral problem. This is because the adjoint
eigenvectors need to be computed separately and the sign of the adjoint eigenvector
needs to be chosen by a continuity argument. This limits practical applications of
the Krein signature in nonlinear PT -symmetric systems. Nevertheless, the main
properties of the Krein quantity listed above for the Hamiltonian NLS equation are
extended to the case of the PT -symmetric NLS equation. Moreover, the necessary
condition for the instability bifurcation is extended to the PT -symmetric NLS
equation but not the Hamiltonian–Krein Theorem.

The purpose of this chapter is to explain definitions and properties of the Krein
signature on the prototypical example of the NLS equation (1) with either the
potential (2) or the potential (5).
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We also address the Krein signature in the linear PT -symmetric Schrödinger
equation as the one introduced in [35], where we discuss differences from the Krein
signature in the linearized PT -symmetric NLS equation introduced here. We will
show that the linear Schrödinger equation with a real even potential (2) admits two
equivalent Hamiltonian formulations and hence two equivalent definitions of the
Krein signatures. The standard Hamiltonian formulation leads to eigenvalues of
only positive Krein signature, whereas the non-standard Hamiltonian formulation
leads to infinitely many eigenvalues of opposite Krein signature. It is the latter
Hamiltonian formulation that can be extended to the case of the PT -symmetric
potential (5).

This chapter is organized as follows. Section 2 addresses nonlinear stationary
states bifurcating from simple eigenvalues of the quantum harmonic oscillator and
describes Krein signature in the linearized NLS equation with the potential (2).
Section 3 describes Krein signature for the PT -symmetric NLS equation with the
potential (5), where we highlight the differences between the Hamiltonian and the
PT -symmetric cases. Section 4 contains discussion of the linear PT -symmetric
Schrödinger equation. Section 5 summarizes the results and lists further directions.

2 Krein Signature for the NLS Equation

In the context of the NLS equation (1) with the potential (2), we consider the
nonlinear stationary states of the form u(x, t) = e−iμtφ(x), where μ ∈ R is
referred to as the chemical potential [18] and the real-valued function φ satisfies
the differential equation

μφ(x) = −φ′′(x) + x2φ(x) + φ(x)3, (10)

where we have set � = 1 without loss of generality. In the linear (small-amplitude)
limit, we obtain the quantum harmonic oscillator with the eigenvalues μn = 1+2n,
n ∈ N0 := {0, 1, 2, . . .} and the L2-normalized eigenfunctions

ϕn(x) = 1√
2nn!√π

Hn(x)e−x2/2,

where Hn is the Hermite polynomial of degree n, e.g., H0(x) = 1, H1(x) = 2x,
H2(x) = 4x2 − 2, etc.

Each eigenfunction ϕn for a simple eigenvalue μn generates a branch of solutions
bifurcating in the stationary problem (10). This follows from the general Crandall–
Rabinowitz bifurcation theory [16] and is generally used in physics community, see,
e.g., [20, 54]. Each branch can be approximated by the following expansion in terms
of the small parameter ε:
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{
μ = μn + ε2μ

(2)
n + . . . ,

φ = εϕn + ε3ϕ
(3)
n + . . . ,

(11)

where (μn, ϕn) is the n-th eigenvalue–eigenfunction pair, (μ
(2)
n , ϕ

(3)
n ) are the next-

order correction terms to be found, and the dots denote the higher-order corrections
terms. The n-th branch of the nonlinear stationary states is smooth with respect to
the small parameter ε, which parameterizes both μ and φ, whereas it has a square-
root singularity when it is written in terms of the parameter μ − μn.

The formal solvability condition for the correction terms (μ
(2)
n , ϕ

(3)
n ) yields

μ(2)
n =

∫
R

ϕn(x)4dx > 0, (12)

which implies that the branch of nonlinear stationary states extends towards μ >

μn. The limit μ → ∞ can be rescaled as the semi-classical limit. Each n-th
branch of the nonlinear stationary states is uniquely extended to the limit μ → ∞,
where it is approximated asymptotically as a bound state of n dark solitons on the
background of the harmonic potential V in (2) [15, 38].

When considering the stability of the nonlinear stationary state of the form
u(x, t) = e−iμtφ(x), we linearize the NLS equation (1) with the expansion

u(x, t) = e−iμt
[
φ(x) + δ

(
a(x)e−λt + b̄(x)e−λ̄t

)
+ . . .

]
, (13)

where δ is a formal small parameter. To the leading order in δ, the eigenvalue–
eigenvector pair (λ, v) with v = (a, b)T is found from the spectral problem

Lv = −iλσ3v, (14)

where σ3 = diag(1,−1) and the linear operator L is written in the differential form:

L =
[−∂2

x + x2 − μ + 2φ(x)2 φ(x)2

φ(x)2 −∂2
x + x2 − μ + 2φ(x)2

]
. (15)

The operator L is extended to a self-adjoint operator in L2(R) with the domain
H 2(R) ∩ L2,2(R) (see [22], Ch. 4, p.37), where H 2(R) is the Sobolev space of
square integrable functions and their second derivatives and L2,2(R) is the space
of square integrable functions multiplied by (1 + x2). The spectrum of L is purely
discrete (see [44], Ch. XIII, Theorem 16 on p.120).

The spectral problem (14) takes the abstract form (8) with the self-adjoint
operator L given by (15) and the skew-symmetric operator J = iσ3. The
Hamiltonian symmetry J 2 = −I and JL + L̄J̄ = 0 (or, equivalently, σ3L = L̄σ3)
is satisfied. The eigenvalues are symmetric relative to the imaginary axis. To be
precise, if λ0 is an eigenvalue with the eigenvector v0 = (a, b)T , then −λ0 is another
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eigenvalue with the eigenvector σ3v̄0 = (a,−b)T by the Hamiltonian symmetry
σ3L = L̄σ3.

In addition to the Hamiltonian symmetry, the operator L in (15) satisfies σ1L =
L̄σ1, where σ1 = antidiag(1, 1). This symmetry implies that the eigenvalues are
symmetric relative to the real axis. Indeed, if λ0 is an eigenvalue with the eigenvector
v0 = (a, b)T , then λ̄0 is another eigenvalue with the eigenvector σ1v̄0 = (b̄, ā).
Hence, the unstable eigenvalues with Re(λ0) > 0 occur either as pairs on the real
axis or as quadruplets in the complex plane, whereas the neutrally stable eigenvalues
with Re(λ0) = 0 occur as pairs on the imaginary axis.

For each nonzero eigenvalue λ0 ∈ C of the spectral problem (14) with the
eigenvector v0 = (a, b)T ∈ H 2(R) ∩ L2,2(R), the Krein quantity K(λ0) introduced
in (9) can be written explicitly as follows:

K(λ0) = 〈Lv0, v0〉 = −iλ0〈σ3v0, v0〉 = −iλ0

∫
R

[
|a(x)|2 − |b(x)|2

]
dx. (16)

If K(λ0) is nonzero and real, the sign of K(λ0) is referred to as the Krein signature.
In what follows, we only consider eigenvalues with λ0 ∈ iR+, for which −iλ0 > 0.

Let us verify the main properties of the Krein quantity K(λ0).

(1) If λ0 ∈ iR, then (−iλ0) ∈ R. The integral in (16) is also real. Hence, K(λ0) is
real.

(2) Let us write the eigenvalue problem (15) for the generalized eigenvector vg:

(L + iλ0σ3)vg = σ3v0. (17)

If λ0 ∈ iR\{0}, then v0 is in the kernel of the adjoint operator (L+ iλ0σ3)
∗, and

the Fredholm solvability condition of the above equation is 〈σ3v0, v0〉 = 0. If
K(λ0) = 0, then there exists a solution to the nonhomogeneous equation (17),
so that λ0 is not simple. Hence, K(λ0) �= 0.

(3) Using the self-adjoint property of L, one can write

〈Lv0, v0〉 = 〈v0,Lv0〉,

which can be expanded as

−iλ0〈σ3v0, v0〉 = iλ̄0〈v0, σ3v0〉,

where the equality holds either for λ0 ∈ iR or 〈σ3v0, v0〉 = 0. Hence K(λ0) =
0 for λ0 �∈ iR.

Let us now illustrate how the Krein signatures can be used to predict instability
bifurcations from multiple neutrally stable eigenvalues of the spectral problem (14).
We restrict consideration to the small-amplitude limit. If ε = 0 and μ = μn, the
linear operator (15) becomes diagonal:
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L0 =
[−∂2

x + x2 − μn 0
0 −∂2

x + x2 − μn

]

and the eigenvalues are located at σ(L0) = {2(m − n), m ∈ N0}, where n ∈ N0
is fixed. Because of the skew-symmetric operator J = iσ3 in the right-hand side of
the spectral problem (14), these eigenvalues are mapped to the imaginary axis in the
pairs λ ∈ ±i{2(m − n), m ∈ N0}.

If n = 0, the ground state branch (11) leads to a double zero eigenvalue and
a set of simple eigenvalues in pairs λ ∈ ±i{2m, m ∈ N0\{0}}. The double
zero eigenvalue is preserved in ε due to gauge symmetry, whereas the simple
neutrally stable eigenvalues are preserved on the imaginary axis due to Hamiltonian
symmetry (at least for small ε). Moreover, each eigenvalue has a positive Krein
signature, therefore, by the necessary condition for instability bifurcations, no
complex eigenvalue quartets can arise in parameter continuations of solutions to the
spectral problem (14) in ε (or equivalently, in μ). These spectral stability properties
are natural for the ground state solution.

If n = 1, the first excited state branch (11) associated with a single dark soliton
[15, 38] leads to a double zero eigenvalue, a pair of double eigenvalues λ = ±2i,
and a set of simple eigenvalues in pairs λ ∈ ±i{2(m−1), m ∈ N0\{0, 1, 2}}. The
double zero eigenvalue is again preserved in ε due to gauge symmetry but the pair
of nonzero double eigenvalues λ = ±2i may split if ε �= 0. Note that two linearly
independent eigenvectors exist for λ0 = 2i:

v1 =
[

ϕ2

0

]
, v2 =

[
0
ϕ0

]
. (18)

The two eigenvectors induce opposite Krein signatures for the coalescent double
eigenvalue since K(λ0) > 0 for v1 and K(λ0) < 0 for v2. Therefore, by the
necessary condition on the splitting of the double eigenvalues, we may anticipate
unstable eigenvalues for small ε.

Similarly, if n = 2, the second excited state branch (11) associated with two dark
solitons [15, 38] leads to a double zero eigenvalue, two pairs of double eigenvalues
λ = ±2i and λ = ±4i, and a set of simple eigenvalues in pairs λ ∈ ±i{2(m − 2),

m ∈ N0\{0, 1, 2, 3, 4}}. The double zero eigenvalue is again preserved in ε due to
gauge symmetry but the pairs of nonzero double eigenvalues λ = ±2i and λ = ±4i

may split if ε �= 0. Note that two linearly independent eigenvectors exist as follows:

λ0 = 2i : v1 =
[

ϕ3

0

]
, v2 =

[
0
ϕ1

]
(19)
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and

λ0 = 4i : v1 =
[

ϕ4

0

]
, v2 =

[
0
ϕ0

]
. (20)

Again, the two eigenvectors induce opposite Krein signatures for each coalescent
double eigenvalue, hence by the necessary condition on the splitting of the double
eigenvalues, we may anticipate unstable eigenvalues for small ε.

In order to compute definite predictions whether or not the double eigenvalues
produce instability bifurcations for the first and second excited states, we shall
proceed using perturbation theory arguments. We substitute expansion (11) into the
spectral problem (14) and expand it into powers of ε2 as follows:

(L0 + ε2L1 + . . . )v = −iλσ3v, (21)

where

L1 =
[

2ϕn(x)2 − μ
(2)
n ϕn(x)2

ϕn(x)2 2ϕn(x)2 − μ
(2)
n

]
.

Let −iλ = ω0+ε2ω1+. . . , where ω0 is a coalescent double eigenvalue and ω1 is
a correction term. Representing v = c1v1 + c2v2 + . . . and projecting the perturbed
spectral problem (21) to the eigenvectors v1 and v2 yield the matrix eigenvalue
problem

M

[
c1

c2

]
= ω1σ3

[
c1

c2

]
, (22)

where Mij = 〈L1vi, vj 〉, 1 ≤ i, j ≤ 2, and the L2 normalization of eigenvectors
has been taken into account.

Let us consider the first excited state n = 1 bifurcating from μ1 = 3. For ε = 0,
the eigenvalue at ω0 = 2 is double with two eigenvectors (18). However, there exists
a linear combination of v1 and v2 which produces the so-called dipolar oscillation
(also known as the Kohn mode, see explicit solutions in [29]) and thus the eigenvalue
at ω0 = 2 related to this linear combination is independent of the variations of the
chemical potential in ε. The shift of the eigenvalue for another linear combination
of v1 and v2 has been the subject of intense scrutiny as it is associated with the
oscillation frequency of the dark soliton in the parabolic trap [8, 40].

By using (12) for n = 1, we find μ
(2)
1 = 3/(4

√
2π). The matrix M in the matrix

eigenvalue problem (22) is computed explicitly as

M =
[

1
8
√

2π

1
8
√

π
1

8
√

π
1

4
√

2π

]
.
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Computations of eigenvalues of the matrix eigenvalue problem (22) yield 0 and
−1/(8

√
2π). The zero eigenvalue corresponds to the dipolar oscillations. The

nonzero eigenvalue near ω0 = 2 is given by the following expansion:

ω = 2 − 1

6
(μ − 3) + . . .

Numerical results on the top left panel of Fig. 1 confirm this prediction. The smallest
nonzero eigenvalue remains below ω0 = 2 and approaches ω → √

2 as μ → ∞, in
agreement with the previous results [8, 40].

It is relevant to indicate that the asymptotic limit of the eigenfrequencies of the
ground state solution with n = 0 can be computed in the limit of large μ [49] (see
also [29] for a recent account of the relevant analysis). These modes include the
so-called dipolar oscillation, quadrupolar oscillation, etc. (associated, respectively,
to m = 1, m = 2, etc.) and the corresponding eigenfrequencies are given by the
analytical expression in the limit μ → ∞:

Fig. 1 The top left panel corresponds to the case of the first excited state, the top right one
corresponds to the second excited state, while the bottom panel corresponds to the third excited
state. Eigenvalues of negative (positive) Krein signature are shown in red (green), complex
eigenvalues are shown in black. Asymptotic values in (23) are shown using blue dashed lines.
For the first excited state, only the lowest nonzero eigenfrequency has a negative Krein signature
(but its linear degeneracy with a symmetry mode yields no instability). For the second excited
state, there are two degenerate modes at 2 and 4. Only the latter yields the quartet of complex
eigenvalues. For the third excited state, there are three degenerate modes at 2, 4, and 6; the last two
yield quartets of complex eigenvalues
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ωm = √
2m(m + 1), m ∈ N. (23)

These asymptotic values are also shown on Fig. 1 by using blue dashed lines. From
the top left panel, we can see that these frequencies of the ground state solution are
present in the linearization of the first excited state in addition to the eigenfrequency
ω∗ = √

2, which corresponds to the oscillation of the dark soliton inside the trap.
While the example of the first excited state is instructive, it does not show any

instability bifurcations due to coalescence of eigenvalues of the opposite Krein
signatures. This is because although the eigenfrequency at ω0 = 2 is double, the
dipolar oscillations do not allow the manifestation of an instability as a result of
resonance. However, the onset of instability can still be found for the other excited
states, e.g. for the second excited state n = 2 bifurcating from μ2 = 5.

By using (12) for n = 2, we find μ
(2)
2 = 41/(64

√
2π). At ε = 0, the eigenvalue

at ω0 = 2 is double with the two eigenvectors (19). The dipolar oscillation mode
is present again and corresponds to the eigenvalue at ω0 = 2 independently of
the variations of the chemical potential in ε. The other eigenvalue at ω0 = 2 is
shifted for small ε. The matrix M in the matrix eigenvalue problem (22) is computed
explicitly as

M =
[

5
32

√
2π

15
64

√
3π

15
64

√
3π

15
64

√
2π

]
.

Computations of eigenvalues of the matrix eigenvalue problem (22) yield 0 and
−5/(64

√
2π). The nonzero eigenvalue near ω0 = 2 is given by the following

expansion:

ω = 2 − 5

41
(μ − 5) + . . . (24)

While the degeneracy at ω0 = 2 does not lead to the onset of instability, let us
consider the double eigenvalue at ω0 = 4 with the two eigenvectors (20). The matrix
M in the matrix eigenvalue problem (22) is computed explicitly as

M =
⎡
⎣

1
512

√
2π

9
128

√
3π

9
128

√
3π

7
64

√
2π

⎤
⎦ .

The complex eigenvalues of the matrix eigenvalue problem (22) are given by
(−55 ± 3

√
23i)/(2048

√
2π). The complex eigenvalues near ω0 = 4 are given by

the following expansion:

ω = 4 + −55 ± 3
√

23i

656
(μ − 5) + . . . (25)
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The eigenvalues remain complex for values of μ � 5 but coalesce again on the
imaginary axis at μ ≈ 13.75 and reappear as pairs of imaginary eigenvalues of
the opposite Krein signatures. This reversed instability bifurcation takes place in a
complete agreement with the necessary condition for the instability bifurcations.

In the large chemical potential limit, the eigenfrequencies of the linearization at
the excited state with n = 2 include the same eigenfrequencies of the linearization
at the ground state with n = 0 given by (23), see the top right panel of Fig. 1.
In addition, two modes with negative Krein signature appear due to the dynamics
of the two dark solitary waves on the ground state. One mode represents the in-
phase oscillation of the two dark solitons and it is continued from the eigenvalue
expanded by (24) to the limit μ → ∞, where it approaches ω∗ = √

2. The other
mode represents the out-of-phase oscillation of the two dark solitons and it appears
from the complex pair (25) which reappears back on the imaginary axis for higher
values of the chemical potential μ. Asymptotic approximation of the out-of-phase
oscillation in the limit μ → ∞ is obtained in [15].

This pattern continues for other excited states with n ≥ 3. The bottom panel on
Fig. 1 shows the case n = 3. For every n ≥ 3, there are n double eigenvalues with
opposite Krein signature at ε = 0. If ε �= 0, the lowest double eigenvalue does not
lead to instability due to its linear degeneracy with the dipolar symmetry mode. The
remaining n−1 double eigenvalues may yield instability bifurcations with complex
eigenvalues. For large μ, these eigenvalues reappear on the imaginary axis after the
reversed instability bifurcations in agreement with the necessary condition for the
instability bifurcation. The n eigenvalues of negative Krein signature characterize
n dark solitons on top of the ground state solution. As such, they provide a rather
lucid example of the nature and relevance of the negative Krein signature concept.
Further details can be found in [15] for the large μ case and in [27] for the small μ

case.

3 Krein Signature for the Nonlinear PT -Symmetric
Schrödinger Equation

Next, we consider the PT -symmetric NLS equation (1) with the potential (5).
Taking the nonlinear stationary states in the form u(x, t) = e−iμtφ(x) with μ ∈ R,
we obtain the following differential equation for the complex-valued φ:

μφ(x) = −φ′′(x) + (x2 + 2iγ x)φ(x) + |φ(x)|2φ(x), (26)

where we have set � = 1 again without loss of generality. We say that φ is a PT -
symmetric stationary state of the PT -symmetric NLS equation if φ satisfies the
PT -symmetry condition:

φ(x) = PT φ(x) = φ(−x), x ∈ R. (27)
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In the linear (small-amplitude) limit, we can convert the linear spectral problem
to the quantum harmonic oscillator by using the complex variable z = x + iγ .
Then, the eigenvalues occur at μn = 1 + 2n + γ 2, n ∈ N0 and the PT -symmetric
eigenfunctions are given by

ϕn(x) = in√
2nn!√π

Hn(x + iγ )e−(x+iγ )2/2. (28)

Note that ϕn in (28) satisfies the PT -symmetry condition (27). The eigenfunction
ϕn is normalized by the condition

〈ϕn, ϕn〉PT = (−1)n,

where the modified inner product is used in the form

〈ψ, ϕ〉PT :=
∫
R

ψ(x)ϕ(−x)dx. (29)

The inner product in the form (29) is used for all linear PT -symmetric systems [4]
and the alternating sign of 〈ϕn, ϕn〉PT is taken in [35] as the Krein signature of the
eigenvalue μn, see discussion in Sect. 4.

By the same Crandall-Rabinowitz bifurcation theory [16], each PT -symmetric
function ϕn for a simple eigenvalue μn generates a branch of solutions, which can
also be approximated by the same expansion (11). Bifurcations of such nonlinear
stationary states in the PT -symmetric systems from simple real eigenvalues are
considered in [19, 30], where it is proven that the bifurcating branch of the stationary
states satisfies the PT -symmetry (27) and the chemical potential μ is real (at least
for small ε).

The formal solvability condition for the correction terms (μ
(2)
n , ϕ

(3)
n ) of the

expansion (11) yields

μ(2)
n =

∫
R

ϕn(x)|ϕn(x)|2ϕn(−x)dx∫
R

ϕn(x)ϕn(−x)dx
= (−1)n

∫
R

ϕn(x)|ϕn(x)|2ϕn(−x)dx.

Although it is obvious that μ
(2)
n is real, the sign of this quantity is less explicit than

in (12). At least for small γ , we know that μ
(2)
n > 0 by continuity of μ

(2)
n in γ .

Continuation of branches of the nonlinear stationary states in the limit μ → ∞ is
a highly non-trivial problem (see [55, 56] for numerical results and [21] for partial
analytical results on the ground state branch).

In our numerical experiments, we fix μ = 12 and continue in γ the first four
branches from the Hamiltonian case γ = 0. The resulting continuations are shown
on the left panel of Fig. 2. Branches with stable nonlinear states are shown by using
blue solid curves and branches with unstable states are shown in dashed red. The
power curves represent the power of the mode:
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Fig. 2 Left: Power curves for branches of nonlinear states for μ = 12 and γ > 0. Solid blue
(dashed red) curves indicate stable (unstable) states. Right: Sample profiles for nonlinear states
that correspond to the points shown on the power curves, from the top to the bottom branches

‖φ‖2 =
∫
R

|φ(x)|2dx.

The right panel of Fig. 2 shows the mode profiles corresponding to the points shown
on the power branches on the left panel. Analyzing branches reveals two saddle-
node bifurcations: the first branch meets the second one at γ ≈ 0.292, whereas the
third and fourth branches meet at γ ≈ 0.469. Profiles of the nonlinear states for
the merging branches at the saddle-node bifurcation become very similar, and after
the bifurcation point both branches disappear. Such bifurcations are typical in the
defocusing case, whereas branches of nonlinear states are extended for all γ in the
focusing case [55, 56].

Linearizing the PT -symmetric NLS equation with the same expansion (13)
yields the same spectral problem as in (14):

L(γ )v = −iλσ3v, (30)

with σ3 = diag(1,−1), but L(γ ) is no longer a self-adjoint linear operator. The
operator L(γ ) is still defined in L2(R) with the domain H 2(R) ∩ L2,2(R) and is
now given by

L(γ )=
[

−∂2
x + x2 + 2iγ x − μ + 2|φ(x)|2 φ(x)2

φ(x)2 −∂2
x + x2−2iγ x−μ+2|φ(x)|2

]
.

This operator does not satisfy the Hamiltonian symmetry, σ3L(γ ) �= L̄(γ )σ3 but
instead, it satisfies the PT -symmetry PL(γ ) = L̄(γ )P . In addition, it satisfies the
symmetry σ1L(γ ) = L̄(γ )σ1, the same as in the Hamiltonian case. The quadruple
symmetry of eigenvalues still exists due to these two symmetries. Indeed, if λ0 is
an eigenvalue with the eigenvector v0 = (a, b)T , then −λ̄0 is also an eigenvalue
with the eigenvector PT v0, that is (a(−x), b(−x))T for x ∈ R, whereas λ̄0 is
another eigenvalue with the eigenvector σ1v̄0 = (b̄, ā). Hence, eigenvalues of the
PT -symmetric spectral problem (30) still occur either in real or purely imaginary
pairs or as quadruplets in the complex plane.
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Besides the spectral problem (30), we also introduce the adjoint spectral problem
with the adjoint eigenvector denoted by v#:

L∗(γ )v# = −iλσ3v
#, (31)

where L∗(γ ) is the adjoint linear operator to L(γ ) given by

L∗(γ ) =
[

−∂2
x + x2 − 2iγ x − μ + 2|φ(x)|2 φ(x)2

φ(x)2 −∂2
x + x2 + 2iγ x − μ + 2|φ(x)|2

]
.

Unfortunately, the main limitation towards the Krein signature theory in the PT -
symmetric case γ �= 0 is that the adjoint eigenvector v# of the adjoint spectral
problem (31) cannot be related to the eigenvector v of the spectral problem (30) for
the same eigenvalue λ. Neither L∗(γ ) = L(γ ) nor L∗(γ ) = PL(γ )P is true.

Let us now consider a simple isolated eigenvalue λ0 ∈ C\{0} of the spectral
problems (30) and (31) with the eigenvector v0 ∈ H 2(R) ∩ L2,2(R) and the adjoint
eigenvector v#

0 ∈ H 2(R) ∩ L2,2(R), respectively. If λ0 ∈ iR, then there exists a
choice for the eigenvectors v0 and v#

0 to satisfy the PT -symmetry constraint:

v0(x) = v0(−x), v#
0(x) = v#

0(−x), x ∈ R. (32)

For each nonzero eigenvalue λ0 ∈ C of the PT -symmetric spectral problem (30)
with the eigenvector v0 = (a, b) ∈ H 2(R) ∩ L2,2(R) and the adjoint eigenvector
v#

0 = (a#, b#) ∈ H 2(R) ∩ L2,2(R), we define the Krein quantity K(λ0) as follows:

K(λ0) := 〈σ3v0, v
#
0〉 =

∫
R

[
a(x)a#(x) − b(x)b#(x)

]
dx. (33)

If γ = 0, then L∗(0) = L(0) and the adjoint spectral problem (31) becomes
equivalent to the spectral problem (30). Therefore, the adjoint eigenvector v#

0 can be
related to the eigenvector v0 by v#

0 = v0. In this Hamiltonian case, the definition (33)
represents the integral in the right-hand-side of the definition (16). The signs of
K(λ0) defined for γ = 0 by (16) and K(λ0) defined for γ ∈ R by (33) are the same
if −iλ0 > 0 and γ = 0.

If γ �= 0, the adjoint eigenvector v#
0 satisfying the PT -symmetry condition (32)

is defined up to an arbitrary sign. As a result, the Krein quantity K(λ0) in (33) is
defined up to the sign change. In the continuation of the NLS equation (1) with
respect to the parameter γ from the Hamiltonian case γ = 0, the sign of the Krein
quantity K(λ0) in (33) is chosen so that it matches the sign of K(λ0) in (16) for
every −iλ0 > 0 and γ = 0, hence we choose v#

0 = v0 at γ = 0. After this choice
is made for γ = 0, the eigenvector v0, the adjoint eigenvector v#

0, and the Krein
quantity K(λ0) are extended continuously with respect to the parameter γ .

Let us verify the main properties of the Krein quantity K(λ0) defined by (33).
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(1) If f and g satisfy the PT -symmetry condition (32), then the standard inner
product 〈f, g〉 is real-valued. Indeed, this follows from

〈f, g〉 =
∫
R

f (x)g(x)dx =
∫ +∞

0

(
f (x)g(x) + f (−x)g(−x)

)
dx

=
∫ +∞

0

(
f (x)g(x) + f (x)g(x)

)
dx.

By (32), v0 and v#
0 are PT -symmetric if λ0 ∈ iR, hence K(λ0) is real if λ0 ∈

iR.
(2) Let us write the spectral problem for the generalized eigenvector vg:

(L(γ ) + iλ0σ3)vg = σ3v0. (34)

If λ0 ∈ iR\{0}, then v#
0 is in the kernel of the adjoint operator (L(γ )+ iλ0σ3)

∗,
and the Fredholm solvability condition of the above equation is 〈σ3v0, v

#
0〉 = 0.

If K(λ0) = 0, then there exists a solution to the nonhomogeneous equation (34),
so that λ0 is not simple. Hence, K(λ0) �= 0.

(3) Taking inner products of the spectral problems (30) and (31) with the corre-
sponding eigenvectors yields

〈
Lv0, v

#
0

〉
= −iλ0

〈
σ3v0, v

#
0

〉

and
〈
v0,L∗v#

0

〉
= iλ0

〈
v0, σ3v

#
0

〉
,

hence

i(λ0 + λ0)K(λ0) = 0.

If λ0 /∈ iR, then λ0 + λ0 �= 0 and K(λ0) = 0.

Let us now illustrate how the Krein signatures can be used to predict instability
bifurcations from multiple neutrally stable eigenvalues of the spectral problem (30).
Recall that the eigenvalue is called semi-simple if algebraic and geometric multi-
plicities coincide and defective if the algebraic multiplicity exceeds the geometric
multiplicity. In Sect. 2, we continued a semi-simple double eigenvalue with respect
to parameter ε. Here we continue a defective double eigenvalue with respect to
parameter γ .

Let γ0 denote the bifurcation point where two neutrally stable eigenvalues
coalesce: λ0 = λ′

0 ∈ iR\{0}. Near γ = γ0, we expand the linear non-self-adjoint
operator L(γ ) as follows:
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L(γ ) = L0 + (γ − γ0)L1 + . . . , (35)

where

L1 =
[

2ix + 2∂γ |φ(x)|2|γ=γ0 ∂γ φ2(x)|γ=γ0

∂γ φ2(x)|γ=γ0 −2ix + 2∂γ |φ(x)|2|γ=γ0

]
,

and ∂γ denotes a partial derivative with respect to the parameter γ . We assume that
there exists a defective double eigenvalue λ0 ∈ iR\{0} of the spectral problems (30)
and (31) with the eigenvector v0, the generalized eigenvector vg , the adjoint
eigenvector v#

0, and the adjoint generalized eigenvector v#
g , respectively. We will

show that under the following non-degeneracy condition

〈L1v0, v
#
0〉 �= 0, (36)

the necessary condition for instability bifurcation applies to the spectral prob-
lem (30). Thanks to the decomposition (35), we are looking for an eigenvalue λ(γ )

of the perturbed spectral problem

(L0 + (γ − γ0)L1 + . . .) v(γ ) = −iλ(γ )σ3v(γ ), (37)

such that λ(γ ) → λ0 as γ → γ0. Since λ0 is a defective eigenvalue of geometric
multiplicity one and algebraic multiplicity two, we apply Puiseux expansions [26]:

{
λ(γ ) = λ0 + (γ − γ0)

1/2λg + (γ − γ0)λ̃ + . . . ,

v(γ ) = v0 − i(γ − γ0)
1/2λgvg + (γ − γ0)v1 + . . . ,

(38)

where λg , λ̃, and v1 are correction terms. To define v1 uniquely, we add the
orthogonality condition 〈σ3v1, v

#
0〉 = 〈σ3v1, v

#
g〉 = 0. The coefficient −iλg comes

in front of vg thanks to the nonhomogeneous Eq. (34) arising at the order of
(γ − γ0)

1/2 from the perturbed spectral problem (37).
Plugging (38) into (37) yields at the order of (γ − γ0):

(L0 + iλ0σ3) v1 = −L1v0 − λ2
gσ3vg − iλ̃σ3v0. (39)

Fredholm solvability condition is satisfied if the right-hand side of the nonhomoge-
neous equation (39) is orthogonal to the kernel of adjoint operator (L0 + iλ0σ3)

∗
spanned by v#

0. This orthogonality condition yields the constraint:

〈−L1v0 − λ2
gσ3vg − iλ̃σ3v0, v

#
0〉 = 0. (40)

Since K(λ0) = 0 for the defective eigenvalue λ0 ∈ iR, λ̃ is not determined by
equation (40). On the other hand, λg is defined by equation (40), which can be
rewritten as follows:
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(−iλg)
2 = 〈L1v0, v

#
0〉

〈σ3vg, v
#
0〉 . (41)

The denominator of (41) is nonzero because of the following argument. If λ0 is a
double eigenvalue, then the solution of the nonhomogeneous equation

(L0 + iλ0σ3)ṽg = σ3vg,

does not exist in L2(R). Hence 〈σ3vg, v
#
0〉 �= 0. Since v0, v#

0, vg , and L1 satisfy the
PT -symmetry conditions, both the nominator and the denominator of (41) are real-
valued. By the assumption (36), the numerator of (41) is nonzero. Thus, (−iλg)

2 is
either positive or negative.

Let us assume that (−iλg)
2 > 0 without loss of generality and fix −iλg > 0. If

γ > γ0, then i(γ − γ0)
1/2λg ∈ R and we obtain the following expansions for the

two simple purely imaginary eigenvalues λ1 and λ2 given by

λ1 = λ0 + (γ − γ0)
1/2λg + . . . ,

λ2 = λ0 − (γ − γ0)
1/2λg + . . .

The corresponding eigenvectors are expanded by

v1(γ ) = v0 − i(γ − γ0)
1/2λgvg + . . . ,

v2(γ ) = v0 + i(γ − γ0)
1/2λgvg + . . . ,

whereas the adjoint eigenvectors for the same eigenvalues are expanded by

v#
1(γ ) = v#

0 − i(γ − γ0)
1/2λgv

#
g + . . . ,

v#
2(γ ) = v#

0 + i(γ − γ0)
1/2λgv

#
g + . . .

The leading order of Krein quantities for eigenvalues λ1 and λ2 is given by

K(λ1) = 〈σ3v1(γ ), v#
1(γ )〉 = −i(γ − γ0)

1/2λg〈σ3vg, v
#
0〉

+ i(γ − γ0)1/2λg〈σ3v0, v
#
g〉 + . . . ,

K(λ2) = 〈σ3v2(γ ), v#
2(γ )〉 = +i(γ − γ0)

1/2λg〈σ3vg, v
#
0〉

− i(γ − γ0)1/2λg〈σ3v0, v
#
g〉 + . . .

Since

〈σ3vg, v
#
0〉=〈vg, σ3v

#
0〉=〈vg, (L0+iλ0σ3)

∗v#
g〉=〈(L0+iλ0σ3)vg, v

#
g〉=〈σ3v0, v

#
g〉,
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the two expansions for K(λ1) and K(λ2) can be rewritten in the case of
i(γ − γ0)

1/2λg ∈ R as

K(λ1) = −2i(γ − γ0)
1/2λg〈σ3vg, v

#
0〉 + . . . ,

K(λ2) = 2i(γ − γ0)
1/2λg〈σ3vg, v

#
0〉 + . . .

Since 〈σ3v0, v
#
g〉 �= 0, K(λ1) has the opposite sign to K(λ2).

If γ < γ0, then i(γ − γ0)
1/2λg ∈ iR, so that λ1, λ2 /∈ iR, whereas K(λ1) =

K(λ2) = 0. Thus, the necessary condition for the instability bifurcation holds under
the nondegeneracy assumption (36).

Note in passing that if the non-degeneracy assumption (36) is not satisfied, then
λg = 0 follows from (41) and the perturbation theory must be extended to the next
order with a characteristic equation to be derived for the correction term λ̃. In this
case, the double defective eigenvalue λ0 ∈ iR may split safely along iR both for
γ > γ0 and γ < γ0.

Figures 3 and 4 show eigenvalues of the PT -symmetric spectral problem (30)
for the first four branches of the nonlinear stationary states with μ = 12 shown on
Fig. 2.

Figure 3 shows that the first branch is stable until γ ≈ 0.27, whereas the second
branch is stable until γ ≈ 0.25. For the first branch (left panel), eigenvalues of
the positive Krein signature coalesce at the origin, whereas for the second branch
(right panel), eigenvalues of the negative Krein signature coalesce at the origin. The
instability of the first branch is unusual, since it plays the role of the ‘ground state’ in
analogy to Hamiltonian case. Nonetheless, this is no surprise since similar behavior
was observed in [55], where the first two branches lost their stability very close to
each other.

Figure 4 (left panels) shows seven bifurcations among eigenvalues of the third
branch of the stationary states that occur at γ1 ≈ 0.126, γ2 ≈ 0.271, γ3 ≈ 0.304,
γ4 ≈ 0.316, γ5 ≈ 0.335, γ6 ≈ 0.338, and γ7 ≈ 0.393. Bifurcations at γ2, γ5, and
γ7 occur when eigenvalues on the imaginary axis coalesce at the origin, resulting
in pairs of eigenvalues on the real axis. The necessary condition for instability

Fig. 3 Purely imaginary eigenvalues λ of the PT -symmetric problem (30) for the first two
stationary states with μ = 12. Eigenvalues of negative (positive) Krein signature are shown in
red (green), complex eigenvalues are shown in black
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Fig. 4 The same as Fig. 3 but for the third (left panels) and fourth (right panels) branches of the
stationary states. Top panels show imaginary parts and the bottom panels show real parts of the
eigenvalues λ

bifurcations is not applicable if the double defective eigenvalue is located at the
origin. The bifurcation at γ6 occurs when real eigenvalues formed after bifurcations
at γ2 and γ5 coalesce and transform into a quadruplet of complex eigenvalues.

At γ1, complex quadruplets continued from the case γ = 0 coalesce and bifurcate
into the imaginary eigenvalues with opposite Krein signatures, which provides an
excellent example for the necessary condition of the reverse instability bifurcation.
At γ3 and γ4, we have more examples of the instability bifurcation and the reverse
instability bifurcation, in which the two eigenvalues before γ3 and after γ4 on the
imaginary axis have opposite Krein signatures.

Figure 4 (right panels) shows six bifurcations among eigenvalues of the fourth
branch of the stationary states at γ1 ≈ 0.099, γ2 ≈ 0.131, γ3 ≈ 0.154, γ4 ≈ 0.322,
γ5 ≈ 0.326, and γ6 ≈ 0.380. The bifurcation at γ1 is similar to the one for the third
branch: a complex pair of eigenvalues coming from the Hamiltonian case coalesces
on the imaginary axis and splits along the imaginary axis into two eigenvalues with
opposite Krein signatures moving away from each other. Bifurcations at γ2 and γ3
occur when two imaginary eigenvalues with opposite Krein signatures continued
from γ = 0 coalesce and bifurcate off into the complex plane at γ2, after which
the complex eigenvalues coalesce again on the imaginary axis at γ3 and emerge as
a pair of purely imaginary eigenvalues with opposite Krein signatures.

At γ4, a pair of purely imaginary eigenvalues of negative Krein signature
coalesces at the origin and they bifurcate into real eigenvalues. At γ5, the purely
imaginary eigenvalues nearly coalesce, but the numerical results are somewhat
inconclusive. Figure 5 shows the squared norm of the difference of eigenvectors for
the corresponding eigenvalues. As we can see, the difference between eigenvectors
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Fig. 5 Distance between eigenvectors (red solid curve) and adjoint eigenvectors (dashed blue
curve) for the fourth branch in Fig. 4 near γ5

does not vanish, which rules out the possibility of a double defective eigenvalue at
the bifurcation point γ5.

Finally, bifurcation at γ6 shows coalescence of two eigenvalues with opposite
Krein signatures after which they bifurcate into a complex quadruplet. Bifurcations
at γ1, γ2, γ3, and γ6 agree with the necessary condition for the instability bifurcation.

Stability of nonlinear stationary states of the PT -symmetric NLS equation (26)
was studied numerically in [55] for fixed values of γ . The recent study in [13] was
applied to a modified potential V where the imaginary part of V had a Gaussian
decay; see also the earlier study of [1]. The instability bifurcations were found to
be very similar to the present study. In addition to the bifurcations visible on Fig. 4,
there was also the case when two eigenvalues with opposite signatures coalesce
into a defective eigenvalue but not bifurcating into the complex plane. This may
happen when the non-degeneracy condition (36) is not satisfied, so that the two
eigenvalues of opposite Krein signature can pass each other on the imaginary axis
without generating complex quadruplets.

4 Krein Signature for the Linear PT -Symmetric
Schrödinger Equation

Here we discuss the concept of Krein signature in the linear PT -symmetric
Schrödinger equation introduced in [35]. For the potential (5) with � = 1, we can
write the linear spectral problem in the form:

μψ(x) = −ψ ′′(x) + x2ψ(x) + 2iγ xψ(x), (42)
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which is related to the non-self-adjoint PT -symmetric Schrödinger operator
H = −∂2

x + x2 + 2iγ x defined on the domain H 2(R) ∩ L2,2(R) in L2(R).
The adjoint operator H∗ = −∂2

x + x2 − 2iγ x satisfies H∗ = PHP , where P is
the parity operator. Because of this relation, if ψ0 is an eigenfunction of H for the
eigenvalue μ0, then ψ#

0 = Pψ0 is an eigenfunction of H∗ for the same eigenvalue
μ0. By using the relation ψ#

0 (x) = ψ0(−x), the Krein quantity of the eigenvalue μ0
in the spectral problem (42) can be defined by the inner product in (29):

K(μ0) := 〈ψ0, ψ0〉PT = 〈ψ0, ψ
#
0 〉 =

∫
R

ψ0(x)ψ0(−x)dx. (43)

This definition was used in [35] to verify the main properties of the Krein quantity
and the necessary condition for instability bifurcation.

The spectral problem (42) can be written in the Hamiltonian form (8), or
explicitly,

iP(PH)ψ = iμψ, (44)

where L = PH is self-adjoint, J = iP is skew-adjoint and invertible, and λ =
iμ is a new eigenvalue. By using the definition (9) of the Krein quantity for the
Hamiltonian spectral problem (8), we obtain

K̃(μ0) = 〈PHψ0, ψ0〉 = μ0〈ψ0,Pψ0〉 = μ0K(μ0), (45)

which is only different from the definition (43) by the factor μ0. However, μ0 > 0
since the spectral problem (42) admits only positive eigenvalues. Thus, the Krein
signature introduced in (43) coincides with the Krein signature introduced in (45).

The only difference between the Hamiltonian spectral problem (14) for the
linearized NLS equation and the spectral problem (44) for the linear Schrödinger
equation is that the eigenvalues λ of the spectral problem (14) on the imaginary axis
occur in pairs thanks to the symmetry σ1L = L̄σ1, whereas the eigenvalues λ = iμ

of the spectral problem (44) are located on the positive imaginary axis.
In the limit γ → 0, eigenfunctions of the Schrödinger operator H0 = −∂2

x + x2

for the quantum harmonic oscillator are either even or odd. Eigenvalues μ2N =
4N + 1, N ∈ N0 with even eigenfunctions have positive Krein signature in (43),
whereas eigenvalues μ2N−1 = 4N − 1, N ∈ N with odd eigenfunctions have
negative Krein signature. This seems to be surprising at first glance, since all
eigenvalues are strictly positive and the operator H0 is self-adjoint in L2(R).

It is more natural in the Hamiltonian case γ = 0 to define the Krein quantity of
an eigenvalue μ0 by

KH (μ0) := 〈H0ψ0, ψ0〉 = μ0〈ψ0, ψ0〉 = μ0

∫
R

|ψ0(x)|2dx, (46)
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which is strictly positive for every eigenvalue μ0 > 0. Rewriting the spectral
problem H0ψ = μψ in the Hamiltonian form

iH0ψ = iμψ, (47)

with L = H0, J = i, and λ = iμ, we obtain the same sequence of eigenvalues on
the positive imaginary axis but associated with the positive Krein quantity (46).

The apparent confusion is resolved by observing that the Schrödinger operator
H0 admits two equivalent Hamiltonian formulations (44) and (47), where only the
former is extended continuously with respect to the parameter γ �= 0. In the former
formulation (44) with γ = 0, the self-adjoint operator L = PH0 has now two
sequences of real eigenvalues: positive eigenvalues μ2N = 4N + 1, N ∈ N0 for the
even eigenfunctions and negative eigenvalues −μ2N−1 = −4N + 1, N ∈ N for the
odd eigenfunctions. This explains why the Krein quantity (43) is sign-alternating
even at γ = 0, whereas the Krein quantity (46) is always positive.

5 Summary and Further Directions

We have extended the concept of the Krein signature beyond Hamiltonian systems
and applied it to PT -symmetric systems. We have reviewed the Hamiltonian
theory, including the necessary condition for instability bifurcation as a result
of the collision of two eigenvalues of opposite Krein signature. An instructive
case example from the area of Bose–Einstein condensation provides a countable
sequence of nonlinear states bifurcating from eigenstates of a quantum harmonic
oscillator. The Krein signature was defined for the linearized NLS equation at
each of these nonlinear states both in the Hamiltonian and PT -symmetric cases.
The standard properties of the Krein signature were explicitly confirmed and the
necessary condition for instability bifurcation was verified. An illustrative (and rich
in terms of bifurcations) example was given in the form of a linear gain/loss term in
the NLS with a parabolic trap.

One can envision numerous extensions of the present theory. On the practical side
of specific applications, it would be especially relevant to consider two-dimensional
problems involving vorticity in settings such as the one of [1]. Also, more recently
partially PT -symmetric settings have been introduced in [17, 53] where one
dimension retains the symmetry and the other dimension does not. Considering
the applicability of the ideas herein in such systems or in systems with complex,
yet non-PT -symmetric potentials with families of solutions [33, 36] would also
be of interest. Finally, from a more mathematical perspective, an understanding of
whether ideas related to the Hamiltonian-Krein theorem can be adapted to the PT -
symmetric setting would be an especially intriguing task.
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