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Abstract
We consider PT -symmetric ring-like arrays of optical waveguides with purely
nonlinear gain and loss. Regardless of the value of the gain–loss coefficient,
these systems are protected from spontaneous PT -symmetry breaking. If the
nonhermitian part of the array matrix has cross-compensating structure, the
total power in such a system remains bounded—or even constant—at all times.
We identify two-, three-, and four-waveguide arrays with cross-compensatory
nonlinear gain and loss that constitute completely integrable Hamiltonian
systems.

Keywords: parity-time symmetry, nonlinear Schrödinger dimer,
Hamiltonian systems, Liouville integrability, integrable trimer,
integrable quadrimer

(Some figures may appear in colour only in the online journal)

1. Introduction

The concept of PT symmetry, originally introduced in nonhermitian quantum mechanics
[1, 2], has led to significant developments in photonics, plasmonics, quantum optics of atomic
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gases, metamaterials, Bose–Einstein condensates, electronic circuitry, and acoustics [2, 3].
The PT -symmetric equations model physical structures with a built-in balance between gain
and loss.

In a linear nonhermitian system, raising the gain–loss coefficient above a critical level
causes trajectories to escape to infinity. The setting in of this blow-up instability can have
a detrimental effect on the structure—in optics, for example, an escaping trajectory implies an
uncontrollable power hike.

Taking into account nonlinear effects and adding nonlinear corrections to the equations may
arrest the blow-up through the emergence of conserved quantities confining trajectories to a
finite part of the phase space [4]. In this paper, we study a class ofPT -symmetric systems with
the nonhermiticity induced entirely by the nonlinear terms. On one hand, these systems provide
access to the full set of behaviours afforded by the presence of gain and loss. On the other hand,
they exhibit remarkable regularity properties such as the existence of the Hamiltonian structure
and trajectory confinement.

The Hamiltonian structure in a dynamical system imposes a deep symmetry between two
sets of coordinates parameterising its phase space. In the presence of additional first integrals,
the Hamiltonian structure establishes an even higher degree of regularity: the Liouville integ-
rability. We identify two-, three- and four-component integrable systems with nonhermitian
nonlinearities that are free from the blow-up behaviour.

The two-component complex systems that we study have the form of the nonlinear
Schrödinger dimer: a discrete Schrödinger equation, defined on only two sites [5–10]. The
nonhermitian dimer serves as an archetypal model for a pair of optical waveguides or a pair
of micro-ring resonators with gain and loss, coupled by their evanescent fields [11, 12]. It also
arises in the study of Bose–Einstein condensates [13, 14], plasmonics [15], spintronics [16],
electronic circuitry [17] and several other contexts.

The literature suggests several recipes for preventing the blow-up in dimers, including lin-
ear vs nonlinear gain–loss competition [18, 19] and nonlinear gain–loss saturation [12, 20].
This paper explores cross-stimulation—an alternative mechanism that, in addition to ensuring
nonsingular evolution, conserves the norm |u|2 + |v|2 (interpreted as the total power of light
in the optical context). We present two cross-stimulated PT -symmetric dimers that describe
completely integrable Hamiltonian systems.

The cross-stimulation is a special type of a more general notion of cross-compensation
of gain and loss in a multichannel structure. To illustrate this concept, we invoke a three-
and four-site discrete Schrödinger equation—the PT -symmetric trimer and quadrimer,
respectively [21]. In the optical domain, the trimer and quadrimer model an optical necklace—
an array of three or four coupled waveguides or resonators. We produce examples of a
completely integrable PT -symmetric trimer and quadrimer, with solutions free from the
blow-up behaviour. Similar to the dimers in the first part of this study, the nonherimiti-
city of these necklaces is entirely due to the nonlinear terms and has a cross-compensatory
character.

The paper is organised into five sections. We start with a linear hermitian dimer with
the cross-stimulating cubic gain and loss (section 2). The subsequent section (section 3)
deals with a slightly more complex cross-stimulating system whose hermitian part is
cubic itself. We uncover the hidden Hamiltonian structure of these systems, determine
their integrals of motion and construct analytic solutions. An integrable PT -symmetric
trimer and quadrimer are identified in section 4. Section 5 summarises results of this
study.
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2. Linear dimer with nonlinear gain and loss

2.1. Gain and loss cross-stimulation

As the gain–loss coefficient is varied, the topological structure of the phase portrait of a dimer
with linear gain and loss undergoes a spontaneous change. Consider, for example, the so-
called standard PT -symmetric dimer, a model that arises in a wide range of physical contexts
[6, 8–10]:

iut+ v+ |u|2u= iγu, (1a)

ivt+ u+ |v|2v=−iγv. (1b)

As γ is raised above the critical value γc = 1, the fixed point at u= v= 0 loses its stability and
the PT -symmetry is said to become spontaneously broken. In the symmetry-broken phase
(γ > 1) small initial conditions give rise to exponentially growing solutions. Since the change
of behaviour concerns solutions of the linearised equations, we refer to this bifurcation as the
linearised symmetry breaking.

In a generic Schrödinger dimer, trajectories resulting from the exponentially growing solu-
tions of the linearised equations may escape to infinity. For example, in the standard dimer (1)
all growing linearised solutions give rise to escaping trajectories [9]. (Note that unbounded
solutions may occur in the symmetric phase too—they just need to evolve out of large initial
data [8, 9].)

To preclude the blow-up of small initial data, we consider a system with a hermitian lin-
earised matrix. Furthermore, our dimer is assumed to be cross-stimulated. This means that the
u-channel gains energy at the rate proportional to the power carried by its v-neighbour while
the v amplitude loses energy at a rate proportional to the power carried by u:

iut+ v= iγ|v|2u, (2a)

ivt+ u=−iγ|u|2v. (2b)

As a result of the cross-stimulation, the total power P= |u|2 + |v|2 is conserved. This keeps
all trajectories—both with small and large initial data—in a finite part of the phase space.

Although the cross-stimulation may come across as a purely mathematical construct, the
system (2) originates in a well-established physical context. It describes the spin-torque
oscillator—an isotropic ferromagnet in an external magnetic field with polarised spin current
driven through it [16]. The components of the total spin vector S= {X,Y,Z} in the free layer
of the oscillator are expressible through the complex amplitudes of the dimer’s channels:

X=
ūv+ uv̄

2
, Y= i

ūv− uv̄
2

, Z=
|u|2 − |v|2

2
. (3)

The length of the vector,R=
√
X2 +Y2 +Z2, is proportional to the total power carried by the

dimer,

R=
|u|2 + |v|2

2
,

which is fixed by the initial condition. The direction of the vector S is determined by a system
of three equations [16]:

Ẋ=−γXZ, (4a)

Ẏ=−(1+ γY)Z, (4b)
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Ż= Y+ γ(R2 −Z2), (4c)

where X,Y and Z are considered to be functions of τ = 2t, and the overdot stands for the
derivative w.r.t. τ .

Another area of applications of the cross-stimulated dimers is the classical limit of quantum
theory. A system equivalent to (2) governs the normalised state vector of the nonhermitian two-
level atom [13]. The corresponding Bloch-sphere dynamics obey equations (4).

2.2. Hamiltonian structure and integrability

Upon defining a set of polar coordinates by

X= e−η cosθ, Y=−γ−1 + e−η sinθ, (5)

equations (4) simplify to

η̇ = γZ, θ̇ = 0, (6)

Ż= γe−2η − e−η sinθ. (7)

It is not difficult to see that the system (6)–(7) is Hamiltonian.We choose the integralR2 − γ−2

as the Hamilton function:

H(η,θ,pη) = e−2η − 2γ−1e−η sinθ+
γ2

4
p2η. (8)

Here η and θ are the canonical coordinates and pη = 2γ−1Z is the canonical momentum con-
jugate to η. The equations

η̇ =
∂H
∂pη

, θ̇ =
∂H
∂pθ

reproduce equation (6), and

ṗη =−∂H
∂η

amounts to (7). The last Hamilton equation,

ṗθ =−∂H
∂θ

,

serves as a definition of the momentum pθ:

pθ =
2
γ

ˆ τ

0
X(τ ′)dτ ′.

The existence of the Hamiltonian structure and an additional first integral—the azimuthal
angle θ—establishes the complete integrability of the dimer (2).

2.3. Solutions

The trajectories of the system (4) are circular arcs resulting from the section of the sphere
X2 +Y2 +Z2 =R2 by vertical half-planes θ = const. These were classified in an earlier study
[13] in terms of the fixed points of the system. Changing to the canonical variables (5) allows
us to express solutions of the dimer (2) explicitly.

Using (8) and the first equation in (6), we obtain

K̇2 − ν2K2 − 2γ sin(θ)K+ γ2 = 0, (9)

4
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where K= eη and ν2 = γ2R2 − 1. This is a conserved quantity of the linear equation

K̈− ν2K= γ sinθ. (10)

The sphere with radius R> γ−1 encloses a section of the vertical axis X= 0, Y=−γ−1.
Accordingly, the sphere is crossed by vertical half-planes with all possible azimuthal angles,
from θ= 0 to θ = 2π. The resulting trajectories are circular arcs that connect an attracting fixed
point (a stable node) at

X= 0, Y=−γ−1, Z=−
√

R2 − γ−2

to a repelling point (unstable node) that has the same X,Y and opposite Z (figure 1(a)). The
corresponding solutions of (10) are given by

K= Aeντ +Be−ντ − γν−2 sinθ, (11)

where the relation between the constants of integration is found by substituting (11) into (9):

AB=
γ2

4ν2

(
sin2 θ
ν2

+ 1

)
.

For each value of spherical radius R the equations (4) represent a dynamical system on
the (X,Y)-plane, with a conserved quantity θ(X,Y). We note an ostensible paradox, where
the existence of the conservation law should be precluded by the presence of the attractor
and repeller in the phase space. The paradox is resolved, however, upon observing that θ is
undefined at either fixed point.

As R is decreased through γ−1, the attracting and repelling points approach each other,
collide and then diverge along the equator of the sphere. The sphere with R< γ−1 has two
elliptic fixed points, at

X=±R
√
1− γ2R2, Y=−γR2, Z= 0.

Each point is surrounded by a family of circular orbits (figure 1(c)). The corresponding solu-
tions of (10) are periodic:

K= Acos(ωτ)+ γω−2 sinθ.

Here,

ω =
√
1− γ2R2, A=

γ

ω

√
γ2R2 − cos2 θ. (12)

The vertical axis X= 0,Y=−γ−1 lies outside the sphere with R< γ−1. As a result, the
sphere is only crossed by the half-planes with θ in the interval defined by equation (12):

arccos(γR)< θ < π− arccos(γR).

In the borderline case R= γ−1, the system (4) has a single fixed point, at X= Z= 0 and
Y=−γ−1. Trajectories are homoclinic: they emerge out of the fixed point, wrap around the
sphere and flow back into the same semistable point (figure 1(b)). The corresponding solution
of equation (9) is

K= γ sinθ
τ 2

2
+Fτ +G,

where

G=
F 2 + γ2

2γ sinθ
.
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Figure 1. Trajectories of the system (4) on the surface of the sphere of the radius R>
γ−1 (a);R= γ−1 (b) andR< γ−1 (c). (In this plot, γ = 1

2 .) Note that the largest sphere
(panel (a)) has been scaled down while the smallest one (panel (c)) has been scaled up.
In each ball, tinted is the equatorial plane.
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Once we have an explicit expression for X(τ), Y(τ) and Z(τ), the corresponding dimer
components can be easily reconstructed:

u=
√
R+Zexp

{
i
2

ˆ τ

0

X
R+Z

dτ ′ + i Argu(0)

}
,

v=
√
R− Zexp

{
i
2

ˆ τ

0

X
R− Z

dτ ′ + i Argv(0)

}
.

2.4. Related systems

We close this section with three remarks. Firstly, the absence of any conservative nonlinearity
in the cross-stimulated dimer is not a prerequisite for its integrability. A simple example of the
model with a nonlinear hermitian part and cross-stimulated channels is

iUt+V+(|U|2 + |V|2)U= iγ|V|2U, (13a)

iVt+U+(|U|2 + |V|2)V=−iγ|U|2V. (13b)

The dimer (13) maps onto our system (2) and inherits its integrability and trajectory-
confinement property. The gauge transformation relating the two systems is simply

U(t) = e−i(|u|2+|v|2)tu(t), V(t) = e−i(|u|2+|v|2)tv(t).

Secondly, the transformation

E1(t) = exp

{
γ

2

ˆ t

0
(|u|2 − |v|2)dt ′

}
u(t), (14a)

E2(t) = exp

{
γ

2

ˆ t

0
(|u|2 − |v|2)dt ′

}
v(t) (14b)

takes a solution of the system (2) satisfying |u|2 + |v|2 = 2R to a solution of the linear dimer

i∂tE1 +E2 = i γ̃E1, i∂tE2 +E1 =−i γ̃E2,

where γ̃ = γR. This correspondence accounts for the reducibility of the cross-stimulated
dimer to a linear equation (equation (10)).

Finally, it is appropriate to mention an earlier study [19] in which the authors constructed
integrals of motion of the system

iut+ v= i(α+β|u|2 + γ|v|2)u, (15a)

ivt+ u=−i(α+β|v|2 + γ|u|2)v. (15b)

The model (15) includes our dimer (2) as a particular case with α= β = 0. However, the
integrals of motion of (15) do not persist as β→ 0; see [19].

3. Kerr dimer with cross-stimulated gain and loss

3.1. The system

Having outlined the effect of cross-stimulation on a model dimer (2), we observe that this
mechanism remains available to a broad class of systems in nonlinear optics. If we retain the

7
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generic Kerr nonlinearity in equation (2), we obtain another cross-stimulated dimer conserving
the total power |u|2 + |v|2:

iut+ v+ |u|2u= iγ|v|2u, (16a)

ivt+ u+ |v|2v=−iγ|u|2v. (16b)

Equations (16) result from the model of a birefringent single-mode fibre amplifier with a
saturable nonlinearity [20]:

i∂tE1 +E2 +
2R|E1|2

|E1|2 + |E2|2
E1 = i γ̃E1,

i∂tE2 +E1 +
2R|E2|2

|E1|2 + |E2|2
E2 =−i γ̃E2.

Here E1 and E2 are the amplitudes of the orthogonally polarised modes, R> 0 is the non-
linearity parameter and γ̃ > 0 is the gain–loss coefficient. The components E1 and E2 can be
obtained from solutions of equations (16) satisfying |u|2 + |v|2 = 2R by means of the trans-
formation (14). The two sets of gain-loss coefficients are related by γ̃ = γR.

The cross-stimulated dimer (16) can be written in terms of the spin variables (3):

Ẋ=−YZ− γXZ, (17a)

Ẏ=−Z+XZ− γYZ, (17b)

Ż= Y+ γ(R2 −Z2). (17c)

Here X,Y,Z are functions of τ = 2t, and overdots denote derivatives w.r.t. τ . The spin vector
S= {X,Y,Z} will provide an appropriate basis for visualising the solutions of the Kerr dimer.

We further observe that the system (17) arises in the mean-field approximation of the many-
body Bose–Hubbard model [13].

3.2. Hamiltonian structure and integrability

If we define the polar coordinates η and θ such that

X=
1

1+ γ2
+ e−η cosθ, Y=− γ

1+ γ2
+ e−η sinθ, (18)

equations (17a) and (17b) reduce to

η̇ = γZ, θ̇ = Z. (19)

Accordingly,

ξ = η− γθ− γ arctanγ (20)

is a conserved quantity, in addition to

R2 = e−2η +Z2 + 2e−η cosθ− γ sinθ
1+ γ2

+
1

1+ γ2
. (21)

To uncover the Hamiltonian formulation, we appoint η and ξ as two canonical coordinates
and the first integral

H=R2 − 1
1+ γ2

(22)

8
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as the Hamiltonian:

H(η,ξ,pη) = e−2η +
γ2

4
p2η +

2e−η√
1+ γ2

cos

(
η− ξ

γ

)
. (23)

Here pη = 2γ−1Z. The first equation in (19) and equation (17c) acquire the form

η̇ =
∂H
∂pη

, ṗη =−∂H
∂η

;

hence pη is the momentum canonically conjugate to η. The momentum pξ conjugate to the
coordinate ξ can be found from the Hamilton equation

ṗξ =−∂H
∂ξ

by integration:

pξ =− 2
γ(1+ γ2)

ˆ τ

0
[γX(τ ′)+ Y(τ ′)]dτ ′.

The existence of the canonical formulation and an additional first integral (ξ) establishes
the Liouville integrability of the dimer (16).

3.3. Fictitious particle formalism

Transforming to the canonical variables allows us to obtain the general analytical solution of
the system (17).

Projections of trajectories on the (θ, θ̇) plane are described by equations (22) and (23):

θ̇2 +Uξ(θ) =R2, (24)

where

Uξ =
1

1+ γ2
+ e−2η +

2e−η cos(θ+β)√
1+ γ2

, (25a)

η = γ(θ+β)+ ξ, (25b)

and

β = arctanγ.

Equation (24) can be interpreted as the energy conservation law for a fictitious Newtonian
particle moving in a potential Uξ(θ). The characterisation of the potential Uξ(θ) will play the
key role in the trajectory analysis.

We start by considering the interval 0⩽ θ < 2π. When the parameter ξ satisfies ξ < ξc,
where

ξc =−3π
2
γ+ ln

(
γ
√
1+ γ2

)
, (26)

the functionUξ(θ) is monotonically decreasing in this interval. As ξ is raised through ξc, a pair
of extrema is born in [0,2π): a minimum at θ(1)(ξ) and a maximum at θ(2)(ξ), with θ(1) < θ(2)

(figure 2). The extrema are roots of the transcendental equation

sin(θ+ 2β) =−γe−η (27)

with η as in (25b); hence θ(1,2) satisfy

sin(θ(n) + 2β)< 0 (n= 1,2). (28)

9
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Figure 2. The potential Uξ(θ) (blue) and its ‘sibling’ Uξ ′(θ) (brown curve), with ξ ′ =

ξ+ 2πγ. (In this plot, γ = 1
10 , ξ= 0, and ξ ′ = 2

10π.) The function Uξ ′(θ) is obtained
from Uξ(θ) by the 2π horizontal translation of the latter.

The values of the potential at the extrema are

Uξ

(
θ(n)
)
=

1
γ2

sin2
(
θ(n) +β

)
. (29)

At the bifurcation point, we have θ(1,2)(ξc) = 3π/2−β and so

Uξc(θ
(n)(ξc)) =

1
γ2

(n= 1,2). (30)

We also note an expression for the second derivative,

∂2Uξ

∂θ2

∣∣∣∣
θ(n)

=
2sin(θ(n) + 2β)cos(θ(n) +β)

sinβ
. (31)

Equation (31) and inequality (28) imply that the point of minimum satisfies cos(θ(1) +β)< 0
and the point of maximum has

cos(θ(2) +β)> 0. (32)

With the help of (28) and (32), simple trigonometry gives

sin(θ(2) +β)< 0. (33)

Taking advantage of the symmetry

Uξ(θ+ 2π) = Uξ+2πγ(θ), (34)

we can extend our analysis beyond the interval [0,2π). Assuming ξ > ξc, the potential Uξ(θ)
has a pair of extrema in each interval [2πℓ,2π(ℓ+ 1)) with ℓ= 1,2, . . . . The minimum is at

θ(2ℓ+1)(ξ) = θ(2ℓ−1)(ξ+ 2πγ)+ 2π

10
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and the maximum at

θ(2ℓ+2)(ξ) = θ(2ℓ)(ξ+ 2πγ)+ 2π. (35)

The value of the potential Uξ at its minimum θ(2ℓ+1) is equal to the value of the potential
Uξ+2πγ at its own local minimum in the interval [2π (ℓ− 1),2πℓ). (See figure 2.) A similar
rule governs the local maxima:

Uξ(θ
(2ℓ+2)(ξ)) = Uξ+2πγ(θ

(2ℓ)(ξ + 2πγ)). (36)

As the parameter ξ is increased, the value of the potential Uξ at its maximum in [0,2π)
decreases:

d
dξ
Uξ (θ

(2)(ξ)) =−2sin(θ(2) +β)sin(θ(2) + 2β)

γ2
√
1+ γ2

< 0.

Here we took into account (28) and (33). We also note that according to (27), the point θ(1)(ξ)
approaches π− 2β and θ(2)(ξ) approaches 2π− 2β as ξ →∞. Hence, by equation (29) the
maximum value of the potential in the interval [0,2π) is bounded from below:

Uξ(θ
(2)(ξ))>

1
1+ γ2

. (37)

Finally, the inequality (28) implies

cos(θ(2) +β)< cosβ. (38)

Making use of (38) one can establish the following relation, valid for all ξ:

Uξ(0)> Uξ(θ
(2)(ξ)).

The symmetry identities (34)–(36) yield the inequality

Uξ(2π)> Uξ(θ
(4)(ξ)). (39)

3.4. Spin trajectories from particle flight paths

Consider a trajectory of the spin system (17) passing through a point on the equator (Z= 0)
at time τ = 0. The corresponding fictitious particle starts its motion from rest (θ̇(0) = 0), with
the values of integrals ξ and R defined by the initial data, θ0 and η(0):

ξ = η(0)− γ(θ0 +β), R=
√
Uξ(θ0).

The implicit solution τ(θ) of equation (24) is given by the integral

τ =±
ˆ θ

θ0

dθ ′√
R2 −Uξ(θ ′)

. (40)

The solution is valid for all θ such that the expression under the radical is positive in the interval
(θ0,θ). Without loss of generality we may let θ0 lie in the interval [0,2π).

If ∂Uξ/∂θ < 0 at θ = θ0, the θ-particle will start moving in the positive direction and we
choose the positive sign in (40). The corresponding spin trajectory S(τ) will emerge into the
northern hemisphere. If ∂Uξ/∂θ > 0 at θ = θ0, the particle will start moving in the negative
direction and we choose the negative sign in (40). In that case, the point S will move into the
southern hemisphere.

The negative-time motions can be classified in a similar manner.

11
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For a given value of γ, the character of motion is determined by the values of the parameters
R and ξ. Since two or three values of θ0 ∈ [0,2π) can be mapped to the sameUξ, we also need
to indicate the position of θ0 relative to the minimum and maximum of Uξ(θ).

(a) Assume first that R> γ−1. If ξ > ξc, the potential Uξ(θ) has a sequence of local
maxima at θ(2ℓ), ℓ= 1,2, . . . , while if ξc− 2πγm< ξ < ξc− 2πγ(m− 1) (m= 1,2, . . .), the
potential is monotonically decreasing in (−∞,2πm) but has local maxima in each interval
[2πℓ,2π(ℓ+ 1)) with ℓ= m,m+ 1, . . . . In either case, all local maxima Uξ(θ

(2ℓ)) lie below
γ−2 (cf. (29)). Consequently, the particle will accelerate to some positive speed and then
continue moving with an oscillatory positive velocity bounded from below: θ̇ >

√
R2 − γ−2.

Regardless of ξ, the particle will eventually escape to infinity: θ →∞, with η →∞ as well.
A similar asymptotic behaviour occurs in the negative-time domain: η →∞ as τ →−∞.

The implicit solution (40) with η →∞ as τ →±∞ admits a simple interpretation in terms
of the spin components (18). (The corresponding trajectories on the spin sphere have been
numerically delineated in [13].) Similar to the system (4) (figure 1(a)) the sphere withR> γ−1

supports a pair of latitudinal fixed points, with

X=
1

1+ γ2
, Y=−γX, Z=±

√
R2 −X. (41)

The fictitious particle’s journeys from infinity to θ0 and back to infinity correspond to traject-
ories S(τ) emerging from the unstable focus in the southern hemisphere and spiralling into
the attractor in the north (figure 3(a)).

(b) The next range to consider is (1+ γ2)−1/2 <R< γ−1. Let the function ξd(R) be
defined as the inverse of the monotonically decreasing function R=

√
Uξ(θ(2)(ξ)). In view

of (30), ξd(R)> ξc for allR in the current range. AsR approaches γ−1 from below, the value
ξd(R) approaches ξc; as R approaches (1+ γ2)−1/2 from above, we have ξd →∞.

When ξ < ξc or ξ > ξd(R), the total energy R2 of the particle is greater than Uξ at all
of its local maxima. Accordingly, the particle escapes to infinity as τ →±∞. This class of
motions corresponds to the heteroclinic trajectories on the sphere flowing from the southern
to the northern focus in (41) (figure 3(b)).

Turning to the interval ξc < ξ < ξd we first assume that the point θ0 lies to the left of the
local maximum θ(2). In that case the energy of the θ-particle is insufficient to overcome the
potential barrier: R2 < Uξ(θ

(2)(ξ)). The particle becomes trapped in the potential well, and
its motion is periodic with period

T=

∣∣∣∣∣
ˆ θturn

θ0

dθ′√
R2 −Uξ(θ′)

∣∣∣∣∣ .
Here θturn is the second root of the equation R2 = Uξ(θ) to the left of the maximum of the
potential in the interval [0,2π).

To interpret the periodic motions in terms of trajectories on the sphere, we note that as R
is decreased through γ−1, a saddle-centre bifurcation brings about two new fixed points lying
on the equator:

X=±R
√
1− γ2R2, Y=−γR2, Z= 0. (42)

For R in the interval (1+ γ2)−1/2 <R< γ−1, the point with negative X is a centre and the
one with positive X is a saddle. The oscillations of the θ-particle in the potential well translate
into a thicket of closed orbits surrounding the centre (figure 3(b)).

If the point θ0 lies to the right of the local maximum θ(2) (that is, if θ(2) < θ0 < 2π), the
particle will escape to infinity: θ →∞ as τ →∞. It cannot be captured by the potential well in
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Figure 3. Trajectories of the system (17) on the surface of the sphere of the radiusR>

γ−1 (a) and (1+ γ2)−1/2 <R< γ−1 (b). In this and the next figure, γ = 1
2 .

the interval [2π,4π) because Uξ(θ0) is greater than Uξ(2π) and therefore, by inequality (39),
greater than the potential barrier Uξ(θ

(4)(ξ)).
By examining the neighbourhood of the saddle point in figure 3(b)), one can readily recon-

struct a homoclinic curve connecting the saddle to itself. This trajectory results by choosing
ξ = ξd(R). The homoclinic curve separates the family of closed orbits from the focus-to-focus
flows.

(c) Finally, it remains to consider the range R< (1+ γ2)−1/2. Since the function Uξ(θ)
with ξ < ξc is monotonically decreasing in [0,2π), and since Uξ(2π)> (1+ γ2)−1 by
equation (25a), this parameter range is only accessible to initial conditions with ξ > ξc. In
view of (37), the θ-particle with θ̇(0) = 0 and θ0 satisfying Uξ(θ0) =R2 finds itself trapped
in a potential well.

The disappearance of aperiodic solutions θ(τ) is consistent with the bifurcation occurring
asR is reduced below (1+ γ2)−1/2. At this value ofR, the pair of latitudinal fixed points (41)
merges with the saddle on the equator forming the second centre (figure 4(a)). The two centre
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Figure 4. Trajectories of the system (17) on the surface of the sphere of the radius
R= (1+ γ2)−1/2 (a) and R< (1+ γ2)−1/2 (b).

points are given by equation (42); each point is surrounded by a family of closed orbits
(figure 4(b)). The closed orbits are described by periodic motions of the particle in the potential
well.

4. Integrable PT -symmetric necklaces

In a nonhermitian necklace of more than two waveguides, the trapping of trajectories in a finite
part of the phase space may require each site to coordinate its gain and loss rate with both of its
left and right neighbours. This cross-compensation mechanism is more subtle than the cross-
stimulation of two channels of a dimer. In this section, we exemplify the cross-compensation
with arrays consisting of three and four elements.

4.1. Trimer

We identified several PT -symmetric trimers endowed with a Hamiltonian structure and pos-
sessing an integral of motion that prevents the blow-up behaviour. However, only one of these
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models has three first integrals in involution and defines a Liouville-integrable dynamical
system.

The trimer in question is a nonhermitian extension of the closed Ablowitz–Ladik chain:

iut = (1+ |u|2)(v+w)(1+ iγ), (43a)

i vt = (1+ |v|2) [u+w+ iγ(w− u)] , (43b)

iwt = (1+ |w|2)(u+ v)(1− iγ). (43c)

The system is invariant under the product of the P and T transformations, where

Pu(t) = w(t), Pv(t) = v(t), Pw(t) = u(t)

and

T u(t) = u∗(−t), T v(t) = v∗(−t), T w(t) = w∗(−t).

Similar to the dimers (2) and (16), the linearisation of equations (43) about u= v= w= 0
gives a systemwith a hermitian matrix and a purely real spectrum. Accordingly, the trimer (43)
does not suffer the linearised PT -symmetry breaking as the value of γ is raised.

The system (43) admits a canonical representation

ut = {H,u}, vt = {H,v}, wt = {H,w}

with the Hamilton function

H= (1+ iγ)(u∗v+ v∗w+wu∗)+ c.c. (44)

and the Gerdjikov–Ivanov–Kulish (GIK) bracket [22]. Here

{u,u∗}= i(1+ |u|2),
{v,v∗}= i(1+ |v|2),

{w,w∗}= i(1+ |w|2),

while all other brackets are equal to zero: {u,v}= {u,v∗}= . . .= 0.
In addition to the Hamiltonian, the system conserves the total momentum,

M= (γ− i)(u∗v+ v∗w−wu∗)+ c.c.,

and a product

Π = (1+ |u|2)(1+ |v|2)(1+ |w|2).

The integrals M and Π commute: {M,Π}= 0. Consequently, the system (43) is completely
integrable.

Note that since the total power P= |u|2 + |v|2 + |w|2 is bounded from above by the con-
served quantity Π, the trimer does not exhibit any unbounded trajectories.

It is worth noting that the absence of blow-up regimes is not related to the integrability of
the model but is a consequence of the compensation of gain and loss rate in the neighbouring
channels. This can be illustrated by the following family of nonintegrable cross-compensated
trimers:

iut = f1(|u|2)(v+w)(1+ iγ), (45a)

i vt = f2(|v|2) [u+w+ iγ(w− u)] , (45b)
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iwt = f3(|w|2)(u+ v)(1− iγ). (45c)

In equation (45), fn(ρ) (n= 1,2,3) are positive functions with fn(0) = 1 and fn(ρ)⩽ 1 for
ρ> 0. The model (45) is Hamiltonian with the Hamilton function (44) and obvious modi-
fication of the bracket. It has the first integral

I= F1(|u|2)+F2(|v|2)+F3(|w|2),

where

Fn(ρ) =
ˆ ρ

0

dρ′

fn(ρ′)
.

Since Fn(ρ)⩾ ρ, the total power is bounded from above by I and no trajectory can escape to
infinity.

4.2. Quadrimer

Guided by the symplectic structure and cross-compensating arrangement of the integrable
PT -symmetric trimer, it is not difficult to construct a four-waveguide necklace with similar
properties:

i u̇1 = (1+ |u1|2)(u2 + u4)(1+ iγ), (46a)

i u̇2 = (1+ |u2|2) [u3 + u1 + iγ(u3 − u1)] , (46b)

i u̇3 = (1+ |u3|2) [u4 + u2 + iγ(u4 − u2)] , (46c)

i u̇4 = (1+ |u4|2)(u1 + u3)(1− iγ). (46d)

The quadrimer (46) is PT -symmetric, with the P operator defined by

Pu1(t) = u4(t), Pu2(t) = u3(t),

Pu3(t) = u2(t), Pu4(t) = u1(t),

and T as in T un(t) = u∗n(−t). The linearisation of the quadrimer (46) about u1 = u2 = u3 =
u4 = 0 gives a system with a hermitian matrix and a purely real spectrum.

The quadrimer retains a similar canonical representation to the trimer (43), with the
Hamiltonian

H= (1+ iγ)(u∗1u2 + u∗2u3 + u∗3u4 + u4u
∗
1)+ c.c. (47)

and GIK bracket. Here

{un,u∗m}= i(1+ |un|2)δnm,
{un,um}= 0, {u∗n ,um∗}= 0.

In direct analogy to the trimer, the system conserves the total momentum

M= (γ− i)(u∗1u2 + u∗2u3 + u∗3u4 − u4u
∗
1)+ c.c.,

as well as the product

Π =
4∏

n=1

(1+ |un|2).

In addition, the quadrimer conserves a quartic quantity

I= (1− iγ)(u1u
∗
2u3u

∗
4 − u2u

∗
4 − u1u

∗
3)+ c.c. (48)
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All four integrals H, M, Π and I mutually commute, and consequently the system (46) is
completely integrable.

5. Concluding remarks

In this paper, we explored a class of PT -symmetric discrete Schrödinger equations with
purely-nonlinear nonhermitian terms. An a priori advantage of systems of this type in phys-
ics is that the trivial solution remains stable and linearised PT -symmetry remains unbroken
regardless of the value of the gain–loss coefficient.

We have identified two nonequivalent dimers that, in addition to preserving the linearised
PT -symmetry, conserve the quantity |u|2 + |v|2. (In the optical context, this means that the
total power of light is conserved.) The power conservation is brought about by the cross-
stimulation of the two channels of the dimer. The constancy of |u|2 + |v|2 ensures that no
trajectories of these dynamical systems escape to infinity.

Remarkably, both dimers possess a canonical structure and a first integral independent of
the Hamiltonian. This establishes the Liouville integrability of the two systems. The trans-
formation to the canonical variables allowed us to construct their general analytical solution.

The cross-compensation of the gain and loss rate in the neighbouring channels remains an
efficient blow-up prevention mechanism in the case of the nonhermitian Schrödinger neck-
laces—the ring-shaped arrays of N waveguides [23]. We have exemplified this idea with the
construction of a family of trimers (N= 3) whose trajectories are confined to a finite part of
their phase space. The entire family is endowed with a canonical structure while one member
of the family has 3 first integrals in involution and defines a completely integrable system.

Finally, we have identified a completely integrable cross-compensated quadrimer—a PT -
symmetric necklace of N= 4 waveguides.
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