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a b s t r a c t

We consider the Landau–Lifshitz equation for the spin torque oscillator — a uniaxial ferromagnet
in an external magnetic field with polarised spin current driven through it. In the absence of the
Gilbert damping, the equation turns out to be PT -symmetric. We interpret the PT -symmetry as
a balance between gain and loss — and identify the gaining and losing modes. In the vicinity of
the bifurcation point of a uniform static state of magnetisation, the PT -symmetric Landau–Lifshitz
equation with a small dissipative perturbation reduces to a nonlinear Schrödinger equation with a
quadratic nonlinearity. The analysis of the Schrödinger dynamics demonstrates that the spin torque
oscillator supports stable magnetic solitons. The PT near-symmetry is crucial for the soliton stability:
the addition of a finite dissipative term to the Landau–Lifshitz equation destabilises all solitons that
we have found.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Conceived in the context of nonhermitian quantum mechan-
ics [1], the idea of parity-time (PT ) symmetry has proved to be
useful in the whole range of applied disciplines [2]. A
PT -symmetric structure is an open system where dissipative
losses are exactly compensated by symmetrically arranged en-
ergy gain. In optics and photonics, systems with balanced gain
and loss are expected to promote an efficient control of light,
including all-optical low-threshold switching [3,4] and unidi-
rectional invisibility [3,5,6]. There is a growing interest in the
context of electronic circuitry [7], plasmonics [8], optomechanical
systems [9], acoustics [10] and metamaterials [11].

This study is concerned with yet another area where the
gain-loss balance gives rise to new structures and behaviours,
namely, the magnetism and spintronics. In contrast to optics
and nanophotonics, where the nonhermitian effects constitute a
well-established field of study, the research into PT -symmetric
magnetic systems is still in its early stages, with only a handful
of models set up over the last several years.

One of the systems proposed in the literature comprises two
coupled ferromagnetic films, one with gain and the other one
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with loss [12]. (For an experimental implementation of this struc-
ture, see [13].) A related concept consists of a pair of paral-
lel magnetic nanowires, with counter-propagating spin-polarised
currents [14]. In either case the corresponding mathematical
model is formed by two coupled Landau–Lifshitz equations, with
PT symmetry being realised as a symmetry between the corre-
sponding magnetisation vectors. A two-spin Landau–Lifshitz sys-
tem gauge-equivalent to the PT -symmetric nonlocal Schrödinger
equation is also a member of this class of models [15].

An independent line of research concerned the dynamics of
a single spin under the action of the spin-transfer torque. Pro-
jecting the magnetisation vector onto the complex plane stere-
ographically and modelling the spin torque by an imaginary
magnetic field [16], Galda and Vinokur have demonstrated the
PT -symmetry of the resulting nonhermitian Hamiltonian [17].
(For the generalisation to spin chains, see [18]; the nonreciprocal
spin transfer is discussed in [19].) Unlike the two-component
structures of Refs [12–14], the PT -symmetry of the spin torque
oscillator of Galda and Vinokur is an intrinsic property of an
individual spin. It results from the system’s invariance under
the simultaneous time reversal and the imaginary magnetic field
flip [17].

The structure we consider in this paper shares a number
of similarities with the spin torque oscillator of Refs [17,18].
(There is also a fair number of differences.) It consists of two
ferromagnetic layers separated by a conducting film (Fig. 1).
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Fig. 1. A schematic of the spin torque oscillator. An electric current flows through a nanowire with two ferromagnetic layers. In the thick layer (on the left) the
magnetisation is fixed (through large volume, large anisotropy or pinning by additional underlayers). This causes a polarisation of the passing electron spins. The
polarised current exerts torque on the thin layer (on the right) where the magnetisation is governed by the Landau–Lifshitz equation (1).

The spin-polarised current flows from a layer with fixed mag-
netisation to a layer where the magnetisation vector is free to
rotate [16,20].

A one-dimensional uniaxial classical ferromagnet in the
external magnetic field is described by the Landau–Lifshitz equa-
tion [16,20] (also known as the Landau–Lifshitz–Gilbert–
Słonczewski equation in the current context):

Ṁ = −M × M′′
− M × H − β(M · ẑ)M × ẑ

− γM × M × ẑ + λM × Ṁ. (1)

Here the overdot stands for the time derivative and the prime
indicates the derivative with respect to x. In equation (1), the
variables have been non-dimensionalised so that the magnetisa-
tion vector M = (Mx,My,Mz) lies on a unit sphere: M2

= 1. The
magnetic field is taken to be constant and directed horizontally:
H = (H0, 0, 0). The anisotropy axis is z, with ẑ = (0, 0, 1). The
positive and negative constant β corresponds to the easy-axis
and easy-plane anisotropy, respectively. (Note that the authors
of [17,18] considered the ferromagnet anisotropic along the x
axis.) The fourth term on the right-hand side of (1) – the Słon-
czewski term – accounts for the spin transfer by the current
that passes through an external ferromagnetic layer that has a
fixed magnetisation in the direction ẑ. The last term is the Gilbert
damping term. The damping coefficient λ is positive; the field H0
and the current amplitude γ can also be chosen positive without
loss of generality.

In this paper, we study the nonlinear dynamics of localised
solutions of equation (1), both with small and finite-strength
damping.

A class of soliton solutions of equation (1) was obtained by
Hoefer, Silva and Keller [21]. The solitons discovered by those
authors are dissipative analogs of the Ivanov–Kosevich magnon
droplets [22]. (For the experimental realisation, see [23].) Our
setup has a different geometry from the one of Hoefer et al.
One difference is that we consider the magnetic layer with a
parallel anisotropy while the magnon droplets require a perpen-
dicular one [21–23]. An additional distinction is that our vector
H is orthogonal to the direction of the fixed magnetisation —
while the magnetic field in Ref [21] was not. Because of the
different geometry, the Landau–Lifshitz equation of Ref [21] does
not exhibit the PT invariance. The dissipative magnon droplets
are sustained through the competition of torque and damping,
the two actors represented by terms of different mathematical
forms — rather than by a symmetric balance of two similar but
oppositely-directed effects.

Another class of localised structures in the spin torque oscil-
lator is commonly referred to as the standing spin wave bullets.

These have been theoretically predicted by Slavin and Tiberke-
vich [24] — outside the context of the Landau–Lifshitz equation.
(For the experimental realisation, see [25].) The spin wave bullets
are found in the magnetic layer with parallel anisotropy, when
the magnetic field is directed parallel to the fixed layer’s magneti-
sation. The direction of the vector H is what makes our geometry
different from the setup considered in Ref [24]. Like the magnon
droplets, the spin wave bullets are sustained by an asymmetric
balance of the spin torque and finite-strength damping.

The paper is organised as follows. We start with the demon-
stration of the gain-loss balance in the Landau–Lifshitz equation
with the vanishing Gilbert damping. This PT -symmetric system
and systems that are close to it will prove to have special proper-
ties in this paper, where we consider equations both with small
and finite λ. In Section 3 we classify stability and bifurcation of
four nonequivalent stationary states with uniform magnetisation.
Three of those states are found to be admissible as stable back-
grounds for localised structures. In the vicinity of the bifurcation
points, the dynamics of the localised structures are governed by
quadratic Schrödinger or Ginsburg–Landau equations, depending
on whether the Gilbert damping is weak or finite-strength (Sec-
tion 4). Despite the absence of the dissipative terms, our quadratic
Schrödinger equations are not conservative; however one of them
obeys the PT -symmetry. Both Ginsburg–Landau equations and
their Schrödinger counterparts – PT -symmetric or not – support
two types of soliton solutions. We show that either of these
types is only stable in the PT -symmetric situation (Sections 5–6).
Section 7 summarises results of this study.

2. Gain-loss balance in the absence of Gilbert losses

Equation (1) is nonconservative due to the presence of the spin
torque and Gilbert’s dissipative term. In spin torque oscillators,
solitons are expected to exist due to the energy supplied by
torque being offset by finite-strength dissipation [21]. However
when λ = 0, the spin hamiltonian modelling our structure is
PT -symmetric [17] and therefore some form of the gain-loss
balance should occur in this case as well, despite the absence
of the Gilbert damping. To uncover the gain-loss competition
intrinsic to the spin torque, we define two complex fields, u(x, t)
and v(x, t), related to the magnetisation vector M via the Hopf
map:

Mx = v∗u + u∗v, My = i(u∗v − v∗u), Mz = |u|2 − |v|2. (2)

When the magnetisation is spatially uniform, ∂M/∂x = 0, the
equation (1) with λ = 0 can be reformulated as a nonlinear
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Schrödinger dimer:

iut +
H0

2
v +

β

2
(|u|2 − |v|2)u = iγ |v|2u, (3)

ivt +
H0

2
u −

β

2
(|u|2 − |v|2)v = −iγ |u|2v. (4)

According to equations (3)–(4), the external energy is fed into the
u-mode and dissipated by its v counterpart. The magnetic field H0
couples u to v, carrying out the energy exchange between the two
modes.

The sustainability of the gain-loss balance in the system (3)–
(4) is reflected by its invariance under the product of the P and
T transformations. Here the inversion P swaps the two modes
around,

P : u → v, v → u, (5)

while T represents the reflection of time:

T : t → −t, u → u∗, v → v∗. (6)

These transformations admit a simple formulation in terms of the
components of magnetisation (2):

P : My → −My, Mz → −Mz (7)

and

T : t → −t, My → −My. (8)

The involutions (7) and (8) remain relevant in the analysis of
equation (1) with the x-dependent magnetisation. Here one can
either leave the parity operation in the form (7) or include the
inversion of the x coordinate in this transformation:

P : x → −x, My → −My, Mz → −Mz . (9)

Writing the vector equation (1) in the component form,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ṁx = MzM ′′
y − MyM ′′

z − βMyMz

−γMxMz + λ(MyṀz − MzṀy),
Ṁy = MxM ′′

z − MzM ′′
x − H0Mz + βMxMz

− γMyMz + λ(MzṀx − MxṀz),
Ṁz = MyM ′′

x − MxM ′′
y + H0My

+ γ (M2
x + M2

y ) + λ(MxṀy − MyṀx),

(10)

one readily checks that in the conservative limit (γ = λ =

0), the Landau–Lifshitz equation is invariant under the P- and
T -involutions individually. The equation with the spin torque
term added (γ ̸= 0) is invariant under the product (PT ) trans-
formation only. Accordingly, the equation with the γ -term is
a PT -symmetric extension of the conservative Landau–Lifshitz
equation. Finally, the addition of the Gilbert damping term (λ ̸=

0) breaks the PT -symmetry.

3. Uniform static states

The uniform static states are space- and time-independent
solutions of equation (1) satisfying M2

= 1. These are given by
fixed points of the dynamical system⎧⎨⎩
Ṁx =−βMyMz−γMxMz+λ(MyṀz−MzṀy),
Ṁy = (βMx−H0−γMy)Mz+λ(MzṀx−MxṀz),
Ṁz =H0My+γ (M2

x +M2
y )+λ(MxṀy−MyṀx)

(11)

on the surface of the unit sphere.
Once a fixed point M(0) has been determined, we let M =

M(0)
+δM, linearise the system (10) in δM, and consider solutions

of the form

δM = m eµt−ikx, (12)

where m = (mx,my,mz)T is a real constant vector and k a real
wavenumber that may take values from −∞ to ∞. We call the
uniform static state unstable if at least one of the roots µ of the
associated characteristic equation has a positive real part in some
interval of k. Otherwise the state is deemed stable.

Since equation (1) conserves the quantity M2, the difference
between

(
M(0)

)2 and the square of the vector M(0)
+ δM will be

time-independent:
∂

∂t

(
2 δM · M(0))

= 0.

Substituting from (12) and assuming µ ̸= 0, this gives

m · M(0)
= 0. (13)

Equation (13) implies (a) that the time-dependent perturbations
of the uniform static states lie on the unit sphere; and (b) that
the characteristic equation may not have more than two nonzero
roots, µ1 and µ2. The third root (µ3) has to be zero.

Apart from classifying stability of the uniform static states, it is
useful to know which of these solutions can serve as backgrounds
to static magnetic solitons. To weed out a priori unsuitable cases,
we set µ = 0 in the characteristic equation and consider k2 as
a new unknown (rather than a parameter that varies from 0 to
∞). If all roots (k2)n of the resulting equation are real positive,
there can be no localised solutions asymptotic to the uniform
static state M(0) as x → ±∞. On the other hand, if there is at
least one negative or complex root, the solution M(0) remains a
candidate for solitons’ background.

3.1. Equatorial fixed points on the unit sphere

One family of time-independent solutions of the system (11)
describes a circle on the (Mx,My)-plane:

M2
x +

(
My +

H0

2γ

)2

=
H2

0

4γ 2 , Mz = 0.

Imposing the constraint M2
= 1 leaves us with just two members

of the family:

M (0)
x = ±

√
1 − γ 2/H2

0 , M (0)
y = −γ /H0, M (0)

z = 0. (14)

In the system with γ ̸= 0, these fixed points are born as H0 is
increased through the value H0 = γ . Since the points (14) lie
on the equator of the unit sphere, we will be referring to them
simply as the equatorial fixed points, the eastern (M (0)

x > 0) and
the western (M (0)

x < 0) one. Fig. 2(a) depicts the equatorial fixed
points in the phase portrait of the dynamical system (11).

Linearising equation (1) about the uniform static state corre-
sponding to an equatorial fixed point, we obtain two nonzero
stability eigenvalues

µ1,2 =
−λ(2K − β) ±

√
λ2β2 − 4K (K − β)

2(1 + λ2)
, (15a)

K = k2 + H0M (0)
x . (15b)

Making use of (15) it is not difficult to see that in the easy-plane
or isotropic ferromagnet (i.e. in the situation where β ≤ 0), the
eastern uniform static state (M (0)

x > 0) is stable irrespective of the
choice of γ , λ and H0. On the other hand, when the anisotropy is
easy-axis (β > 0), the eastern state is stable if

H0 ≥

√
β2 + γ 2 (16)

and unstable otherwise.
To check the suitability of the eastern uniform static state

as a background for solitons, we set µ = 0 in the expression
(15a); this transforms it into a quadratic equation for k2. When
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Fig. 2. The phase portrait of the dynamical system (11) with H0 >
√
β2 + γ 2

(a) and H0 < γ (b). In (a), two dots on the equator of the unit sphere mark the
fixed points of the vector field: the western (blue) and eastern point (red). In
(b), the blue dot indicates the northern and the red dot the southern fixed point.
Apart from the fixed points, the figures show a few representative trajectories;
physically, these correspond to spatially-uniform evolutions of magnetisation.
(The portraits in (a) and (b) are for λ = 0.). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

β <

√
H2

0 − γ 2, both roots of this equation are negative: k2 =

−

√
H2

0 − γ 2 and k2 = β −

√
H2

0 − γ 2. This implies that there
is a pair of exponentials exp(−ik1,2x) decaying to zero as x →

−∞ and another pair decaying as x → +∞. Therefore the
uniform static state (14) with M (0)

x > 0 can serve as a background
to solitons for any set of parameters β, γ ,H0, λ in its stability
domain.

Turning to the west-point solution (M (0)
x < 0 in equation (14)),

a simple analysis of the eigenvalues (15) indicates that there
are wavenumbers k such that Reµ > 0 for any quadruplets of
β, γ ,H0 and λ. Hence the western uniform static state is always
unstable. We are not considering it any further.

3.2. Latitudinal fixed points

Another one-parameter family of constant solutions of equa-
tion (1) forms a vertical straight line in the Mx,My,Mz-space:

Mx =
H0β

β2 + γ 2 , My = −
H0γ

β2 + γ 2 , −∞ < Mz < ∞.

The substitution of the above coordinates into M2
= 1 selects two

fixed points on the unit sphere:

M (0)
x =

H0β

β2 + γ 2 , M (0)
y = −

H0γ

β2 + γ 2 ,

M (0)
z = ±

√
1 −

H2
0

β2 + γ 2 . (17)

Since these points lie above and below the equatorial (Mx,My)-
plane, we will be calling them the latitudinal fixed points: the
northern (M (0)

z > 0) and the southern (M (0)
z < 0) point. See

Fig. 2(b).
In the anisotropic equation (β ̸= 0) the northern and southern

points are born as H0 is decreased through
√
β2 + γ 2. In this case,

there is a parameter interval γ < H0 <
√
β2 + γ 2 where two

pairs of fixed points, latitudinal and equatorial, coexist.
The bifurcation diagram for the isotropic equation is different.

When β = 0, the latitudinal fixed points (17) emerge as the
eastern and western points (14) converge and split out of the
equatorial plane. In this case, there is just one pair of uniform
static states for any H0 ̸= γ : the equatorial pair for H0 > γ and
the latitudinal pair for H0 < γ .

The linearisation of equation (1) about the uniform static state
corresponding to the latitudinal fixed-point (17) gives

µ1,2 = −

λQ + γM (0)
z ±

√
1
4λ

2β2h2 − P(P − βh)

1 + λ2
, (18)

where

P = k2 + β − γ λM (0)
z , Q = k2 + β

(
1 −

h
2

)
and

h =
H2

0

β2 + γ 2 . (19)

A simple analysis demonstrates that when β ≥ 0, the north-
point solution (M (0)

z > 0 in (17)) is stable regardless of the values
of λ ≥ 0, H0 and γ > 0. As for the easy-plane anisotropy
(β < 0), the northern uniform static state is stable only when
the inequalities λ ≤ λc and H0 ≤ Hc are satisfied simultaneously.
Here

λc =
γ

|β|

√
1 − h

1 − h/2
(20)

and

Hc =

√
2γ (β2 + γ 2)

β2

(√
β2 + γ 2 − γ

)
. (21)

Note that Hc is smaller than
√
γ 2 + β2; hence the region H0 ≤

Hc lies entirely within the northern point’s existence domain
(defined by the inequality H0 <

√
γ 2 + β2).

Finally, we consider the eigenvalues pertaining to the southern
uniform static state (M (0)

z < 0 in (17)). Our conclusion here is that
in the isotropic and easy-plane ferromagnet (β ≤ 0), this solution
is unstable regardless of the choice of other parameters. In the
easy-axis situation (β > 0), the southern state is stable if λ ≥ λc
with λc as in (20) — and unstable otherwise.

To determine the parameter region where the north- and
south-point solutions can serve as backgrounds for solitons, we
set µ = 0 in equation (18). In each of the two cases, the resulting
quadratic equation for k2 has two positive roots only if β < 0
is satisfied along with the inequality H0 > Hc , where Hc is as
in (21). This is the only no-go region for solitons. Outside this
region, the quadratic equation has either two negative or two
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Table 1
Stability of four fixed-point solutions of equation (1).

β < 0 β = 0 β > 0

Eastern Stable Stable Stable if
H0 ≥

√
β2 + γ 2

Western Unstable Unstable Unstable

Northern Stable if λ ≤ λc Stable Stableand H0 ≤ Hc

Southern Unstable Unstable Stable
if λ ≥ λc

complex roots; the corresponding uniform static states can serve
as solitons’ asymptotes.

The bottom line is that either of the two latitudinal uniform
static states is suitable as a background for solitons in its entire
stability domain.

3.3. Summary of uniform static states

For convenience of the reader, the stability properties of the
constant solutions corresponding to the four fixed points are
summed up in Table 1.

Before turning to the perturbations of these uniform static
states, it is worth noting their symmetry properties. Each of
the equatorial states is PT -symmetric in the sense that each
of these two solutions is invariant under the product of the
transformations (9) and (8). In contrast, neither of the two lat-
itudinal states is invariant; the PT operator maps the northern
solution to southern and the other way around. The different
symmetry properties of the equatorial and longitudinal solutions
will give rise to different invariances of equations for their small
perturbations.

4. Slow dynamics near bifurcation points

4.1. Perturbation of equatorial fixed point

Consider the eastern point in the pair of equatorial fixed points
(14):

M(0)
=

(√
1 −

γ 2

H2
0
,−

γ

H0
, 0

)
. (22)

We assume that the parameters β , γ , λ and H0 lie in the stability
domain of the uniform static state (22).

The plane orthogonal to the vector M(0) is spanned by the
vectors

A = (0, 0, 1), B =

(
γ

H0
,

√
1 −

γ 2

H2
0
, 0

)
.

The unit vector M can be expanded over the orthonormal triplet
{A,B,M(0)

}:

M = ηA + ξB + χM(0).

Letting M(x, t) → M(0) as x → ±∞, the coefficient fields η, ξ and
χ have the following asymptotic behaviour:

η → 0, ξ → 0, χ → 1 as |x| → ∞.

The complex field Ψ = ξ + iη satisfies

iΨ̇ = χΨ ′′
− Ψχ ′′

+ λ(Ψ χ̇ − χΨ̇ ) −

√
H2

0 − γ 2Ψ

+ γ (χ − iηξ − 1 + η2) + iβηχ, (23)

where χ =

√
1 − |Ψ |

2 while the prime and overdot indicate
the derivative with respect to x and t , respectively. Note that
when λ = 0, equation (23) is PT -symmetric, that is, invariant
under a composite transformation consisting of three involutions:
t → −t , x → −x, and Ψ → Ψ ∗.

Assume that H0 is close to the bifurcation point of the uniform
static state (22) — that is, H0 is slightly greater than γ . In this
case, Ψ will depend on a hierarchy of slow times Tn = ϵnt and
stretched spatial coordinates Xn = ϵn/2x, where n = 1, 3, 5, . . .
and the small parameter ϵ is defined by

ϵ2 = 1 −
γ 2

H2
0
.

In the limit ϵ → 0 the new coordinates become independent so
we can write
∂

∂t
= ϵD1 + ϵ3D3 + · · · ;

∂2

∂x2
= ϵ∂21 + 2ϵ2∂1∂3 + ϵ3(∂23 + 2∂1∂5) + · · · ,

where Dn = ∂/∂Tn and ∂n = ∂/∂Xn. Assume, in addition, that the
anisotropy constant β is of order ϵ and let β = ϵB with B = O(1).
Considering small η and ξ , we expand

Ψ = ϵψ1 + ϵ3ψ3 + · · · .

Substituting the above expansions in (23), we equate coefficients
of like powers of ϵ. The order ϵ2 gives a Ginsburg–Landau type of
equation with a quadratic nonlinearity:

(i + λ)D1ψ − ∂21ψ +
γ

2
ψ2

= −γψ +
B
2
(ψ − ψ∗). (24)

(Here ψ is just a short-hand notation for ψ1.)
Note that in the derivation of (24) we took λ to be O(1). If

we, instead, let λ = O(ϵ), the dissipative term would fall out of
equation (24) and we would end up with a nonlinear Schrödinger
equation:

iD1ψ − ∂21ψ +
γ

2
ψ2

= −γψ +
B
2
(ψ − ψ∗). (25)

The quadratic Schrödinger equation (25) does not have the U(1)
phase invariance. However, the equation is PT -symmetric, that
is, invariant under the composite map t → −t , x → −x, ψ →

ψ∗. As we will see in Section 5, this discrete symmetry is enough
to stabilise solitons.

4.2. Perturbation of latitudinal fixed points

Choosing the background in the form of one of the two latitu-
dinal fixed points

M(0)
=

(
β

H0
h,−

γ

H0
h, ±

√
1 − h

)
, (26)

we let M(x, t) approach the same point M(0) as x → ±∞. In (26),
h is defined by equation (19).

As in the previous subsection, we expand the magnetisation
vector over an orthonormal basis {A,B,M(0)

}:

M = ηA + ξB + χM(0), (27)

where, this time,

A =

(
∓
β

H0

√
h(1 − h),±

γ

H0

√
h(1 − h),

√
h
)

and

B =

(
γ

H0

√
h,
β

H0

√
h, 0

)
.
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We assume that H0 is close to the bifurcation point where the
northern and southern fixed points are born (that is, H0 is slightly
smaller than

√
β2 + γ 2) and define a small parameter ϵ:

h = 1 − ϵ2.

As in the analysis of the equatorial fixed points, we let β = ϵB,
where B = O(1). Assuming that the magnetisation M is just a
small perturbation of M(0), we expand the small coefficients in
(27) in powers of ϵ:

η = ϵη1 + ϵ3η3 + · · · , ξ = ϵξ1 + ϵ3ξ3 + · · · .

The constraint η2 + ξ 2 + χ2
= 1 implies then

χ = 1 − ϵ2
η21 + ξ 21

2
+ · · · .

Substituting these expansions in the Landau–Lifshitz equation
(10) and equating coefficients of like powers of ϵ, the order ϵ2
gives

D1ξ1 = ∂21η1 − λD1η1 − γ (η1ξ1 ± ξ1)

and

D1η1 = λD1ξ1 − ∂21 ξ1 + Bξ1 ∓ γ η1 −
γ

2
(η21 − ξ 21 ).

The above two equations can be combined into a single equation
for the complex function ψ = ξ1 + iη1:

(i + λ)D1ψ − ∂21ψ +
γ

2
ψ2

= ∓iγψ −
B
2
(ψ + ψ∗). (28)

The Ginsburg–Landau equation (28) resembles equation (24)
governing the dynamics near the equatorial uniform static state;
however there is an important difference. Namely, even if we
let λ = 0 in (28) [that is, even if we assume that the damping
is O(ϵ) or weaker in the Landau–Lifshitz–Gilbert equation (1)],
the resulting nonlinear Schrödinger equation will not become
PT -symmetric. This fact will have important repercussions for
the stability of solitons.

5. Soliton excitations of equatorial state

Letting

u(x, t) = −
1
3
ψ(X1, T1), x =

√
γ

2
X1, t =

γ

4
T1, (29)

the Ginsburg–Landau equation (24) is cast in the form

(i + λ)ut − uxx − 6u2
= −4u + b(u − u∗), (30)

where b = 2B/γ . (We alert the reader that the scaled variables
x and t do not coincide with the original x and t of the Landau–
Lifshitz equation (1). We are just re-employing the old symbols
in a new context here.)

In the present section we consider localised solutions of equa-
tion (30) approaching 0 as |x| → ∞. Regardless of λ, the zero
solution is stable if b ≤ 2 and unstable otherwise. This inequality
agrees with the stability range (16) of the eastern uniform static
state within the original Landau–Lifshitz equation. (Note that the
term −bu∗ plays the role of the parametric driver in (30) [26];
the above stability criterion states that the zero solution cannot
sustain drivers with amplitudes b greater than 2.)

5.1. Fundamental soliton and its stability

Eq. (30) has a stationary soliton solution:

us = sech2x. (31)

To distinguish it from localised modes with internal structure, we
refer to this solution as the fundamental soliton — or simply sech
mode. Letting

u(x, t) = us(x) + ε[f (x) + ig(x)]eµt

and linearising in small ε, we obtain an eigenvalue problem

µ(g − λf ) = Hf , (32a)

−µ(f − λg) = (H − 2b)g, (32b)

with the operator

H = −d2/dx2 + 4 − 12 sech2x. (33)

The vector eigenvalue problem (32) is reducible to a scalar
eigenvalue problem of the form

(H − b + µλ)2g + (µ2
− b2)g = 0.

The stability exponents µ are roots of the quadratic equation

(E − b + µλ)2 + µ2
− b2 = 0,

where E is an eigenvalue of the operator H: Hy = Ey. The two
roots are

µ(±)
=
λ(b − E) ±

√
λ2b2 + E(2b − E)

1 + λ2
. (34)

The eigenvalues of the Pöschl–Teller operator (33) are E0 =

−5, E1 = 0, and E2 = 3, with the eigenfunctions y0 = sech3x,
y1 = sech2x tanh x and y2 = sech x

(
1 −

5
4 sech

2x
)
, respectively.

The continuous spectrum occupies the semiaxis Econt ≥ 4, with
the edge eigenfunction given by y3 = tanh x

(
1 −

5
3 tanh2 x

)
. For

each eigenvalue En, n = 0, 1, 2, equation (34) yields two roots,
µ

(+)
n and µ(−)

n .
In the analysis of the roots (34) we need to distinguish be-

tween two situations: damped (λ > 0) and undamped one (λ =

0). Assume, first, that λ > 0 and let, in addition, b ≥ 0. It is
not difficult to check that the root µ(+)

n will have a positive real
part provided the corresponding eigenvalue En satisfies En < 2b.
On the other hand, the set of three eigenvalues of the operator
(33) does include a negative eigenvalue (E0) that satisfies E0 < 2b
regardless of the particular value of b ≥ 0. Therefore the soliton
has an exponent µ(+)

0 with Reµ(+)
0 > 0 for any b ≥ 0.

In the case where λ > 0 but b < 0, the root µ(+)
n will have a

positive real part provided En satisfies En < 0. As in the previous
case, this inequality is satisfied by the eigenvalue E0 so that the
soliton has an exponent with Reµ(+)

0 > 0 for any b < 0.
We conclude that the fundamental soliton of equation (30) is

unstable in the presence of damping — regardless of the sign and
magnitude of the anisotropy coefficient b. Fig. 3 illustrates the
evolution of a weakly perturbed soliton in the Ginsburg–Landau
equation with λ ̸= 0.

Turning to the situation with λ = 0 we assume, first, that b >
0. The equations (34) will give a pair of opposite real roots µ(±)

n if
the corresponding eigenvalue satisfies 0 < En < 2b — and a pair
of pure imaginary roots otherwise. The only positive eigenvalue
of the operator (33) is E2 = 3; it satisfies the above inequality
if b > 3/2. The range of b where the roots are imaginary is,
therefore, 0 < b ≤ 3/2.

In the situation where λ = 0 but b < 0, the pair of opposite
exponents µ(±)

n is real if En falls in the interval 2b < En < 0 and
pure imaginary if En lies outside this interval. The only negative
eigenvalue is E0 = −5; it falls in the interval in question if
b < −5/2. The complementary range −5/2 ≤ b < 0 corresponds
to the imaginary roots.

Finally, in the isotropic ferromagnet (b = 0) the stability
exponents are all pure imaginary: µ(±)

n = ±iEn.
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Fig. 3. Instability of the fundamental soliton in the presence of damping. This evolution was obtained by the direct numerical simulation of equation (30) with b = 0
and λ = 0.1. The initial condition was in the form of the soliton (31) perturbed by a random perturbation within 5% of the soliton’s amplitude. The spatial interval
of simulation was (−58, 58); in the plot it has been cut down for visual clarity.

Merging the three ranges where all exponents are pure imagi-
nary produces the stability domain of the undamped fundamental
soliton in terms of the anisotropy-to-current ratio:

−
5
2

≤ b ≤
3
2
. (35)

5.2. Twisted modes in isotropic ferromagnet

The Ginsburg–Landau equation (30) with b = 0 admits an
additional pair of localised solutions:

uT = 2sech2(2x) ± 2i sech(2x) tanh(2x). (36)

The modulus of uT(x) is bell-shaped while its phase grows or
decreases by π as x changes from −∞ to +∞. The solution looks
like a pulse twisted by 180◦ in the (Re u, Im u)-plane. In what
follows, we refer to each of the solutions (36) as a twisted, or
simply sech-tanh, mode.

Linearising equation (30) about the twisted mode (36) and
assuming that the small perturbation depends on time as eµt , we
arrive at an eigenvalue problem

Lf (X) = −
µ

4
(λ+ i)f (X) (37)

for the Schrödinger operator with the Scarff-II complex potential:

L = −
d2

dX2 + 1 − 6sech2X ∓ 6i sech X tanh X . (38)

In (37)–(38), X = 2x.
The PT -symmetric operator (38) has an all-real spectrum

including three discrete eigenvalues [27]. Let yn be the eigen-
function associated with an eigenvalue En: Lyn = Enyn. The
eigenvalue–eigenfunction pairs are then given by

E0 = −
5
4
, y0 = (sech2X ± i sechX tanh X)3/2;

E1 = 0, y1 = sechX(sechX ± i tanh X)2, (39)

and E2 = 3/4 with

y2 = (3 ± 2i sinh X)(sech2X ± i sechX tanh X)3/2. (40)

Each of the eigenvalues En gives rise to a stability exponent

µn = 4
i − λ

1 + λ2
En

in equation (37). When the dissipation coefficient λ > 0, the
exponent pertaining to the negative eigenvalue E0 has a positive
real part. Accordingly, the twisted modes (36) are unstable in the
presence of damping. In contrast, when λ = 0, all exponents µn
(n = 0, 1, 2) are pure imaginary so the twisted modes are stable.

5.3. Oscillatory modes

An interesting question is whether there are any other stable
localised structures — in particular, in the situation where Eq. (30)
has zero damping. Fig. 4 illustrates the evolution of a gaussian
initial condition u(x, 0) = exp(−x2) that can be seen as a non-
linear perturbation of the soliton (31). The gaussian evolves into
an oscillatory localised structure (a kind of a breather) which
remains close to the soliton (31) — but does not approach it as
t → ∞. This observation suggests that Eq. (30) with λ = 0 has
a family of stable time-periodic spatially localised solutions, with
the stationary soliton (31) being just a particular member of the
family.

It is fitting to note that the existence of breather families is
common to nonlinear PT -symmetric equations [28]. Breathers
prevail among the products of decay of generic localised initial
conditions [28,29].

5.4. Stable solitons in two dimensions

We close this section with a remark on the Landau–Lifshitz–
Gilbert–Słonczewski equation in two dimensions:

∂M
∂t

= −M × ∇
2M − M × H − β(M · ẑ)M × ẑ

− γM × M × ẑ + λM ×
∂M
∂t
. (41)

Here ∇
2

=
∂2

∂x2
+

∂2

∂y2
. Assuming that H0 is only slightly above γ

and that the anisotropy β and damping λ are small, we consider
a perturbation of the east-point uniform state (22). Following the
asymptotic procedure outlined in Section 4.1, equation (41) is
reducible in this limit to a planar Schrödinger equation:

iut = uxx + uyy + 6u2
− 4u + b(u − u∗), (42)

where

b =
2H0

γ

β√
H2

0 − γ 2
.

Like its one-dimensional counterpart (25), equation (42) is
PT -symmetric. The PT -operation can be chosen, for instance, in
the form

t → −t, x → −x, y → −y, u → u∗.

The quadratic Schrödinger equation (42) has a static radially-
symmetric soliton solution,

us(x, y) = R(r), (43)
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Fig. 4. The evolution of the initial condition in the form of a gaussian, u(x, 0) = exp(−x2), in equation (30) with λ = 0 and b = 0. Left panel: Re u; right panel: Im u.
The emerging solution is a breather with a small imaginary part and the real part close to the soliton (31). Note that the figure shows only a portion of the full
simulation interval (−58, 58).

Fig. 5. Localised solutions of the quadratic Schrödinger equation on the plane:
the stationary soliton (a) and a breather (b). Both figures were produced by
direct numerical simulations of equation (42) with b = 0. In panel (a), the
initial condition was taken in the form of the soliton (43) perturbed by a random
perturbation within 5% of its amplitude. After t = 100, the solution (shown in
the panel) remains close to the soliton. In panel (b), the initial condition was
chosen as u = 1.6 exp(−r2). After an initial transient, the solution settles to a
localised oscillatory state shown in the figure.

where R(r) is a nodeless (bell-shaped) solution of the boundary-
value problem

Rrr +
1
r
Rr − 4R + 6R2

= 0,

Rr (0) = 0, R(r) → 0 as r → ∞.

Postponing the detailed stability analysis of the soliton (43)
to future publications, we restrict ourselves to the simplest case
of isotropic ferromagnet, b = 0. A numerical simulation of
equation (42) with the initial condition in the form of the noise-
perturbed soliton (43) indicates that the soliton is stable against

small perturbations. [See Fig. 5(a).] On the other hand, generic
localised initial conditions evolve into time-periodic breather-like
states [Fig. 5(b)]. This suggests that the quadratic Schrödinger
equation (42) — and hence the planar Landau–Lifshitz equation
(41) — support a broad class of stable stationary and oscillatory
localised structures.

6. Soliton excitations of latitudinal state

The scaling transformation (29) takes the equations (28) to the
nondimensional form:

(i + λ)ut − uxx − 6u2
= ∓4iu − b(u + u∗). (44)

As in Section 5, b = 2B/γ here.
In what follows, we confine ourselves to the analysis of the

isotropic equations (b = 0) as it is the only regime where we were
able to obtain soliton solutions of equations (44). In the isotropic
case, the u = 0 solution of the top-sign equation in (44) is stable
while the same solution of the bottom-sign equation is unstable
— regardless of whether λ is zero or not. (This agrees with the
stability properties of the north and south fixed-point solutions
of the Landau–Lifshitz equation; see Section 3.2.) Hence we only
keep the top-sign equation in what follows.

6.1. Sech mode

Letting b = 0, the top-sign equation in (44) can be further
transformed to

(1 − iλ)wt = wzz − 4w + 6w2, (45)

where

w(z, t) = −iu(x, t), z = eiπ/4x. (46)

An obvious static solution of equation (45) is ws = sech2z; the
corresponding solution of the original equation (44) is

us(x) = i sech2
(
ei
π
4 x
)
. (47)

The solution (47) decays to zero as x → ±∞ and does not have
singularities on the real line. Similar to the solution (31) over the
equatorial background, we term the solution (47) the sech soliton.

To classify the stability of the soliton (47), we linearise equa-
tion (45) about ws = sech2z. Assuming that the small perturba-
tion depends on time as eµt , we obtain

µ = −
1 + iλ
1 + λ2

E, (48)

where E is an eigenvalue of the Pöschl–Teller operator

H = −
d2

dz2
+ 4 − 12 sech2z.
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The operator acts upon functions y(z) defined on the line z =

eiπ/4ξ (−∞ < ξ < ∞) on the complex-z plane and satisfying the
boundary conditions y → 0 as ξ → ±∞.

As discussed in the previous section, the equation Hy =

Ey with E = −5 has a solution y0 = sech3z. The function
sech3(eiπ/4ξ ) is nonsingular for all −∞ < ξ < ∞ and decays to
zero as ξ → ±∞; hence E0 = −5 is a discrete eigenvalue of the
operator H. The corresponding exponent µ in (48) has a positive
real part regardless of λ. This implies that the sech soliton (47) is
unstable irrespective of whether λ is zero or not.

6.2. sech-tanh modes

Applying the transformation (46) to a pair of solutions

wT = 2sech2(2z) ± 2i sech(2z) tanh(2z) (49)

of equation (45), we obtain two localised solutions of the original
equation (44):

uT = ∓2 sech(2eiπ/4x) tanh(2eiπ/4x) + 2i sech2(2eiπ/4x). (50)

By analogy with solutions (36) over the equatorial background,
we are referring to (50) as the sech-tanh modes.

Linearising equation (45) about each of its stationary solutions
(49) and assuming that the small perturbation depends on time
as eµt , we obtain the following equation for the exponent µ:

µ = −4
1 + iλ
1 + λ2

E.

Here E is an eigenvalue of the Scarff-II operator:

Ly = Ey, (51a)

L = −
d2

dZ2 + 1 − 6 sech2Z ∓ 6i sechZ tanh Z, (51b)

with Z = 2z. The eigenvalue problem (51) is posed on the line

Z = eiπ/4ξ, −∞ < ξ < ∞ (52)

on the complex-Z plane, with the boundary conditions y → 0 as
ξ → ±∞.

Three solutions of equation (51a) are in (39)–(40). Since yn(Z)
(n = 0, 1, 2) are nonsingular and decay to zero as Z tends to
infinity in either direction along the line (52), these solutions are
eigenfunctions of the operator L — and the corresponding En are
the eigenvalues. The exponent µ0 pertaining to the eigenvalue
E0 = −5/4 has a positive real part:

µ0 = −4
1 + iλ
1 + λ2

E0.

Consequently, the sech-tanh modes (50) are unstable — no matter
whether λ is zero or not.

6.3. Summary of one-dimensional solitons

The stability properties of six localised modes supported by
the quadratic Ginsburg–Landau equations (30) and (44) are sum-
marised in Table 2. The Table includes two sech solitons (the
fundamental soliton (31) and its latitudinal-background counter-
part, equation (47)) and four sech-tanh modes (the twisted modes
(36) and their latitudinal analogs (50)).

7. Concluding remarks

We have studied nonlinear structures associated with the spin
torque oscillator — an open system described by the Landau–
Lifshitz–Gilbert–Słonczewski equation. In the limit of zero
damping (λ = 0), this nonconservative system is found to be

Table 2
Stability of the stationary nonlinear modes in one dimension. The middle column
classifies solutions of equation (30) while the right-hand column corresponds to
solutions of (44).

Over equatorial
background

Over latitudinal
background (with b = 0)

sech Stable if λ = 0 Unstable
soliton and −

5
2 < b < 3

2

sech-tanh Exist if b = 0; Unstablemodes Stable if λ = 0

PT -symmetric. The nearly-PT symmetric equation corresponds
to small nonzero λ. In this paper, we have considered both nearly-
symmetric and nonsymmetric oscillators (small and moderate
λ).

The spin torque oscillator has four stationary states of uniform
magnetisation; they are described by four fixed points on the unit
M-sphere. Two of these states have their magnetisation vectors
lying in the equatorial plane of the unit sphere while the other
two correspond to fixed points in the northern and southern
hemisphere, respectively. We have assumed that the external
magnetic field H0 has been tuned to values ϵ2-close to the bifur-
cation points of the ‘‘equatorial’’ and ‘‘latitudinal’’ uniform static
states, and that the ferromagnet is only weakly anisotropic: β =

O(ϵ). In that limit, small-amplitude localised perturbations of the
uniform static states satisfy the Ginsburg–Landau equations —
equations (30) and (44), respectively.

If the damping coefficient λ is O(ϵ) or smaller, each of the
two Ginsburg–Landau reductions becomes a quadratic nonlinear
Schrödinger equation. Of the two Schrödinger equations, the one
corresponding to perturbations of the ‘‘equatorial’’ uniform static
state turns out to be PT -symmetric. (Thus the asymptotic reduc-
tion of a nearly PT -symmetric Landau–Lifshitz system is exactly
PT -symmetric.) This Schrödinger equation proves to be quite
remarkable. Indeed, despite both our Ginsburg–Landau reduc-
tions supporting soliton solutions, it is only in the PT -symmetric
Schrödinger limit that the solitons are found to be stable.

The PT -symmetric Schrödinger equation supports two types
of stable solitons. The constant-phase solution (31) is stable in an
ϵ-wide band of β values, extending from the easy-axis to easy-
plane region. [The stability band is demarcated by the inequality
(35).] On the other hand, a pair of stable solitons with the twisted
phase, equations (36), is only supported by the nearly-isotropic
ferromagnet: β = O(ϵ2) or smaller. In addition to stable static
solitons, the PT -symmetric Schrödinger equation exhibits stable
breathers.

In the two-dimensional geometry, the Landau–Lifshitz equa-
tion for the spin torque oscillator admits an asymptotic reduc-
tion to a planar quadratic Schrödinger equation, equation (42).
Like its one-dimensional counterpart, the PT -symmetric planar
Schrödinger equation has stable static and oscillatory soliton
solutions.

Finally, it is worth re-emphasising here that the PT -symmetric
Schrödinger equation is a reduction of the whole family of nearly-
PT symmetric Landau–Lifshitz–Gilbert–Słonczewski equations
with λ = O(ϵ) — and not just of its special case with λ = 0.
Therefore our conclusion on the existence of stable solitons is ap-
plicable to the physically relevant class of spin torque oscillators
with nonzero damping.
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