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PROBLEM  

Transportation incidents remain a pressing public safety issue in the United States and throughout the 

world, despite significant advancements in vehicle safety technologies. In the U.S., an estimated 17,775 

people died in motor vehicle crashes in the first half of 2016, a 10.4% increase from 2015 (U.S. 

Department of Transportation 2016). Note that many of the most severe crashes involve a mix of 

commercial and personally-owned vehicles. While the root cause of these crashes often involves several 

factors, it is estimated that driver-related factors are the leading cause for 75-90% of fatal/injury -

inducing crashes (Lal and Craig 2001, Medina, Lee et al. 2004, Craye, Rashwan et al. 2016). The 

National Highway Traffic Safety Administration (NHTSA) estimates that about 20% of all crashes are 

fatigue-related (U.S. Department of Transportation 2016). Even more alarming, ~60% of fatal truck 

crashes are due to the driver falling asleep while driving (Craye, Rashwan et al. 2016). Statistically 

speaking, it has been shown that drowsy driving increases crash risk by 600% when compared to normal 

driving (Klauer, Dingus et al. 2006).  

Truck drivers operate in a stressful and unique environment. First, truck operations directly affect 

public interests (Mejza and Corsi 1999). In 2013, there were 411,000 truck-related crashes that resulted in 

3,424 fatalities and an estimated 111,000 people injured (U.S. Department of Transportation 2016). 

Second, truck drivers experience little supervision or contact with fellow employees (Zohar, Huang et al. 

2015). Third, a truck driver’s operating environment is very complex. Drivers encounter different 

routes/paths, weather, traffic conditions, and locations each time they take a trip. In addition, they can 

drive for long continuous hours . We currently do not understand how these factors interact, and what are 

their combined effect on driver safety performance (DSP), and consequently, crash risk. In the proposed 

project, we will investigate how real-time conditions interact to affect DSP changes. From that 

understanding, practitioners and drivers can make more informed decisions regarding scheduling and 

driver safety interventions, to reduce the likelihood of a crash.  

Our goal is to examine how trucking companies can effectively utilize the massive data collected by 

wearable driver-worn sensors to: 1) understand how DSP varies by location, time, time of day, and/or 

driver workload, 2) reduce the dimension of the data to allow for real-time decision-making, 3) identify 

and eliminate redundant variables within these datasets, 4) model the rate of change in DSP, either 

parametrically or non-parametrically, and 5) use the insights from the models to predict hazardous 

behaviors of drivers. The proposed project provides a data analytics perspective on transportation safety. 

We attempt to see patterns using descriptive analytics approaches, then we will apply a variety of 

statistical, modeling, and machine learning approaches to characterize historical data for the purpose of 

making predictions about future performance.   

 

CURRENT STATE OF KNOWLEDGE 

Wang et al. (Wang, Yang et al. 2006) classified the current DSP detection systems into three major 

categories: 1) direct methods based on a driver’s state, focusing on eye/eyelid movements and 

physiological state changes, 2) indirect methods that focus on driver performance, with an emphasis on 

vehicle behavior including position and headway, and 3) methods that combine the driver’s state and 

performance. Much of the literature, however, focuses on directly detecting root causes of any change in 

performance [see e.g., (Jo, Lee et al. 2014)]. 

 Variables such as the times of lane departures, standard deviation of lateral position (SDLP), and 

maximum lane deviation were found to highly be correlated with eye closures (Skipper 1985). The mean 

square of lane deviation, mean square of high-pass lateral position, and SDLP showed good potential as 

drowsiness indicators (Hartley 1995). Thus, driver performance measures can be sufficient in identifying 

fatigue, sleepiness, distraction, etc. Studies on driver performance have mainly employed lane tracking 

alone or in combination with tracking the distance between the vehicle of interest and the car/truck in 

front (Wang, Yang et al. 2006, Liu, Hosking et al. 2009). While lane departure systems are now deployed 

in commercial and passenger vehicles, it is unclear how this data can be effectively used to detect 

changes in a driver’s safety performance. Liu et al. (Liu, Hosking et al. 2009) systematically reviewed 17 



behavioral experiments where indirect methods were used to detect increase in drowsiness. In their 

results, they stated “the studies were too dissimilar to produce any common measure that could be 

meaningfully pooled. Furthermore, most studies did not report numerical estimates, or did not produce 

graphs with error bars.” From a trucking perspective, the studies in (Liu, Hosking et al. 2009) are not 

relevant since they were limited to two hours of driving and primarily involved driving simulators. 

Studies that compared the effects of drowsiness/ fatigue found some discrepancies between simulated and 

real-world driving conditions (Philip, Sagaspe et al. 2005). The discrepancies were attributed to the 

greater level of stimulation in the real-world when compared to simulated driving (Philip, Sagaspe et al. 

2005).  

 Based on the this discussion and the detailed surveys in (Wang, Yang et al. 2006, Liu, Hosking et al. 

2009), there are several observations to be made. First, there has not been much focus on developing 

statistical models for detecting a change in trucking performance (especially for massive datasets). It is 

not clear if: a) the current methods are applicable to a network of vehicles and b) the methods should be 

individualized by driver since driving styles can affect the baselines for SDLP, time between minor/major 

lane departure. Second, driver performance studies often ignore data on driving conditions. For example, 

all hard brakes in these studies are considered adverse events rather than classifying them based on other 

factors. Third, few datasets have included driver characteristics, driving behaviors, and driver distraction 

in a naturalistic environment due to limitations in the technology to capture this data previously. The 

development and implementation of wearable technology to monitor driver parameters now allows for 

collection of naturalistic driver behavior and the resulting driver performance; however, this data has not 

yet been incorporated to predict driver safety performance. 

  

SCOPE OF WORK  

The overall objective of this project is to model changes in driving safety performance based on 

individualized driver characteristics and the cognitive load of the driving task. To achieve this objective, 

the following tasks are proposed: 

Task 1: Model input parameters for characterizing workload: tasks performed, cognitive load, miles 

driven, road location, hours on duty, time of day, driving characteristics, weather conditions 

Task 2: Quantify changes in driving performance based on characteristics of mirror checks and 

system alerts and evaluate these changes with respect to gold standard guidelines  

Task 3: Investigate data-driven modeling approaches for DSP prediction, including structural 

analysis and machine learning approaches. Detection once a problem has occurred, such as a critical 

event like a crash, is often too late. Prediction of the likelihood of a fatigued state, or a change in safety 

performance, can allow for interventions to be implemented. Once an alert to a behavior change is made, 

it is also critical to determine the driver responsiveness to the alert to quantify the effectiveness.   

 

In the completion of these tasks, the measureable output (ground truth) will be an observed change in 

performance, defined here as an “unsafe act”. It is hypothesized that the proposed modeling approaches 

will be able to predict a change in driving safety performance, with at least a 90% accuracy, based on a 

change in parameters preceding the unsafe act.  

 

APPROACH AND METHODO LOGY  

DATA SOURCE 

This work made use of data collected from the Co-Pilot SE™ from Maven Machines (see Figure 1) . 

We partnered with Maven Machines who provided access to their dataset from a fleet of truck drivers 

who wore the device. The headset device captured head movements in the left, right, and down directions 

at a rate of 50 Hz and transmitted to an application running on the driver’s cell phone. Two datasets were 

received from Maven Machines in October 2017. The data was captured from two versions of the 

hardware. Along with the data, Maven provided a data dictionary describing the data variables included. 

Each row of the data is an “event”, considered when a driver looks either at the left or right mirror or 



down. Specific variables in the dataset include date and time, employee id, GPS location (latitude and 

longitude), event type (left, right, or down), maximum angle of head turn, duration of event, and speed of 

driving at the time of event. The system also provides a status indicator that notes whether the driver was 

on the phone and whether the phone screen was on. Data was collected from the period August 14, 2016 

through October 26, 2017. More than 10 million events from ~200 drivers were included prior to data 

cleaning. 

 

 

 

A third dataset was received from Maven Machines in fall 2018 for brake events. Brakes were 

captured based on the acceleration recorded by the headset. The severity of the brake event was 

determined based on the maximum acceleration. Industry standard defines a hard brake as an acceleration 

of 10 mph/s. This dataset was recorded with the second version of the hardware and included travel from 

April through November 2017. Variables in this dataset included date and time of event, employee id, 

GPS location (latitude and longitude), acceleration during the brake, maximum acceleration during the 

brake, speed at the start of the brake, speed at the end of the brake, duration and distance covered during 

the braking event, time since last mirror check prior to the braking event, and distance since last mirror 

check prior to the braking event. Both mirror check and hard brake events serve as driver safety 

performance outcomes. The analysis takes advantage of the other variables as explanatory factors for the 

performance outcomes.  

 

DATA CLEANING 

The first step of analysis was to merge the datasets and clean any bad data from the files. The files 

were edited to create consistent variable naming and formatting. Bad data were identified based on the 

following criteria: 

¶ System status indicators based on binary bit data from events when the system was not being 

worn or the truck was not being driven (see Table 1) 

¶ Driving speed > 90 mph: deemed to be infeasible for real data 

¶ Sensor position with maximum angle > 180 deg or < -180 deg: infeasible if worn 

¶ GPS latitude or longitude outside of the United States 

¶ Maximum acceleration for a brake event < 3.5 mph/s: considered to be “moderate” braking 

level 

¶ Invalid data point based on data dictionary (e.g., when speed = -1) 

This cleaning brought the dataset from > 12 million events to 9.8 million events where the sensor was 

connected and worn for a total of 198 drivers.  



The second step of data cleaning was to separate the data into separate trips for longitudinal analysis. 

Separation of one trip from the next was based on a heuristic of the time between events. It was assumed 

that a gap of more than 30 minutes between mirror check events would only occur if the driver stopped 

the truck for a break/delivery/other reason, and then resumed driving. Therefore, the time between mirror 

checks was calculated and the threshold was applied. As the objective was to look at changes in driving 

safety performance over the duration of a trip, a second trip heuristic was applied to only include trips that 

lasted longer than 20 minutes. Overall there were 11,673 trips that lasted longer than 20 minutes, with an 

average trip duration equal to 2.15 hr. The figure below shows a trip example from the dataset and the 

accompanying proportions of mirror checks that were to the left side, right side, and down.  

 

 
 

DATA ANALYSIS 

Input Variables 

Following initial data cleaning, exploratory data analysis was conducted to isolate the relevant input 

parameters. Common data visualization approaches were employed. Variables identified for analysis 

included: distribution of events that are left, right, or down (mirror checks vs. potential distraction to look 

at other in-cab items); number of event statuses that indicate the driver was on a phone call or their phone 

screen was on (a sign of distraction); duration of trips; time of day when the trip occurs; average speed 

while driving with different events; duration of glances away from center; miles driven; continuous miles 

driven between breaks; and road types (highway vs. local road). Statistical analysis, including summary 

statistics and correlations, was conducted to capture central tendency, variability, and distribution of the 

parameters.  

 

Outcome Variables 

Two main outcome variables were considered: 1) the time between mirror checks, here defined as the 

time between consecutive events, and 2) the occurrence of a medium or hard brake, here defined as a 

maximum acceleration > 3.5 mph/s for a brake event. Only left-left, left-right, and right-left events were 

considered, since a down event would not indicate a mirror check. The Federal Motor Carrier Safety 

Administration (FMCSA) recommends that drivers check their mirrors every 5-8 seconds, with a balance 

of left and right mirror checks. This would result in 7.5-12 mirror checks per minute. For the purpose of 

this analysis we also considered a threshold at 6 per minute (10 seconds). Since the brake events were 

only available for a subset of the data, predictors of and changes in mirror check rate were of primary 

interest. Following this, analysis focused on whether changes in mirror check rate, along with the input 

variables, were predictors of a brake event. There were 2737 brake events across ~40 drivers.  



 

Modeling 

With the goal of predicting driver safety performance, logistic regression was used to determine 

whether the input variables were predictive of an unsafe mirror check rate. For this analysis, the output 

variable of average mirror check rate was dichotomized to either safe (> 6 per minute) or unsafe (< 6 per 

minute). The predictors considered for this model were the trip duration, median speed, proportion of 

events where the driver was looking down, and the balance of mirror checks between the left and right 

sides. The second level of analysis then considered changes in the mirror check rate over the duration of 

the trip and the influence on the occurrence of a brake event. This second level of analysis was only 

performed on the subset of mirror check data that included the drivers present in the brake event data.   

 

FINDINGS: DOCUMENTAT ION OF DATA GATHERED , ANALYSES PERFORMED, 

RESULTS ACHIEVED  

 As a part of our critical review of the literature, we have learned (through a novel, data-driven 

bibliometric approach) that there is a divide between the crash risk prediction models and how they are 

incorporated in decision-making through prescriptive optimization techniques. Since this was such a 

significant finding, we have expanded on this analysis and submitted this work to Transportation 

Research - Part C: Emerging Technologies. We invite the interested reader to examine our analysis 

further at: https://caimiao0714.github.io/TrafficSafetyReviewRmarkdown/ 

From the cleaned dataset, we extracted the input parameters for workload, including trip duration, 

time of day, median speed, percent of time looking down, and percent of events when the driver was on 

the phone. 61.7% of the events happened during the day and 38.3% at night, with most data collected 

Monday-Friday. Drivers looked to the left mirror 58.2% of events, to the right 35.5% and down for 6.3%. 

This distribution of events remained consistent based on the time of day and across drivers. 

Approximately 45% of longer separation between mirror checks (>8 sec) occurred when the driver was 

on the phone, and ~10% were when the driver’s phone screen was on.  

 

 
 



 
We then looked more closely at the most recent subset of 974 trips that were collected with the newer 

hardware during the period that also included the brake data. For this subset, the average trip duration was 

192 minutes (3.2 hours). This subset was further reduced to consider trips where the median speed was 

greater than 30 mph (steady driving) and that had at least 200 events. It was assumed that periods of 

consistent driving were needed to accurately analyze mirror check rates and brake events. This resulted in 

668 trips with an average duration of 206 minutes (3.4 hr). Characteristics of the input variables are 

shown in the table below. 

 

Parameter Mean Standard Deviation 

Trip Duration (min) 206 131.8 

Median Speed 58.0 8.8 

Number of Events 1294 903 

% Down Events 3.2 2.3 

Ratio of Left to Right Events 2.01 4.84 

 

The response variable of average mirror check rate was used for modeling changes in driving 

performance. Independent of trip duration, the median number of seconds between mirror checks was 

9.73. As shown in the graph below for the full dataset of trips, the average mirror check separation time 

remained consistent independent of trip duration. The standard recommendation for commercial drivers is 

to check their mirrors every 5-10 seconds, thus the average separation was within the recommendation. 

The mirror check rate was considered both as a continuous and dichotomous variable for modeling. For 

the dichotomous form, we considered the target of 6 mirror checks per minute and classified trips with an 

average event separation time < 10 seconds as safe and those with an average > 10 seconds as unsafe. 

This was the average for the full trip, without considering changes over time.   

 

 



Logistic regression was used to model the effects of median speed, proportion of down events, left-right 

mirror check balance, and trip duration on whether the driver had a safe or unsafe mirror check rate. 

These variables were selected as the inputs of interest based on hypotheses from the literature in terms of 

the influence of distraction (down events), failure to check for other vehicles (left-right event balance), 

and fatigue (trip duration). The results of the classification for the dichotomous variable of safe driving 

behavior are shown in the table below. As seen, the overall prediction performance was 66%. Left-right 

event balance and trip duration were significant predictors (p < 0.001 and p = 0.001, respectively), 

whereas median speed and percent of down events were not significant (p = 0.24 and p = 0.75). 

 

 
 

Further investigation into the significant predictors showed that a higher ratio of left to right events (as 

shown in the figure below), meaning a greater imbalance in mirror checks, was associated with the longer 

separation between events. The average for the “unsafe” rate was 2.2 (standard deviation = 2.4) and the 

average for the “safe” rate was 1.5 (standard deviation = 0.35). For the other significant factor, trip 

duration, the average trip duration was shorter for those trips that had a “safe” mirror check rate. The 

average for the “unsafe” rate was 225 (128) min compared to 185 (104) min. In interpreting these results, 

it should be noted that inaccuracies in event detection, either due to the motion that the driver used or the 

sensor in the headset, may have resulted in a failure to capture all of the head movements toward the 

mirrors.   
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