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Large-scale networks arise in numerous research fields to describe
social networks, biological systems, technologies, economics, ...
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There are myriad techniques for extracting
insights from structural patterns
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MULTILAYER NETWORKS

* A more comprehensive modeling framework

time-varying networks
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* See reviews
- Kivela et al. (2014) Multilayer networks. |. of Complex Networks 2(3), 203-271.
 Boccaletti et al. (2014) The structure and dynamics of multilayer networks. Physics Reports 544(1), |-122.




CENTRALITY AND RANKING

» Centrality Analysis - ranking nodes according to their importances

» Google PageRank for web search
» |[dentifying influential persons

» Points of fragility in complex systems GO gle
» Ranking universities, academics, etc.
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» Drug targets in biological networks
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GOOGLE’S PAGERANK ALGORITHM

* Adjacency matrix A;; - encodes network

massive web graph

example web graph
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GOOGLE’S PAGERANK ALGORITHM

 Adjacency matrix A,L-j - encodes network

» Node degree d; = Zj Bles

» Transition matrix P;; = A;;/d;

example web graph
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GOOGLE’S PAGERANK ALGORITHM

 Adjacency matrix A,L-j - encodes network

I b h
* Node degree d; = Zj Aij example web grap

1 2
» Transition matrix P;; = A;;/d;
* PageRank centrality matrix .
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GOOGLE’S PAGERANK ALGORITHM

 Adjacency matrix Aij - encodes network
» Node degree d; = Zj Bles
» Transition matrix P;; = A;;/d;

* PageRank centrality matrix
CZ-(JPR) = (1 — Oé)PZ'j —+ o
a = 0.15
* PageRank vector v solves

O BBy — )\ v

. {UZ} gives stationary distribution of
random web surfers

example web
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EIGENVECTOR-BASED CENTRALITIES

* Node rankings are indicated by a centrality score, which is computed as the
dominant eigenvector of a “centrality matrix” C

- Examples

« Google’s PageRank centrality -Brin & Page, 1998
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* Hub and Authority scores for directed networks -Kleinberg, 1999
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» Eigenvector centrality for undirected networks
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SUPRA-CENTRALITY MATRIX

* We introduce “supra-centrality” matrices as a temporal generalization of centrality

+ Consider T centrality matrices C*) for T time layers

* We place them as diagonal blocks in a matrix and couple them together

with inter-layer “identity” edges of weight e T
coupled time layers
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JOINT, MARGINAL AND
CONDITIONAL CENTRALITY

* We introduce a vocabulary for centrality motivated by statistics

Cle)v(e) =

Amax V(€)

Temporal Network
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Node Index

Centralities for ¢ = 0.5

Time Layer
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JOINT, MARGINAL AND
CONDITIONAL CENTRALITY

* We introduce a vocabulary for centrality motivated by statistics

C(G)V(E) = Amax V(E)

(a) Temporal Network (b) Centralities for ¢ = 0.5
Time Layer
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CENTRALITY TRAJECTORIES

 Conditional centrality reveals how the importances of nodes change with time
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(a) Temporal Network Centrality Trajectories
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STRONG-COUPLING LIMIT:
TIME-AVERAGED CENTRALITY

» We analyze the strong coupling limit € — 07 which yields layer aggregation

* We conduct a singular perturbation analysis for C(e)v(e) = ApnaxV(e€)

wile) = W st @ ey
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STRONG-COUPLING LIMIT:
TIME-AVERAGED CENTRALITY

» We analyze the strong coupling limit € — 07 which yields layer aggregation

* We conduct a singular perturbation analysis for C(e)v(e) = ApnaxV(e€)

wile) = W st @ ey
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* This yields two layer-aggregated centralities:

- Time-averaged centrality {a;}, which describe the conditional centralities
when they become constant across the layers

» First-order mover scores {m;}, which measure the extent of centrality
change across the layers
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* We analyzed data from the Internet
Movie Database (IMDDb) to study the
golden age of hollywood, 1920—-1960,

* We consider 55 actors (26 male and 29

female) during the time period 1909
2009

* An edge from i to j in layer t indicates the
number of movies in which i and j co-star
and actor j is listed first in the movies
billing order
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Top Time-Averaged Centralities
Rank Actor o m;

1 Gable, Clark 0.3683 136.32
2 Marx, Groucho 0.3627 163.34
3 Marx, Harpo 0.2844 112.28
4 Garland, Judy 0.2820 100.28
5 Tracy, Spencer 0.2681  98.20
6 Stewart, James 0.2371  78.78
7 Crawford, Joan 0.2369  90.58
8 Astaire, Fred 0.2103  73.29
9 Marx, Chico 0.2055  &86.39
10 Cagney, James 0.1779  69.00
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Top Time-Averaged Centralities

Actor Qo m;

Gable, Clark 0.3683 136.32
Marx, Groucho 0.3627 163.34
Marx, Harpo 0.2844 112.28

4 Garland, Judy 0.2820 100.28

5 Tracy, Spencer 0.2681  98.20
0 Stewart, James 0.2371  78.78
Crawford, Joan 0.2369  90.58
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8 Astaire, Fred 0.2103  73.29
9 Marx, Chico 0.2055  86.39
10 Cagney, James 0.1779  69.00
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CASE STUDY I: -
LR
Top Time-Averaged Centralities
Rank Actor o m;
1 Gable, Clark 0.3683 136.32
2 Marx, Groucho 0.3627 163.34
3 Marx, Harpo 0.2844 112.28
4 Garland, Judy  0.2820 100.28
5 Tracy, Spencer 0.2681  98.20
6 Stewart, James 0.2371  78.78
7 Crawford, Joan 0.2369  90.58
8 Astaire, Fred 0.2103  73.29
9 Marx, Chico 0.2055  86.39
10 Cagney, James 0.1779  69.00




g Th'E GOLDEN Aa ’5

: «%&"f A

* The top actor, Clark Gable vs Groucho Marx, is too close to call using only
time-average centrality

* We plot their conditional centrality trajectories for a few values of the layer
coupling strength €

e = 0.00001 e = 0.001 e=.1 e =10
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* We find that Groucho was initially top ranked, but Clark had a longer career




CASE STUDY 2: FLOW OF MATH PHDS

* Network encodes
graduation and hiring of
math PhDs using data
from the Mathematical
Genealogy Project

- Edges reflect the number
of PhD students that
graduate from university |
and then later teach at
university |

 Color indicates time-
averaged centrality
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OUTLIER MATH DEPARTMENTS

* Outliers have unusually large first-order-mover scores versus their

time-averaged centrality (Georgia Tech and CUNY)
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LAYER AGGREGATION

* Our singular perturbation analysis for C(e)v(e) = AnaxV(€) reveals that
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LAYER AGGREGATION

* Our singular perturbation analysis for C(e)v(e)

strong coupling implements a layer aggregation:

= AmaxV(€) reveals that

e = vt @i e s
Amax = Ao + €A1 + € Xa + ...

(6 2l (R
zt:C sin (T—|—1>

* We now consider layer aggregation and its affects on community detection

« Community detection is akin to data

* Survey of app
S Shai, N Stan

P| Mucha (20

clustering and aims to identify
groups of well-connected nodes

Ications:
ey, C Granell, D Taylor &
1) arXivi | 70502568



DETECTABILITY OF COMMUNITIES IN
PREPROCESSED TEMPORAL NETWORKS

* What are the effects of layer-aggregation on the detectability of

communities?

(A)

Data Fusion
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Moving-Average Filter

» Can we optimally preprocess network data to maximally enhance

community detection!?




DETECTABILITY OF COMMUNITIES IN
PREPROCESSED TEMPORAL NETWORKS

* What are the effects of layer-aggregation on the detectability of
communities?

(A) Data Fusion (B) Time-Series Discretization (@ Moving-Average Filter
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» Can we optimally preprocess network data to maximally enhance
community detection!?

» We approach these questions using random-matrix theory to
analyze fundamental limits for community detection.




2-COMMUNITY NETWORK MODEL

* L network layers are drawn from one stochastic block model (SBM)

- Create edge (4, j) with probability
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2-COMMUNITY NETWORK MODEL

* L network layers are drawn from one stochastic block model (SBM)
- Create edge (4, j) with probability

' o £ RRRE-. b 5 i
Pi; = { e S 0 R Pout
Dout If C; 7& Cj i

Pin > Pout
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* It is helpful to study the variables community-A. © .
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 mean edge probability: p = (Pin + Pout)/2 L e
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* probability difference: A = p;p — Dout
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2-COMMUNITY NETWORK MODEL

* L network layers are drawn from one stochastic block model (SBM)
- Create edge (4, j) with probability

Pi' i D = Cj
Pout If C; 7& Cj

Pin > Pout

Pout

p’L’I’L 100 FREIGTERE -
0 50 100

* It is helpful to study the variables community A. . :
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* mean edge probability: p = (pin + Pour)/2 .

AT

* probability difference: A = p;p — Dout

 Detectability phase transition at A* > 0

undetectable
small A

detectable
large A




ANALYSIS WITH RANDOM-MATRIX THEORY

* We develop random matrix theory for the modularity matrix based on
Nadakudrti & Newman, PRL 2012 and T Peixoto, PRL 201 3

* We analyze the distribution of eigenvalues for the modularity matrix in the
large N limit




ANALYSIS WITH RANDOM-MATRIX THEORY

* We develop random matrix theory for the modularity matrix based on
Nadakudrti & Newman, PRL 2012 and T Peixoto, PRL 201 3

* We analyze the distribution of eigenvalues for the modularity matrix in the
large N limit

isolated eigenvalue
whose eigenvector
encodes community
structure

bulk eigenvalues




ANALYSIS WITH RANDOM-MATRIX THEORY

* We develop random matrix theory for the modularity matrix based on
Nadakudrti & Newman, PRL 2012 and T Peixoto, PRL 201 3

* We analyze the distribution of eigenvalues for the modularity matrix in the
large N limit

isolated eigenvalue
whose eigenvector
encodes community
structure

bulk eigenvalues

» As the gap disappears, the dominant eigenvector v becomes a
random vector



PHASE TRANSITION FOR THE DOMINANT EIGENVECTOR
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PHASE TRANSITION FOR THE DOMINANT EIGENVECTOR
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DETECTABILITY LIMIT VANISHES WITH
INCREASING NUMBER OF LAYERS

Detectability equation: A* = +/p(1 — p)/NL
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A2 = /AN Lp(1 - p) / ol | ‘1

0 0.5 1
M =NLA/2+4+2p(1—p)/A edge probability, p

Detectability limit vanishes as O(1/v'L)



CONCLUSION

 Part |: layer-coupling and centrality

* While myriad real-world networks are multilayer, network analyses have
traditionally been developed for single-layer networks

- We extended eigenvector centrality to temporal networks by coupling together
centrality matrices

* We introduced concepts of joint, marginal and conditional centrality, allowing us
to study centrality “trajectories” across time

* The strong coupling limit recovers layer aggregation as a weighted sum of the
layers adjacency matrices




CONCLUSION

 Part |: layer-coupling and centrality

* While myriad real-world networks are multilayer, network analyses have
traditionally been developed for single-layer networks

- We extended eigenvector centrality to temporal networks by coupling together
centrality matrices

* We introduced concepts of joint, marginal and conditional centrality, allowing us
to study centrality “trajectories” across time

* The strong coupling limit recovers layer aggregation as a weighted sum of the
layers adjacency matrices

* Part 2: layer aggregation and community detection

« Aggregating together similar layers can enhance the detection of structural
patterns such as communities

« We are developing random-matrix theory to study this phenomenon, which
includes studying fundamental limits for community detection

« We obtain O(1/vL) as the scaling behavior for how the detectability limit
vanishes with increasing number of layers L
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