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Large-scale networks arise in numerous research fields to describe 
social networks, biological systems, technologies, economics, …

There are myriad techniques for extracting 
insights from structural patterns



time-varying networks

interdependent systems

MULTILAYER NETWORKS

• See reviews
• Kivelä et al. (2014) Multilayer networks. J. of Complex Networks 2(3), 203-271.
• Boccaletti et al. (2014) The structure and dynamics of multilayer networks. Physics Reports 544(1), 1-122.

• A more comprehensive modeling framework

complementary data



• Google PageRank for web search
• Identifying influential persons
• Points of fragility in complex systems 
• Ranking universities, academics, etc.
• Drug targets in biological networks

CENTRALITY AND RANKING

• Centrality Analysis - ranking nodes according to their importances

most important
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• PageRank vector     solvesv

v1 v2

v3

v4 v5
• PageRank centrality matrix

C(PR)
ij = (1� ↵)Pij + ↵

↵ = 0.15

• Node degree       
       

di =
P

j Aij

• Transition matrix Pij = Aij/di

• Adjacency matrix        - encodes network Aij

C(PR)v = �maxv

•          gives stationary distribution of 
random web surfers
{vi}



• Hub and Authority scores for directed networks -Kleinberg, 1999

C(hub) = ATA

C(auth) = AAT

• Node rankings are indicated by a centrality score, which is computed as the 
dominant eigenvector of a “centrality matrix” C

EIGENVECTOR-BASED CENTRALITIES

C(PR) = (1� ↵)P + ↵

• Examples

• Google’s PageRank centrality -Brin & Page, 1998

C(evec) = A

• Eigenvector centrality for undirected networks 

Cv = �maxv



• Consider    centrality matrices        for    time layers

• We place them as diagonal blocks in a matrix and couple them together 
with inter-layer “identity” edges of weight 

coupled time layers

SUPRA-CENTRALITY MATRIX

• We introduce “supra-centrality” matrices as a temporal generalization of centrality

C(t)



JOINT, MARGINAL AND  
CONDITIONAL CENTRALITY

• We introduce a vocabulary for centrality motivated by statistics
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• Conditional centrality reveals how the importances of nodes change with time

CENTRALITY TRAJECTORIES



• We analyze the strong coupling limit             which yields layer aggregation

• We conduct a singular perturbation analysis for

STRONG-COUPLING LIMIT:
TIME-AVERAGED CENTRALITY

v(✏) = v0 + ✏v1 + ✏2v2 + . . .

�max = �0 + ✏�1 + ✏2�2 + . . .



• This yields two layer-aggregated centralities:

• Time-averaged centrality         , which describe the conditional centralities 
when they become constant across the layers

• First-order mover scores         , which measure the extent of centrality 
change across the layers

STRONG-COUPLING LIMIT:
TIME-AVERAGED CENTRALITY

v(✏) = v0 + ✏v1 + ✏2v2 + . . .

�max = �0 + ✏�1 + ✏2�2 + . . .

• We analyze the strong coupling limit             which yields layer aggregation

• We conduct a singular perturbation analysis for

{mi}



CASE STUDY 1:         

• We analyzed data from the Internet 
Movie Database (IMDb) to study the 
golden age of hollywood, 1920–1960, 

• We consider 55 actors (26 male and 29 
female) during the time period 1909–
2009

• An edge from i to j in layer t indicates the 
number of movies in which i and j co-star 
and actor j is listed first in the movies 
billing order



CASE STUDY 1:         





CASE STUDY 1:         



• We plot their conditional centrality trajectories for a few values of the layer 
coupling strength 

• The top actor, Clark Gable vs Groucho Marx, is too close to call using only 
time-average centrality

CASE STUDY 1:         

• We find that Groucho was initially top ranked, but Clark had a longer career

✏



• Network encodes 
graduation and hiring of 
math PhDs using data 
from the Mathematical 
Genealogy Project

• Edges reflect the number 
of PhD students that 
graduate from university i 
and then later teach at 
university j

• Color indicates time-
averaged centrality

CASE STUDY 2: FLOW OF MATH PHDS



OUTLIER MATH DEPARTMENTS

• Outliers have unusually large first-order-mover scores versus their  
time-averaged centrality (Georgia Tech and CUNY)
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• Our singular perturbation analysis for                                  reveals that
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• Community detection is akin to data 
clustering and aims to identify 
groups of well-connected nodes

• We now consider layer aggregation and its affects on community detection

• Survey of applications:  
S Shai, N Stanley, C Granell, D Taylor & 
PJ Mucha (2017) arXiv:1705.02305



DETECTABILITY OF COMMUNITIES IN  
PREPROCESSED TEMPORAL NETWORKS

• What are the effects of layer-aggregation on the detectability of 
communities?

• Can we optimally preprocess network data to maximally enhance 
community detection?



DETECTABILITY OF COMMUNITIES IN  
PREPROCESSED TEMPORAL NETWORKS

• Can we optimally preprocess network data to maximally enhance 
community detection?

• We approach these questions using random-matrix theory to 
analyze fundamental limits for community detection.

• What are the effects of layer-aggregation on the detectability of 
communities?



2-COMMUNITY NETWORK MODEL

pin > pout
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ci = cj
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if

• L network layers are drawn from one stochastic block model (SBM)
• Create edge       with probability

pin
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community A

community B



• It is helpful to study the variables
• mean edge probability:
• probability difference:

2-COMMUNITY NETWORK MODEL

pin > pout

Pij =

⇢
pin
pout

ci = cj
ci 6= cj

if
if

• L network layers are drawn from one stochastic block model (SBM)
• Create edge       with probability

⇢ = (pin + pout)/2

� = pin � pout

pin

pout

(i, j)

community A

community B



• It is helpful to study the variables
• mean edge probability:
• probability difference:

2-COMMUNITY NETWORK MODEL

pin > pout

Pij =

⇢
pin
pout

ci = cj
ci 6= cj

if
if

• L network layers are drawn from one stochastic block model (SBM)
• Create edge       with probability

⇢ = (pin + pout)/2

� = pin � pout

undetectable detectable

� �small large

pin

pout

• Detectability phase transition at  

(i, j)

community A

community B
�⇤ > 0



ANALYSIS WITH RANDOM-MATRIX THEORY

• We develop random matrix theory for the modularity matrix based on 
Nadakuditi & Newman, PRL 2012 and T Peixoto, PRL 2013

• We analyze the distribution of eigenvalues for the modularity matrix in the 
large N limit
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bulk eigenvalues
isolated eigenvalue 
whose eigenvector 
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structure



• As the gap disappears, the dominant eigenvector    becomes a 
random vector

v

ANALYSIS WITH RANDOM-MATRIX THEORY

• We develop random matrix theory for the modularity matrix based on 
Nadakuditi & Newman, PRL 2012 and T Peixoto, PRL 2013

• We analyze the distribution of eigenvalues for the modularity matrix in the 
large N limit
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DETECTABILITY LIMIT VANISHES WITH
INCREASING NUMBER OF LAYERS

Detectability equation:

Detectability limit vanishes as

�2 =
p
4NL⇢(1� ⇢)

�1 = NL�/2 + 2⇢(1� ⇢)/�

�⇤ =
p

⇢(1� ⇢)/NL

O(1/
p

L)



CONCLUSION
• Part 1:  layer-coupling and centrality

• While myriad real-world networks are multilayer, network analyses have 
traditionally been developed for single-layer networks

• We extended eigenvector centrality to temporal networks by coupling together 
centrality matrices

• We introduced concepts of joint, marginal and conditional centrality, allowing us 
to study centrality “trajectories” across time

• The strong coupling limit recovers layer aggregation as a weighted sum of the 
layers adjacency matrices



CONCLUSION
• Part 1:  layer-coupling and centrality

• While myriad real-world networks are multilayer, network analyses have 
traditionally been developed for single-layer networks

• We extended eigenvector centrality to temporal networks by coupling together 
centrality matrices

• We introduced concepts of joint, marginal and conditional centrality, allowing us 
to study centrality “trajectories” across time

• The strong coupling limit recovers layer aggregation as a weighted sum of the 
layers adjacency matrices

• Part 2: layer aggregation and community detection

• Aggregating together similar layers can enhance the detection of structural 
patterns such as communities

• We are developing random-matrix theory to study this phenomenon, which 
includes studying fundamental limits for community detection 

• We obtain                 as the scaling behavior for how the detectability limit 
vanishes with increasing number of layers O(1/

p
NL)

O(1/
p

L)
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