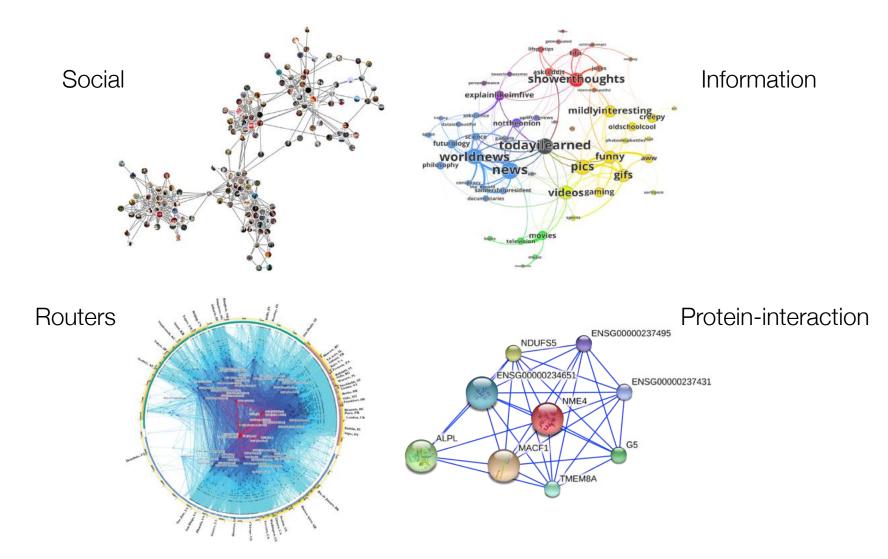
Dense subgraphs with hierarchical relations: Models, Algorithms, Applications

A. Erdem Sariyuce

University at Buffalo

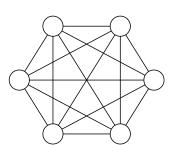
http://sariyuce.com

Graphs all around



Dense subgraph discovery

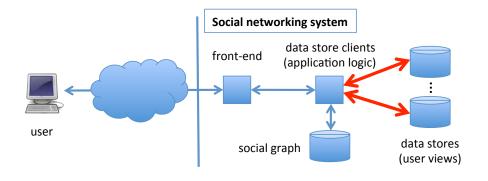
- Measure of connectedness on edges
 - # edge / # all possible
 - |E| / (|V| choose 2), 1.0 for a clique

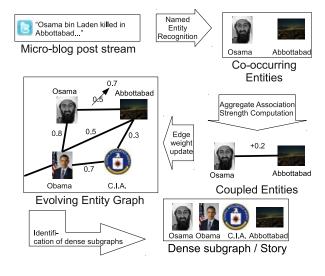


- Globally sparse, locally dense
 - $-|E| << |V|^2$, but vertex neighborhoods are dense
 - High clustering coefficients density of neighbor graph
- Many nontrivial subgraphs with high density
 - And relations among them
- Not clustering: Absolute vs. relative density

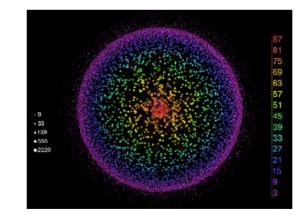
Dense subgraphs matter in many applications

- Significance or anomaly
 - Spam link farms [Gibson et al., '05]
 - Real-time stories [Angel et al., '12]

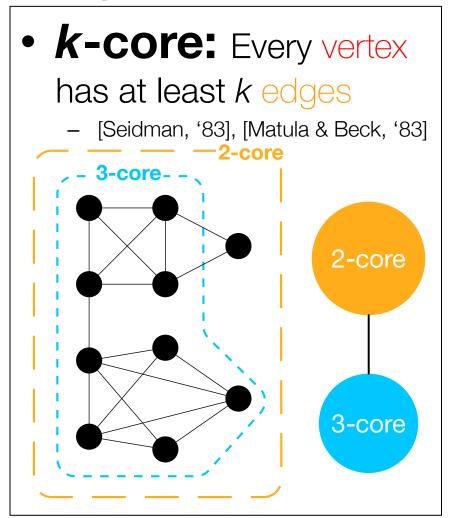


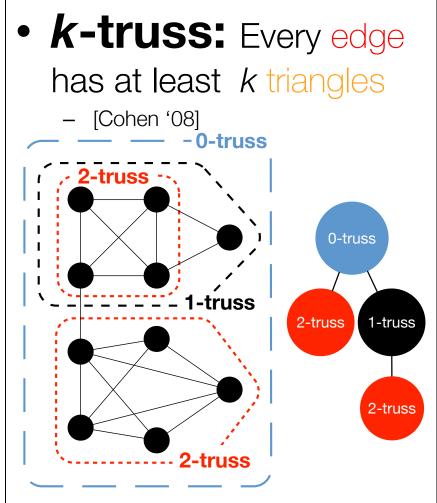


- Computation & summarization
 - System throughputs [Gionis et al., '13]
 - Graph visualization [Alvarez et al., '06]



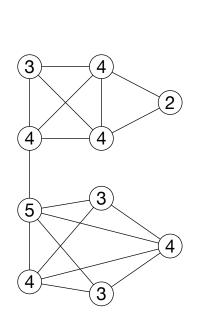
Two effective algorithms to find dense subgraphs with hierarchical relations

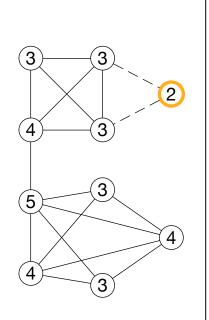


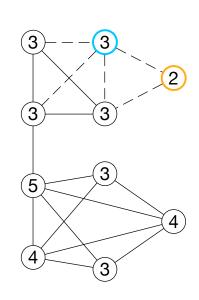


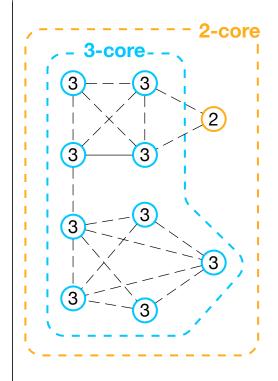
Peeling algorithm finds the k-cores & k-trusses

- Core numbers of vertices. O(|E|) [Matula & Beck, '83]
- Truss numbers of edges. $O(|\triangle|)$ [Cohen '08]



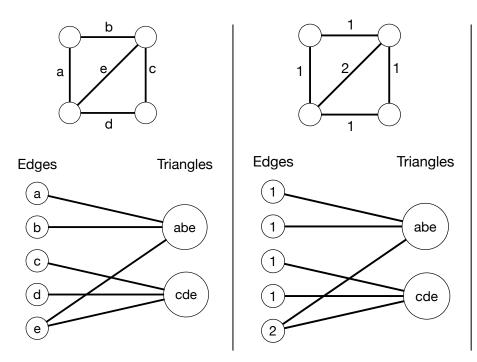


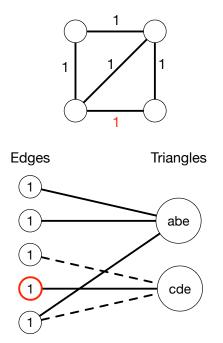


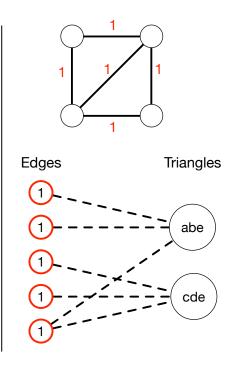


Observation: k-truss IS just k-core on the edge-triangle graph!

- Edge and triangle relations
 - Not a binary relation three edges in a triangle
- Build a bipartite graph!







Why limit to triangles?

- Small cliques in larger cliques
 - 1-cliques in 2-cliques (vertices and edges)
 - 2-cliques in 3-cliques (edges and triangles)
- Generalize for any clique
 - -r-cliques in s-cliques (r < s)
- Convert to bipartite
 - r-cliques → left vertices
 - s-cliques → right vertices
 - Connect if right contains left

Nucleus decomposition generalizes k-core and k-truss algorithms

- Say R is r-clique, S is s-clique (r < s)
- k-(r, s) nucleus: Every R takes part in at least k number of S
 - Each R_i, R_i pair is connected by series of Ss

$$r=1, s=2$$

r=1, *s*=2 *k*-core

 $d(v) \ge k$ Simply connected

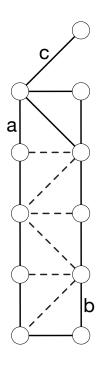
$$r=2, s=3$$

k-truss

(stronger conn.)

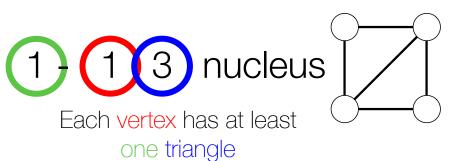
$$\triangle$$
(e) \geq k

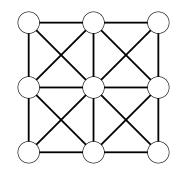
Triangle connected

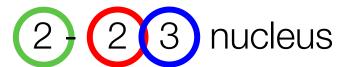


Sariyuce, Seshadhri, Pinar, Catalyurek, Int. WWW Conf., 2015 (Best paper runner-up)

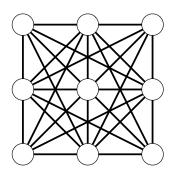
Some nucleus examples







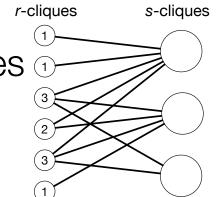
Each edge has at least two triangles

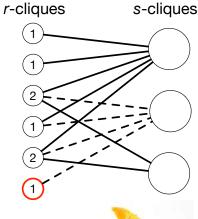


Each edge has at least two 4-cliques

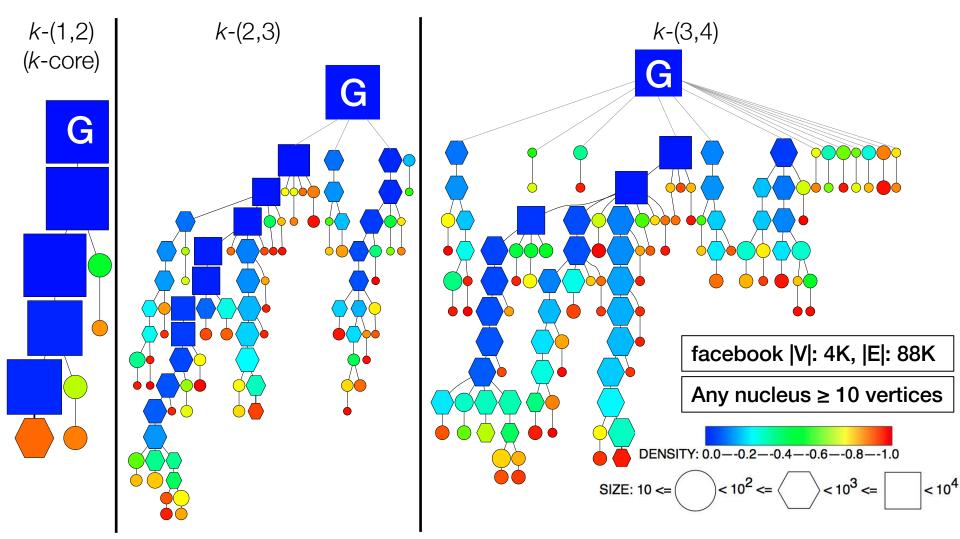
Peeling works for nucleus decomposition as well!

- On the bipartite graph
 - For vertex set of r-cliques
 - Degree based
- Sounds expensive?
 - Yes, in theory
 - -r=3, s=4: $O(\sum_{v} cc(v)d(v)^3)$
 - But practical
 - Clustering coefficients decay with the degree in many real-world networks
 - Can be scaled to tens of millions of edges





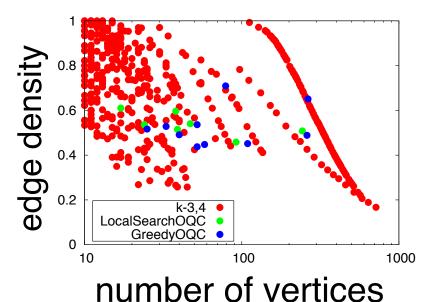
Comparing hierarchies for different nucleus decompositions



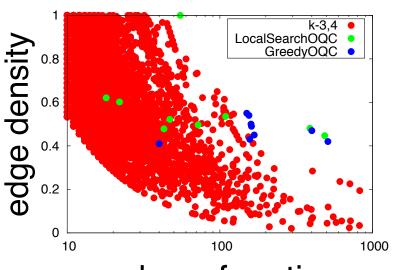
Comparison with the state-of-the-art

- Optimal quasi-cliques [Tsourakakis et al., 2013]
 - Almost-cliques, finds only one dense structure
- We find all subgraphs & relations -- k-(3,4)

wikipedia-200611 |V|: 3.1M |E|: 39.3M

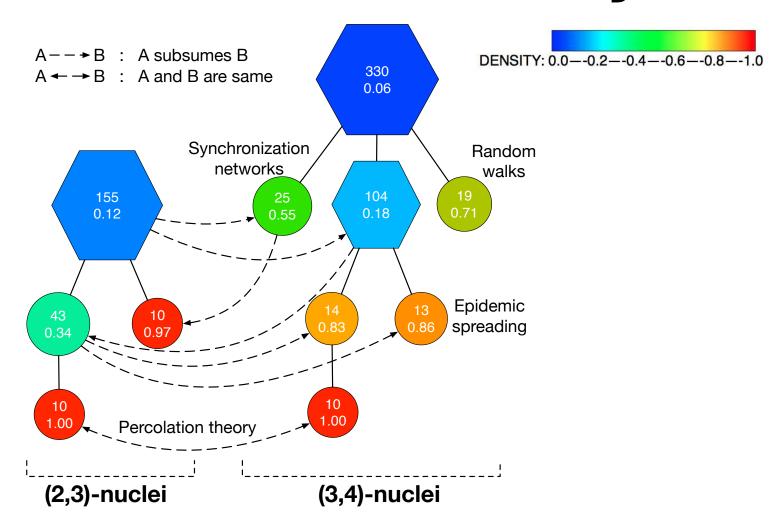


soc-sign-epinions |V|: 131K |E|: 841K



number of vertices

APS Citation Network Analysis

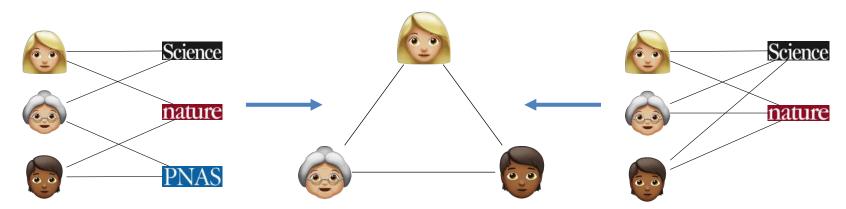


Sariyuce, Seshadhri, Pinar, Catalyurek, TWEB 11(3), 16 (July 2017)

What about other graph types? Bipartite networks (One-to-many relations)?

- Author-paper, word-document, actor-movie...
 - Bipartite in nature, no triangle
- Usually project bipartite to unipartite
 - Author-paper → Co-authorship

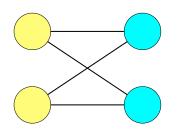
	E	$ E_p $	
	58.6K	95.1K	
	30.7K	84.8K	
	440.2K	44.5M	
•	96.7K	336.5K	
•	5.6M	157.5M	
•	92.8K	2.0M	

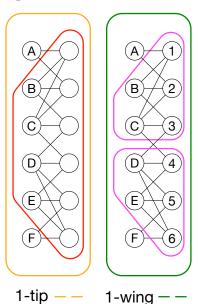


- |E| explodes! Information lost!
- Find dense regions directly on bipartite graph!

What is the "triangle" in a bipartite network?

- Focus on the smallest non-trivial structure
 - (2, 2)-biclique, or butterfly





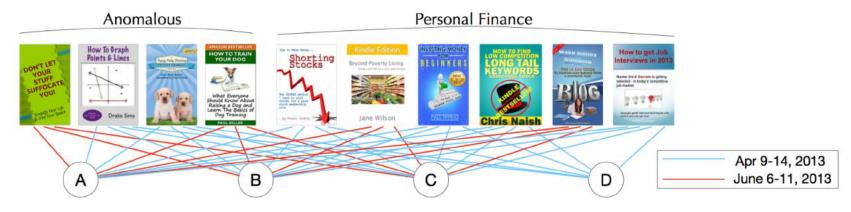
2-wing — —

3-tip — —

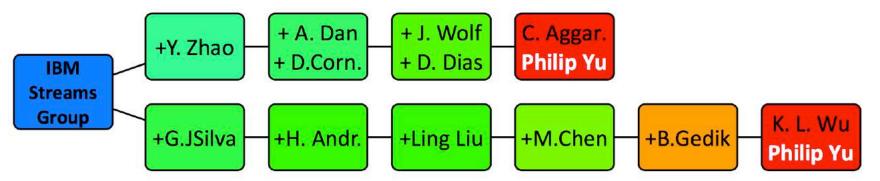
- Vertex-butterfly, edge-butterfly relations
 - k-tip: Each vertex has $\geq k$ butterflies
 - k-wing: Each edge has ≥ k butterflies

Applications

Amazon Kindle dataset (users rate books)

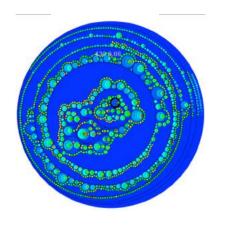


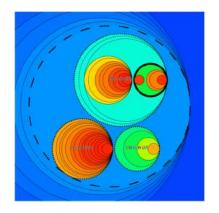
Author-paper relations at top DB conferences



Conclusion

- Introduced the nucleus decomposition
 - Generalizes k-core and k-truss; and extend
- Network analysis by the nucleus hierarchy
 - Fast tools
 - Visualization





- Considering bipartite real-world graphs
 - Butterfly is the 'triangle' in bipartite graphs

Thanks!

erdem@buffalo.edu

http://sariyuce.com