

Eric Pitman Summer Workshop in
Computational Science

1. The R command line;
using variables

Jeanette Sperhac

VIDIA Dashboard: RStudio Tool

R Practical Matters

● R is case sensitive (R != r)
● Command line prompt is >
● To run R code: use command line, or save script and

 source(“script_name”)
● To separate commands, use ; or a newline
● The # character marks a non-executed comment
● To display help files:

 ?<command-name> or ??<command-name>

R as a Calculator

> 2 + 3 * 5 # Order of operations

> (2 + 3)*5 # Spaces are optional

On the command line...

R Output

 > 2 + 3 * 5

 [1] 17

Q: What's that [1] about?

A: R numbers outputs with [n]

Try this in the command line:
> 1:500

About Comments

> 2 + 3 * 5 # Order of operations

A comment is:

Text useful to humans, ignored by computer

Helps you understand what code does, or why

Denoted by a pound sign in R

Use them!!

R as a Calculator

Try these in your RStudio console:

> 4^2 # 4 raised to the second power

> 3/2 # Division

> sqrt(16) # Square root

> 3 - 7 # Subtraction

> log(10) # Natural logarithm

 # with base e=2.718282

Variables: Save It

How do we keep a value for later use?

Variable assignment!

> y = 2 + 3 * 5 # Do some arithmetic

> y # R stores this value as y

[1] 17

y can be found under Values in the Workspace
window

Variable Assignment

2 + 3 * 5

y

17

> y = 2 + 3 * 5 # R stores this value as y

y can be found under Values in the
Workspace window

Naming Variables in R

Variable names may consist of letters, numbers and the dot or
underline characters. It should start with a letter. Keep it unique!

 Good:

 > y = 2

 > try.this = 33.3

 > oneMoreTime = “woohoo”

 Bad:

 > 2y = 2

 > _z = 33.3

 > function = “woohoo”

 * function is a reserved word in R

Assign Variables

Try these in your RStudio console:

make variable assignments

> abc = 3

> Abc = log(2.8) * pi

> ABC = "fiddle"

Now, check Workspace: Values

Variables: Save It

Alternate R syntax for assignment

> y = 2 + 3 * 5

> z <- 2 + 3 * 5 # Same thing as y

Variable assignment: Use = or <-

R's Atomic Data Types

Let's take a look at some available data types:

● Numeric (includes integer)
3.14, 1, 2600

● Character (string)
“hey, I'm a string”

● Logical
TRUE or FALSE

● NA
No value known

Numeric Data

Find the type of a variable using class()

> class(8) # numeric type
[1] "numeric"

> class(6.02e+24) # numeric type
[1] "numeric"

> class(pi) # numeric type (predefined in R)
[1] "numeric"

Character and Logical Data

Find the type of a variable using class()

> class("phooey") # character type:
[1] "character" # notice the quotes

> class(TRUE) # logical type: no quotes
[1] "logical"

> class(NA) # NA (no quotes) means “no value known”
[1] "logical"

RStudio Test Flight

To whet your appetite for RStudio, let's try:
● Using the editor
● Entering data
● Making a plot in R
● Sourcing a file

On your workstation:
● Sign in to vidia.ccr.buffalo.edu
● Start the RStudio tool
● Create/Access Project from GitHub

 git://github.com/ubccr/hsws.git

● Files pane: click examples, then mm, then:
mm-single-example.R

The M&M Exercise

The M&M Exercise

Inside mm-single-example.R:

– Change the M&M color counts in the mv variable

– Edit ptitle, if you want

EDIT HERE: ...

mvl = c("red", "blue", "green", "yellow", "orange", "brown")

mv = c(4, 5, 3, 2, 1, 3)

ptitle = "M&Ms in example package"

The M&M Exercise

Inside mm-single-example.R:
– Save the file to your home directory (File:Save)

– Source the file (Source button)

The M&M Exercise

Questions:
– What have you plotted?

– What outputs does R provide in the console?

– What variables were created?

– What else happens inside this source file?

OK, now you can eat...

The M&M Exercise

● Distribution of colors across many samples
● Increase the number of samples—reveal the

underlying distributions
● Barplot

– Counts of colors in one sample

● Histogram
– Instances of color counts across all samples

Using Logical
Operators

1==2 # equivalence test: double equals

9 != 19 # “not equal” test

3 < 204 # less-than test

18 > 44 # greater-than test

“tree”==89 # comparing mixed data types

What should the results of these tests be?

A Logical Test

Compare R syntax for assignment

> y = 2 + 3 * 5

> z <- 2 + 3 * 5 # Same thing as y

> y==z # Here's the test...

[1] TRUE

Logical Data

A logical value is often created from a
comparison between variables.

u & v # Are u AND v both true?

u | v # Is at least one of u OR v true?

!u # “NOT u” flips the logical value of
 # variable u

Learning about Object x

R stores everything, variables included, in
Objects.

Object x

> x <- 2.71

> print(x) # print the value of the object

[1] 2.71

> class(x) # what data type or object type?

[1] "numeric"

> is.na(x) # is.na() tests whether a value has a
 # known value

[1] FALSE

Interlude

Complete variable/atomic datatype exercises.

Open in the RStudio source editor:
<workshop>/exercises/exercises-variables-atomic-datatypes.R

Interlude++

Further information about R:

An R tutorial:

– http://jaredknowles.com/s/Tutorial1_Intro.html

The Vocabulary of R

– http://adv-r.had.co.nz/Vocabulary.html

