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Simple Exercise

e Suppose you are taking “Statistics” this semester, what are
your chances of getting ‘A™? P(Stat = A) = ...
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Simple Exercise

e Suppose you are taking “Statistics” this semester, what are
your chances of getting ‘A™? P(Stat = A) = ...

e Which factors are important to answer this question?
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Simple Exercise

How much effort you will put into the course, Eff

Your grade in math, Math

Your overall workload, Work

How much you like science Sci
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Simple Exercise

e Intuitively, we could plot dependencies between our

variables as follows:
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Simple Exercise

e Intuitively, we could plot dependencies between our

variables as follows:

Sci Like Dislike
0.75 0.25
Sci\Math A B C

Like 050 0.25 0.25

Dislike 0.10 0.40 0.0

Math Eff\Stat A B C Fail
A Low 05 05 0 0
A High 085 015 0 0
B Low 0.10 065 025 0
B High 0.15 070 0.15 0

C Low 0 025 0.35 0.40

C High 0.01 039 040 0.20
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Like Low 0.15
Like High 0.25
Dislike Low 0.50
Dislike High 0.40

0.85
0.75
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0.60
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Simple Exercise

e \We can describe our joint probability as:

P(Sci, Work, Math, Eff, Stat) =
P(Sci)P(Work)P(Math|Sci)P(Eff|Sci, Work)P(Stat|Math, Eff)
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What Are Bayesian Networks?

e Class of Probabilistic Graphical Models

e Efficient and intuitive way to encode
conditional independencies

e Formally: (G,P) where G = (X, E) is a DAG of conditional
independencies and P is a probability over X
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Bayesian Networks Primer

e Suppose that X = {X1,..., Xy}

e From the chain rule of probability:

P(X1,...,Xs) = P(X1)P(Xo|X1)P(X3|X2, X1) ... P(Xn| X1, - -

e BN (G = (X,E),P) provides much more efficient
factorization:

n

P(X1,... %) = [ POSIIPa(X
i=1

where Pa(X;) are parents of X;in G
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Power of Bayesian Networks

What is P(Survival = yes|Stage = 0)?
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Power of Bayesian Networks

Other
Condition

Which treatment to choose?

argmax P(Survival = yes|Evidence, Treatment = t)
t
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Power of Bayesian Networks

Which probabilities are needed to answer queries of interest?
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Real Networks Are Complicated
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Important Questions

e Where all these probabilities come from?

e How do we build our network?

Jaroslaw Yaric’ Zola Bayesian Networks and Medical Data

10/22



-(é University at Buffalo The State University of New York

Bayesian Networks Workflow

structure learnin, inference
Large Data g > Network Structure —— > Predictions

/

ter I j
paramerer ©aming ., conditional Probabilities
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Where Probabilities Come From?

Data!
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Structure Learning

e Structure is a graph that best explains our data
Score(G) = P(G|D)

P(DIG)P(G)

Score(G) = PD)

e We want to find a graph with the highest Score
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Structure Learning

e How many graphs (DAGs) with n variables?

Jaroslaw Yaric’ Zola Bayesian Networks and Medical Data 14/22



-(é University at Buffalo The State University of New York

Structure Learning

e How many graphs (DAGs) with n variables?
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Structure Learning

e How many graphs (DAGs) with n variables?
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Structure Learning

e How many graphs (DAGs) with n variables?
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Structure Learning

e How many graphs (DAGs) with n variables?
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Structure Learning

e How many graphs (DAGs) with n variables?
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Structure Learning

e Search space grows super-exponentially, and
our problem is NP-hard

e |f we can decompose Score as

Score(G) = iS(X,’, Pa(X;))
i=1

then:

@ \\e can use DAG to order our variables
@® \\Ve can disregard ordering of parents
® This reduces the search space to 2"

e We still need a better approach!
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Modern Computers Are Parallel
e 1993: Connection Machine (CM-5), $50,000,000
1024 cores, 130 Gflop/s

e 2015: Intel Corei7, $1,000-$2,000
4-8 cores, 80-160 Gflop/s
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Modern Computers Are Parallel

e 1993: Connection Machine (CM-5), $50,000,000
1024 cores, 130 Gflop/s

e 2015: Intel Corei7, $1,000-$2,000
4-8 cores, 80-160 Gflop/s
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The Joy of Parallel Computing
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Parallel Structure Learning

e We consider all subsets A C {X1,...,X,} in increasing size
e For A we find best parents of X; from A — {X;}

Jaroslaw Yaric’ Zola Bayesian Networks and Medical Data

18/22



-(é University at Buffalo The State University of New York

Parallel Structure Learning

e Data with m = 500 observations
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Applications of Bayesian Networks

Clinical decision/support systems

Gene networks and genes epistasis

Recommender systems

Diagnostic systems
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Applications of Bayesian Networks

e Clinical decision/support systems

Gene networks and genes epistasis

Recommender systems
Diagnostic systems IRRITATIONIIEVEL
And Microsoft clippy... ,{)\
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Things to Remember

e By learning from data we can make predictions about
most likely outcomes

e Bayesian networks help to organize and use
joint probabilities

e Parallel computing helps to tackle
intractable problems
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Questions?

http:/www.score-group.org/
http:/www.jzola.org/
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