

# Using Past to Predict Future – Bayesian Networks and Medical Data

Jaroslaw 'Jaric' Zola

jzola@buffalo.edu · http://www.score-group.org/

SCoRe - Scalable Computing Research Group

Department of Computer Science and Engineering Department of Biomedical Informatics University at Buffalo, SUNY



## Simple Exercise

Suppose you are taking "Statistics" this semester, what are your chances of getting "A"? P(Stat = A) = ...



Simple Exercise

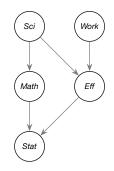
- Suppose you are taking "Statistics" this semester, what are your chances of getting "A"? P(Stat = A) = ...
- Which factors are important to answer this question?

# Simple Exercise

- How much effort you will put into the course, Eff
- Your grade in math, Math
- Your overall workload, Work
- How much you like science Sci

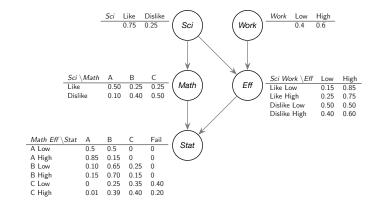
# Simple Exercise

• Intuitively, we could plot dependencies between our variables as follows:



# Simple Exercise

• Intuitively, we could plot dependencies between our variables as follows:





# Simple Exercise

• We can describe our joint probability as:

P(Sci, Work, Math, Eff, Stat) = P(Sci)P(Work)P(Math|Sci)P(Eff|Sci, Work)P(Stat|Math, Eff)



## What Are Bayesian Networks?

- Class of Probabilistic Graphical Models
- Efficient and intuitive way to encode conditional independencies
- Formally: (G, P) where  $G = (\mathcal{X}, E)$  is a DAG of conditional independencies and P is a probability over  $\mathcal{X}$

#### **Bayesian Networks Primer**

- Suppose that  $\mathcal{X} = \{X_1, \dots, X_n\}$
- From the chain rule of probability:

 $P(X_1,...,X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2,X_1)...P(X_n|X_{n-1},...,X_1)$ 

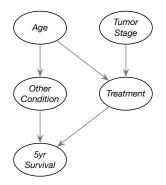
• BN ( $G = (\mathcal{X}, E), P$ ) provides much more efficient factorization:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i|Pa(X_i))$$

where  $Pa(X_i)$  are parents of  $X_i$  in G



Power of Bayesian Networks

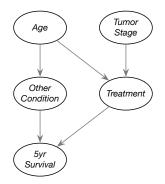


What is P(Survival = yes|Stage = 0)?

Bayesian Networks and Medical Data



#### Power of Bayesian Networks



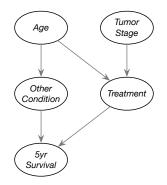
#### Which treatment to choose?

$$\underset{t}{\operatorname{argmax}} P(Survival = yes | Evidence, Treatment = t)$$

Bayesian Networks and Medical Data



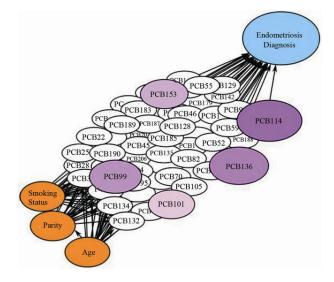
Power of Bayesian Networks



Which probabilities are needed to answer queries of interest?



#### Real Networks Are Complicated

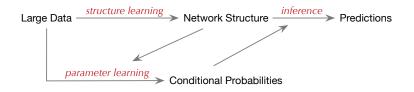




#### Important Questions

- Where all these probabilities come from?
- How do we build our network?

# **Bayesian Networks Workflow**





#### Where Probabilities Come From?

Data!



## Structure Learning

Structure is a graph that best explains our data
Score(G) = P(G|D)

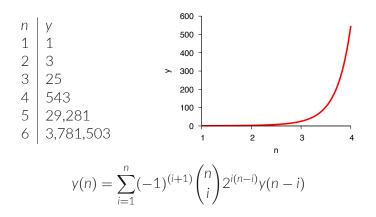
$$Score(G) = \frac{P(D|G)P(G)}{P(D)}$$

• We want to find a graph with the highest Score

# Structure Learning

#### Structure Learning

• How many graphs (DAGs) with *n* variables?



Bayesian Networks and Medical Data

### Structure Learning

- Search space grows super-exponentially, and our problem is *NP*-hard
- If we can decompose Score as

$$Score(G) = \sum_{i=1}^{n} s(X_i, Pa(X_i))$$

then:

- We can use DAG to order our variables
- We can disregard ordering of parents
- **3** This reduces the search space to  $2^n$
- We still need a better approach!

#### Modern Computers Are Parallel

- 1993: Connection Machine (CM-5), \$50,000,000 1024 cores, 130 Gflop/s
- 2015: Intel Core i7, \$1,000-\$2,000 4-8 cores, 80-160 Gflop/s



#### Modern Computers Are Parallel

- 1993: Connection Machine (CM-5), \$50,000,000 1024 cores, 130 Gflop/s
- 2015: Intel Core i7, \$1,000-\$2,000 4-8 cores, 80-160 Gflop/s



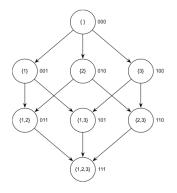


#### The Joy of Parallel Computing



### Parallel Structure Learning

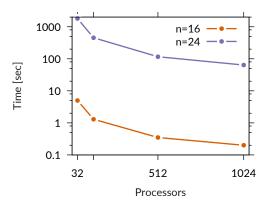
- We consider all subsets  $A \subseteq \{X_1, \dots, X_n\}$  in increasing size
- For A we find best parents of  $X_i$  from  $A \{X_i\}$





#### Parallel Structure Learning

• Data with m = 500 observations

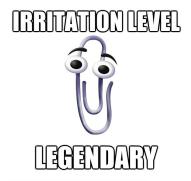


# Applications of Bayesian Networks

- Clinical decision/support systems
- Gene networks and genes epistasis
- Recommender systems
- Diagnostic systems

# Applications of Bayesian Networks

- Clinical decision/support systems
- Gene networks and genes epistasis
- Recommender systems
- Diagnostic systems
- And Microsoft clippy...



### Things to Remember

- By learning from data we can make predictions about most likely outcomes
- Bayesian networks help to organize and use joint probabilities
- Parallel computing helps to tackle intractable problems



#### **Questions**?

http://www.score-group.org/ http://www.jzola.org/