Eric Pitman Summer Workshop In
Computational Science

4. Writing Functions

CENTER FOR COMPUTATIONAL RESEARCH

% University at Buffalo
The State University of New York

Functions

A function generates an ‘
output (Y), given an
iInput (X).

Control Structures: If/else

 Make a logical test
* Perform operations based on the outcome

If (condition is true)

{

do something

}

Control Structures: If/else

age = 21,
if (age >=17) {
print(“You can drive!”);
} else if (age >= 16) {
print(“You are almost old enough to drive!”);
} else {

print(*You are not old enough to drive.”);

}

If/else Flowchart

if (age >=17)

yw

Print “You are old enough to drive!”

else if (age >= 16)

True False
Print “You are else
almost old
enough to drive!” \

Print “You are
too young to
drive.”

INPUT x
N/

Functions

FUNCTION f:

v
OUTPUT f(x)

* A function f takes an input, x, and
returns an output f(x).

|t's like a machine that converts an
Input Into an output.

INPUT x
N/

Functions

FUNCTION f:

v
OUTPUT f(x)

Function: a piece of code that can be called
again and again

To call it, specify:
e Function name
* Input values

It may return an output value

Functions in R

Name of function
Input parameter(s)

/

functionName = function(inputs) { <— Declaration

(start of function)

do something
return the result

}
N

End of function

Functions in R

Name of function
Input parameter(s)

/

toFahrenheit = function(celsius) { <«— Declaration

(start of function)

f = (9/5) * celsius + 32; # do something

return(f); # return the result

}\ Output value

End of function

Functions in R

toFahrenheit = function(celsius) {
f = (9/5) * celsius + 32; # do something

return(f); # return the result

}

Functions in R

celsius = ¢(20:25); # define input temperatures

toFahrenheit = function(celsius) {
f = (9/5) * celsius + 32; # perform the conversion
return(f);

}

call the function to convert temperatures to Fahrenheit:
toFahrenheit(celsius);
[1] 68.0 69.8 71.6 73.4 75.2 77.0

Control Structures for Iteration

* |n other languages we write loops
 But R Is a (functional, vector) language

* \We can operate on multiple data subsets with
one line of code!

apply()
by()

Control Structures: apply() Family

 What if we want to call a function over and
over?

 We can do this with a single line of R code!

* Use It on native R functions, or functions you
wrote yourself.

sapply(vector, function)

Control Structures: sapply()

> [is = c("a", "b", "c", "d")
> sapply(lis, class)

a b C d
"character" "character" "character" "character"

lis

a character
b character

D D apply(class) character
C character
d

Control Structures: by()

 What If we want to call a function several
times, on several groups of data?

 We can use a single line of R code:

by(data, group, function)

Control Structures: by()

by(data-to-operate-on,
data-to-group-by,
function)

data D D Eunction(gpl) resl
DMunction(ng) res? <

o O T 9

s and by() g

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa

Compute summaries and means of data, grouping by Species:

<workshop>/examples/by-example.R

Tips: Writing Functions
Use an editor window (not the command line) to
compose functions
Try out one line at a time, and test!
Start with the simplest case and build.

Comment your function to indicate:

- Input
tput |NP$TX
- ou (
- purpose |J
FUNCTION f:
)L

OUTPUT f(x)

Student Dataset)“7
Example g =

Remember our own dataset:

firstInitial, lastInitial, school, height, htUnit, age,
handed, gender

Let's write functions that:
» Convert heights to a uniform unit
 List initials of students that are old enough to drive

Interlude

Complete function exercises.

Open in the RStudio source editor:

<workshop>/exercises/exercises-functions.R

