

Eric Pitman Summer Workshop in
Computational Science

4. Writing Functions

Jeanette Sperhac

Functions

A function generates an
output (Y), given an
input (X).

Control Structures: if/else

● Make a logical test
● Perform operations based on the outcome

if (condition is true)
{
 # do something
}

Control Structures: if/else

age = 21;

if (age >= 17) {

print(“You can drive!”);

} else if (age >= 16) {

print(“You are almost old enough to drive!”);

} else {

print(“You are not old enough to drive.”);
}

if/else Flowchart

If ($age >=
17)

if (age >= 17)if (age >= 17)

else if (age >= 16)else if (age >= 16)Print “You are old enough to drive!”Print “You are old enough to drive!”

Print “You are
almost old
enough to drive!”

Print “You are
almost old
enough to drive!”

elseelse

Print “You are
too young to
drive.”

Print “You are
too young to
drive.”

True False

True False

Functions

● A function ƒ takes an input, x, and
returns an output ƒ(x).

● It's like a machine that converts an
input into an output.

Functions

Function: a piece of code that can be called
again and again

To call it, specify:
● Function name
● Input values

It may return an output value

Functions in R

functionName = function(inputs) {

 # do something

 # return the result

}

Declaration
(start of function)

Input parameter(s)

End of function

Name of function

Functions in R

toFahrenheit = function(celsius) {

 f = (9/5) * celsius + 32; # do something

 return(f); # return the result

}

Declaration
(start of function)

Input parameter(s)

Output value

End of function

Name of function

Functions in R

toFahrenheit = function(celsius) {

 f = (9/5) * celsius + 32; # do something

 return(f); # return the result

}

Functions in R

celsius = c(20:25); # define input temperatures

toFahrenheit = function(celsius) {

 f = (9/5) * celsius + 32; # perform the conversion

 return(f);

}

call the function to convert temperatures to Fahrenheit:

toFahrenheit(celsius);

[1] 68.0 69.8 71.6 73.4 75.2 77.0

Control Structures for Iteration

● In other languages we write loops
● But R is a (functional, vector) language
● We can operate on multiple data subsets with

one line of code!

apply()

by()

Control Structures: apply() Family

● What if we want to call a function over and
over?

● We can do this with a single line of R code!
● Use it on native R functions, or functions you

wrote yourself.

sapply(vector, function)

Control Structures: sapply()

> lis = c("a", "b", "c", "d")

> sapply(lis, class)

 a b c d

"character" "character" "character" "character"

lis

a

b

c

d

1

2

3

4

character
character
character
character

sapply(class)

Control Structures: by()

● What if we want to call a function several
times, on several groups of data?

● We can use a single line of R code:

by(data, group, function)

Control Structures: by()

 by(data-to-operate-on,

 data-to-group-by,

 function)

data

a

b

c

d …

1

2

3

4
function(gp2)

function(gp1)
res1

res2

iris and by()

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 5.1 3.5 1.4 0.2 setosa
 4.9 3.0 1.4 0.2 setosa
 4.7 3.2 1.3 0.2 setosa

<workshop>/examples/by-example.R

Compute summaries and means of data, grouping by Species:

Tips: Writing Functions
● Use an editor window (not the command line) to

compose functions
● Try out one line at a time, and test!
● Start with the simplest case and build.
● Comment your function to indicate:

– input

– output

– purpose

Student Dataset
Example

Remember our own dataset:

firstInitial, lastInitial, school, height, htUnit, age,
handed, gender

Let's write functions that:
● Convert heights to a uniform unit
● List initials of students that are old enough to drive

Interlude

Complete function exercises.

Open in the RStudio source editor:
<workshop>/exercises/exercises-functions.R

