The Future of Clinical Trials: How Will New Technologies Affect The Lives Of Participants?

CSW Workshop
Andy Coravos
@andreacoravos

CEO @ HumanFirst
Research Collaborator @ Harvard-MIT Center for Regulatory Science
Advisor @ Biohacking Village at DEFCON
Agenda

- Introduction to *The Playbook*
- A Vision for the Future
TOUR OF DUTY: Driving adoption

The Playbook: Digital Clinical Measures

Introducing the essential guide for successful remote monitoring across clinical research, clinical care, and public health.
A heart-beat is a heart-beat.
Sleep is sleep.

Digital clinical measures should:

- measure what matters most to patients, participants, professionals, and people.
- improve decision-making and make a difference.
- be defined and deployed similarly across clinical research, clinical care, and public health.

Source: Playbook team analysis
Benefits of digital clinical measures span research, care, and public health

To accelerate
clinical research

- Accelerate timelines and decrease cost (e.g., improve enrollment; increase study power; reduce sample sizes; speed time to determine intervention effects)
- Increase applicability of research results to broader populations
- Better inform go/no-go, regulatory, and reimbursement decisions
- Create more accessible, patient-centric research

To enhance
clinical care

- Improve the quality of information available to clinicians
- Improve care efficiency by moving from a 9-5 to a 24/7 model of care
- Create more accessible, patient-centric care

To power
public health

- Identify risk behaviors and risk factors
- Deliver timely interventions towards improved prevention
- Provide surveillance tools to recognize trends that influence health outcomes
- Better inform public health decision-making

Source: Playbook team analysis
Measuring health using digital sensing products offers a more holistic view of a person’s lived experience.

Visible Data Points (episodic)
- Data collected from traditional visits to hospitals, clinics, and sites

Invisible Data Points (continuous)
- Data collected during everyday life

Source: “Visible vs. Invisible Data” chart designed by Evidation Health, re-worked by Elektra Labs, Playbook team analysis
Build the foundation for digital clinical measures

Measures
What do you want to measure? Why?

Technologies
What are the right tools for the job?

Operations
What’s needed to deploy remotely and at scale?

Then customize by context of use...

...to accelerate *Clinical Research*.

...to enhance *Clinical Care*.

...to power *Public Health*.

Source: Playbook team analysis
Following **The Playbook** flow, you’ll avoid order related pain points

OPTIMAL FLOW

Measures
"Parkinson’s patients tell us that being able to walk independently is important, so we’re interested in measuring activity"

Technologies
"Using a smartwatch with accelerometer"

Operations
"Deploying 250 smartwatches across 15 countries"

COMMON ISSUE #1

Technologies
"I saw a cool Apple watch at a Conference"

Operations
"I ordered 250 of them! Shipping to our patients."

Measures
"2 years later reviewing results: ‘Discard data. No clinically relevant signals yet in Parkinson’s’"

COMMON ISSUE #2

Operations
"We’re deploying 250 smartwatches across 15 countries"

Technologies
"Patients are having Bluetooth connection issues; security incident. Compliance is down"

Measures
"We weren’t able to gather any usable data to construct a measure"

Source: Playbook team analysis
The Playbook builds a shared foundation for developing and deploying digital clinical measures using a step-wise approach:

Measures
1. Determine the **meaningful aspect of health** (MAH)
2. Identify the **concept of interest** (COI)
3. Define the **digital measure** (e.g., outcome/endpoint)

Technologies
Evaluate the **risk/benefit** to ensure safety and efficacy (e.g., validation (V3), utility & usability, security, data rights)

Operations
Plan for the **jobs to be done** during deployment (e.g., purchasing, distribution, monitoring, data analysis)

Opportunities for **collaboration across industry** include:
- Promoting a culture of **ethics** to ensure equity and justice
- Setting and developing **standards** for digital measures
- Developing **benchmarks** to compare digital measures (e.g., algorithms)
- Participating in the **policy and regulatory** process (e.g., public comments)

Source: Playbook team analysis
The Playbook builds a shared foundation for developing and deploying digital clinical measures using a step-wise approach:

Measures
1. Determine the **meaningful aspect of health** (MAH)
2. Identify the **concept of interest** (COI)
3. Define the **digital measure** (e.g., outcome/endpoint)

Technologies
Evaluate the **risk/benefit** to ensure safety and efficacy (e.g., complete validation (V3), utility & usability, security, data rights)

Operations
Plan for the **jobs to be done** during deployment (e.g., purchasing, distribution, monitoring, data analysis)

Opportunities for collaboration across industry include:

- Promoting a culture of **ethics** to ensure equality and justice
- Setting and developing **standards** for digital measures
- Developing **benchmarks** to compare digital measures (e.g., algorithms)
- Participating in the **policy and regulatory** process (e.g., public comments)

Source: Playbook team analysis
Begin by using the V3 framework to evaluate whether a digital measurement product is fit-for-purpose

Verification evaluates sample-level sensor outputs

Analytical validation evaluates the performance of an algorithm to convert sensor outputs into physiological metrics using a defined data capture protocol in a specific subject population

Clinical validation evaluates whether the physiological metric acceptably identifies, measures, or predicts a meaningful clinical, biological, physical, functional state, or experience, in the stated context of use and specified population

Source: https://www.nature.com/articles/s41746-020-0260-4, Playbook team analysis
The Playbook builds a shared foundation for developing and deploying digital clinical measures using a step-wise approach:

Measures
1. Determine the meaningful aspect of health (MAH)
2. Identify the concept of interest (COI)
3. Define the digital measure (e.g., outcome/endpoint)

Technologies
Evaluate the risk/benefit to ensure safety and efficacy (e.g., complete validation (V3), utility & usability, security, data rights)

Operations
Plan for the jobs to be done during deployment (e.g., purchasing, distribution, monitoring, data analysis)

Opportunities for collaboration across industry include:
- Promoting a culture of ethics to ensure equality and justice
- Setting and developing standards for digital measures
- Developing benchmarks to compare digital measures (e.g., algorithms)
- Participating in the policy and regulatory process (e.g., public comments)

Source: Playbook team analysis
An evaluation framework for *fit-for-purpose* digital measurement products

V3: Verification, Analytical Validation and Clinical Validation
Does the tool measure what it claims to measure? Is the measurement appropriate for the target population?

Security
Does the manufacturer build safety by design? Is there a Disclosure Policy? Software Bill of Materials?

Data Rights, Privacy, & Governance
Who has access to the data and when? Is the privacy policy publicly accessible?

Utility and Usability
How is the tool worn? Battery life? Available technical support?

Economic Feasibility
What's the net benefit versus price? Is cost a one-time or subscription model?

Source: https://www.nature.com/articles/s41746-020-0237-3, Playbook team analysis
The Playbook builds a shared foundation for developing and deploying digital clinical measures using a step-wise approach:

Measures
1. Determine the meaningful aspect of health (MAH)
2. Identify the concept of interest (COI)
3. Define the digital measure (e.g., outcome/endpoint)

Technologies
Evaluate the risk/benefit to ensure safety and efficacy (e.g., complete validation (V3), utility & usability, security, data rights)

Operations
Plan for the jobs to be done during deployment (e.g., purchasing, distribution, monitoring, data analysis)

Opportunities for collaboration across industry include:
- Promoting a culture of ethics to ensure equality and justice
- Setting and developing standards for digital measures
- Developing benchmarks to compare digital measures (e.g., algorithms)
- Participating in the policy and regulatory process (e.g., public comments)

Source: Playbook team analysis
Four stages of operational considerations when deploying remote monitoring

1. **Procure digital measurement products**
 - Acquire access to the needed technologies

2. **Prepare product-level ecosystem**
 - Authenticate, configure, and provision the tech
 - Integrate tech into broader platform
 - Prepare User Acceptance testing (UAT)
 - Train the staff

3. **Post Go-Live**
 - Monitor and serve the population
 - Provide alerts, software updates, maintenance
 - Tech support as needed

4. **Close Out**
 - ‘Close out’ processes look different across research, care and public health, though exist across all contexts

Source: Playbook team analysis
Digital measurement products are, by definition, connected to the internet. They are a type of *internet of (medical) things (IoMT)* product.

With IoMT, you almost never deploy and forget. These deployments are not static. Lessons from the world of traditional IoT can inform healthcare deployments.

The Playbook builds a shared foundation for developing and deploying digital clinical measures using a step-wise approach:

1. Determine the meaningful aspect of health (MAH)
2. Identify the concept of interest (COI)
3. Define the digital measure (e.g., outcome/endpoint)

Measures

Technologies

Evaluate the risk/benefit to ensure safety and efficacy (e.g., complete validation (V3), utility & usability, security, data rights)

Operations

Plan for the jobs to be done during deployment (e.g., purchasing, distribution, monitoring, data analysis)

Opportunities for collaboration across industry include:

- Promoting a culture of ethics to ensure equity and justice
- Setting and developing standards for digital measures
- Developing benchmarks to compare digital measures (e.g., algorithms)
- Participating in the policy and regulatory process (e.g., public comments)

Source: Playbook team analysis
How to *share* and *adapt* *The Playbook* in your work

The Playbook is licenced under:

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:

- **Share**—copy and redistribute the material in any medium or format
- **Adapt**—remix, transform, and build upon the material for any purpose, **even commercially**.

This license is acceptable for Free Cultural Works. The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

- **Attribution**—You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **ShareAlike**—If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original (CC-BY-SA 4.0). This license must be maintained on any derivative works, including a link back to the original Playbook.
- **Please include the following statement in your license**: “Source: Content derived from playbook.dimesociety.org”
A vision for the Future

The power of efficient, effective, & person-centered trials

- **Mary and David**
 - How stronger primary care relationships create a positive feedback loop of care outcomes.
- **Sarah**
 - How decentralized trials enable a broader group of individuals to participate.
- **Tim**
 - How connected sensors and real world data collection make it possible to run trials for rare diseases.

Mary and David

Cancer in the Latinx community

2021

- Trials are mostly done on white men
- Primary Care Providers don’t know about relevant trials
- Data is scattered and often not helpful

2030

- Trials are done across all populations
- Primary Care Providers are a central part of the clinical trial process
- Data is easily shared but controlled by the patient
Sarah
A BRCA2 “previvor”

<table>
<thead>
<tr>
<th>2021</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Most trials happen in a handful of major metros</td>
<td>● Trials can recruit from all over the world</td>
</tr>
<tr>
<td>● Data collection is done in a clinic or trial site</td>
<td>● Data is collected at home or via connected sensors</td>
</tr>
<tr>
<td>● Travel keeps many from participating in trials</td>
<td>● No travel means more participants in trials</td>
</tr>
</tbody>
</table>
Clinical trials for a rare kidney disease

2021

- Rare diseases are hard and not economically feasible to study
- Control arms can lead to unnecessary suffering
- Only large companies can absorb the cost

2030

- Anyone with a rare disease can participate in trials with remote sensors
- Synthetic control arms decrease the risk
- Smaller pharma companies can run trials