

CURRICULUM VITAE

Wu, Gang, Ph.D. Associate Professor

309 Furnas Hall,
Department of Chemical and Biological Engineering
University at Buffalo (UB), The State University of New York(SUNY)
New York 14260
Phone: 716-645-8618 (office); 803-338-4924 (cell)
E-mail: gangwu@buffalo.edu; Web: www.cbe.buffalo.edu/wu
Citizenship: U.S.A.

6235 Country Walk Ct.,
Clarence, NY 14032

EDUCATION

- 2004. Ph.D. Environmental (Chemical) Engineering, Harbin Institute of Technology, Harbin, China.
Thesis: “*Electrodeposited Co-Ni alloy composite coatings and their oxide films for high-temperature and electrocatalysis applications*”
- 1999, M. S. Applied Chemistry, Harbin Institute of Technology, Harbin, China.
- 1997, B.S. Electrochemical Engineering, Harbin Institute of Technology, Harbin, China.

EMPLOYMENT HISTORY

- Aug 2018- *Associate Professor*, University at Buffalo, SUNY, Buffalo, NY
- Aug 2014-Aug 2018, *Assistant Professor*, University at Buffalo, State University of New York (SUNY), Buffalo, NY
- May 2010-Aug 2014 *Scientist*, Los Alamos National Laboratory, Los Alamos, NM
- Jan 2008-May 2010, *Postdoc*, Los Alamos National Laboratory, Los Alamos, NM
- Feb 2006-Jan 2008, *Postdoc*, Chemical Engineering, University of South Carolina, Columbia, SC
- Jan 2004-Jan 2006, *Postdoc*, Department of Chemistry, Tsinghua University, Beijing, China
- 1999-2000, *Chemist*, Chugoku Marine Paints, Ltd. Guangzhou, China

RECOGNITION

- To date (August 2018), Dr. Wu has been granted *more than \$4.1 M* funding for UB from external federal agencies (DOE and NSF) since August 2014 when he joined UB. Those 14 projects (3 NSF and 11 DOE) focus on the development of advanced materials for electrochemical energy conversion and storages such as fuel cells, water splitting, batteries, and renewable fuel (NH₃).
- More than 180 scientific publications including *Science*, *Nature Catalysis*, *JACS*, *Angew Chem.*, *Adv. Mater.*, *Nano Lett.*, *ACS Nano*, etc.; >14,200 citations (*h* index: **58**; *i10* index: 139); 6 patents; 9 invited book chapters, 80 invited presentations;
- Dr. Wu is internationally recognized as one of leading researchers in the field of fuel cell catalysts, especially the platinum group metal (PGM)-free catalysts. It is evident by his *Science* paper published in 2011 (Wu G et al., *Science*, 332, 443, 2011; *cited > 2400 times to date in Google Scholar*), in which, for the first time, feasible catalysts from earth abundant elements

(C, N, Fe, or Co) were developed to catalyze the sluggish oxygen reduction reaction in low-temperature fuel cells. He has received more than \$4.1 M funding from NSF and U.S. DOE since 2014.

- More than 1000 times peer-review (~one time per day) for renowned journals in his field including *Nature*, *Nature Nanotechnology*, *Nature Commun.*, *Nature Energy*, *Nature Catalysis*; *JACS*, *Angew Chem.*, *Adv. Mater.*, *Nano Letters*, *ACS Nano*, *Nano Today*, *Energy Environ. Sci.*, *Adv. Energy Mater.*, *Adv. Func. Mater.*, *Small*, *Chem. Mater.*, *Nano Energy*, *Applied Energy*, *Nanoscale*, *J. Phys. Chem.*, *ACS Catal.*, *Carbon*, *ACS Appl. Mater. Interfaces*, *PCCP*, *Electrochem. Commun.*, *Electrochim Acta*, *J. Power Sources*, etc.

ACADEMIC AWARDS / SCHOLARSHIPS

- UB SEAS Early Career Researcher of the Year Award, 2017
- LANL LDRD-ER Award, 2014
- DOE, EERE office Outstanding Research Team Award, 2011
- LANL Early Career LDRD Award, 2010
- Fuel Cell Tech Team's 2009 highlights by USCAR, 2010
- Postdoctoral Science Research Award of China, 2004
- Petroleum Excellent Ph. D student Scholarship of China, 2003

HONORS

- At-large Member of Energy Technology Division, Electrochemical Society
- Advisor of a Ph.D. student (Mr. Shiva Gupta) received Travel Grant of 231st Electrochemical Society Meeting, New Orleans, IN, May 2017.
- Advisor of a senior undergraduate student (Miss. Jingyun Wang) received UB Excellence of Undergraduate Research and Scholarship, 2017.
- Selected as the most Favorite Professor in CBE by AIChE UB Student chapter, 2016.
- Advisor of a Ph.D. student (Mr. Shiva Gupta) received UB CBE Graduate Research Poster Award, 2015.
- Rank as Top 1% reviewer for ACS Catalysis, 2015
- The Science paper was ranked as Top 10 cited articles in Chemistry, 2013
- Selected as a Featured Scientist at LANL, 2011
- The Top 10 Cited Paper in the journal of Electrochemistry Communications, 2010

PROFESSIONAL MEMBERSHIPS AND ACTIVITIES:

- Member of American Institute of Chemical Engineering (AIChE), 2014-
- Member of Electrochemical Society (ECS), 2008-
- Member of American Chemical Society (ACS), 2008-
- Member of Materials Research Society (MRS), 2013-
- Board Committee Members of The International Academy of Electrochemical Energy Science
- Editorial Board of *ChemistrySelect* (a new journal from ChemPubSoc Europe, Wiley-VCH Publisher)
- Editorial Board Member for *Scientific Reports*, (Nature Publishing Group)
- Associate Editor of *RSC Advances* (a journal in the Royal Society of Chemistry, UK)

UNIVERSITY SERVICE:

- Panel reviewer for “IMPACT” proposals, 2016 and 2017.
- Panel reviewer for pre-selection of NSF Major Research Instrumentation Program (MRI) proposals at UB, 2016
- Reviewer for “RENEW” seed proposal

COLLEGE OR PROFESSIONAL SCHOOL SERVICE:

- Promotion Committee in the School of Engineering and Applied Science.
- Taught 4th Grade students (60, most of them are African American) about battery principles and fabrication during the Field trip of Westminster Elementary School (an event hosted by SEAS), January 2015.
- Participate “Science in Elementary” (SIE) program organized by the School of Engineering and Applied Science, 2015-2016.

DEPARTMENTAL SERVICE:

- Serving as a co-organizer for annual Graduate Research Symposium in Department of Chemical and Biological Engineering at UB, 2014-2016.

COMMUNITY SERVICE:

- National Science Foundation (NSF) Panel Reviewer for *Chemical Catalysis* program 2018.
- Leading organizer for symposia “*Fundamentals of Electrochemical Processes*” and “*Materials for Electrochemical Energy Storages*”; co-organizer for “*Electrocatalysis and Photocatalysis*” at American Institute of Chemical Engineering (AIChE) meeting, 2016, 2017, and 2018.
- Symposium co-organizer for “*Innovative Chemistry & Electrocatalysis for Low-Carbon Energy & Fuels: Discovery to Application*” at 257th American Chemical Society National Meeting, Orlando FL, March 2018.
- Co-organizer for symposia “*Advances and Perspectives on Modern Polymer Electrolyte Fuel Cells - Symposium in Honor of Shimshon Gottesfeld*”, “*Energy Conversion Systems Based on Nitrogen*”, and “*Materials for Low Temperature Electrochemical Systems*” at 235th Electrochemical Society (ECS) Meeting in Dallas , May 2019.
- Leading organizer for symposium “*Energy Conversion Systems Based on Nitrogen*” and co-organizers for symposia “*Materials for Low Temperature Electrochemical Systems*” and Society (ECS) Meeting in Seattle, May 2018.
- Leading organizer for Symposium “*Advanced Electrocatalysis for Clean Energy and Environment*” at 256th American Chemical Society National Meeting, Boston, MA, August 2018.
- Symposium co-organizer for “*Innovative Chemistry & Electrocatalysis for Low-Carbon Energy & Fuels: Discovery to Application*” at 254th American Chemical Society National Meeting, Washington DC, August 2017.

- Co-organizers for Symposia “*Electrocatalysis and Photoelectrocatalysis*”, and “*Composites for Environmental applications*”, at American Institute of Chemical Engineering (AIChE) meeting, 2015, 2016, and 2017.
- Co-organizer for symposium “*Multiple electron redox for battery technologies*” at 232nd Electrochemical Society Meeting (ECS), National Harbor, MD, October, 2017.
- Co-organizer for symposium “*Innovative Chemistry & Electrocatalysis for Low-Carbon Energy & Fuels: Discovery to Application*” at 254th American Chemical Society (ACS) National Meeting, August, Washington DC, 2017.
- Leading organizer for symposium “*Electrochemical energy materials*” at Northeastern Region Meeting for American Chemical Society (NERM), Binghamton, NY, 2016.
- Co-organizer and session chair for symposium “*Electrochemical energy production, conversion, and storage*” at 252nd American Chemical Society (ACS) National Meeting, Philadelphia, PA, August, 2016
- A session chair in *Electrochemical Society Meetings (ECS)*, 2015, 2016, and 2017.
- A co-organizer for International Electrochemical Science and Energy Conference, November, Nanning, Guangxi, China, 2015
- Serving as a peer reviewer for more than 1000 times (3-4 per week) for renowned journals in my fields including *Nature Nanotechnology*, *Nature Energy*, *JACS*, *Adv. Mater.*, *Nat. Commun*, *Nano Letters*, *ACS Nano*, *Nano Today*, *Energy Environ. Sci.*, *Adv. Energy Mater.*, *Adv. Func. Mater.*, *Chem. Mater.*, *Nano Energy*, *Small*, *J. Mater. Chem.*, *ChemSusChem*, *Nanoscale*, *J. Phys. Chem.*, *ACS Catal.*, *Carbon*, *ACS Appl. Mater. Interfaces*, *PCCP*, *Scientific Reports*, *Electrochim. Commun.*, *Electrochim Acta*, *J. Power Sources*, etc.
- Serving as proposal reviewer for *Natural Sciences and Engineering Research Council of Canada*, *Ontario Research Fund*, and *US-Israel Binational Science Foundation*.

COURSES TAUGHT:

- CE 433/534, Materials Science and Corrosion (*Spring*), 90-110 undergraduate/graduate students
- CE 422/522, Electrochemical Energy and Environment (*Fall*), 40-50 undergraduate/graduate students

GRADUATION OF Graduate Students (1):

Ph.D. student (1): Shiva Gupta, graduated on December, 2017.

M.S. students (6): Anix Casimir (*African American*); Haiyang Sheng; Kuo Ma; Surya Vamsi Devaguptapu, Min Wei, Zhi Qiao, Shuo Ding, Qing Lan, Benjamin Hultman

RESEARCH SUPERVISION:

- Postdocs (3): Qiang Tan; Lin Guo, and Xiaolin Zhao
- Ph.D. students (11): Shiva Gupta, Hanguang Zhang, Shreya Mukherjee (*female*), Mengjie Chen, Yanghua He (*female*), Zhi Qiao, Hao Zhang, Nadia Mohd Adli (*female*), Jiazhan Li (exchange student from Harbin Institute of Technology), Yi Li (exchange student from

Jiangnan University), and Huanhuan Wang (exchange student from Harbin Institute of Technology)

- M.S. students (14): Anix Casimir (*African American*), Kuo Ma, Haiyang Shen, Surya Vamsi Devaguptapu, Min Wei, Qing Lan, Shuo Ding, Hengyu Pan, Jingyun Wang (*female*), Jing Xue, Yingjie Chen, Kemakorn Ithisuphalap (*female*), Janel Abbott (*female*), Bryan Matthews
- Undergraduate researchers (14): Vyomika Sangwan (*female*), Obianuju Joy Obiano (*African American female*), Jing Xue, Hannah Osgood (*female*), Ana Santandreu (*female*), Emmanuel Nsengiyumva (*African American*), Hengyu Pan, William Kellogg, Daniel Matera, Qin Qin Xiao (*female*), Victor Pang, Anna Sviripa (*female*), Ziming Wang (*female*), Dylan Tiffany.
- Visiting scholar and students(6): Xiaojuan Wang (*Peking University*); Deyu Li (*Harbin Institute of Technology*); Xiaoxia Wang (*East China University of Science and Technology*); Leilei Lu (*Xi'an University of Technology*)

GRANT SUPPORT (3 NSF AND 11 DOE PROJECTS):

*To date (October 2017), secured more than **\$4.1 M** (\$4,112,445) for UB from external federal funding since August 2014 when joining UB. (All of funding listed below are for UB)*

PI of National Science Foundation (NSF) Awards

- “*Collaborative Research: Designing Nitrogen Coordinated Single Atomic Metal Electrocatalysts for Selective CO₂ Reduction to CO*”, National Science Foundation (NSF) - CBET-Catalysis-1804326, **\$200,000**, 2018-2021 (**PI at UB**)
- “*Engineering Nanocarbon Air Cathodes for High-Temperature Solid-State Li-O₂ Batteries*”, National Science Foundation (NSF) - CBET-Process & Reaction Engineering-1604392, **\$300,000**, 2016-2019 (**PI**); Co-PI: Edward Furlani
- “*Three-dimensional porous nanographene for highly efficient energy storage in Li-ion batteries*”, National Science Foundation (NSF) - CBET-Energy Sustainability-1511528, **\$300,000**, 2015-2019 (**PI**); Co-PIs: Chong Cheng and Johannes Hachmann

PI at UB from Department of Energy (DOE)

- “*Mesoporous Carbon based PGM-free Catalyst Cathodes*”, U. S. Department of Energy, Energy Efficiency Renewable Energy(EERE) Office, UB funding: **\$397,000**, 2019-2021 (PI at UB, led by Indiana University Purdue University)
- “*Stationary Direct Methanol Fuel Cells Using Pure Methanol*”, U. S. Department of Energy, Energy Efficiency Renewable Energy(EERE) Office, UB funding: **\$240,000**, 2019-2022 (PI at UB, led by *University of Kansas*)
- *High-Efficiency Reversible Alkaline Membrane Fuel Cells*, U. S. Department of Energy, Energy Efficiency Renewable Energy(EERE) Office, UB funding: **\$150,000**, 2019-2021 (PI at UB, led by *Giner*)
- “*Advanced PGM-free Cathode Engineering for High Power Density and Durability*”, U. S.

Department of Energy, Energy Efficiency Renewable Energy(EERE) Office, UB funding: **\$528,000**, 2017-2020 (PI at UB, led by *Carnegie Mellon University*)

- “*Durable Mn-based PGM-Free Catalysts for Polymer Electrolyte Membrane Fuel Cells*”, U. S. Department of Energy, Energy Efficiency Renewable Energy (EERE) Office, UB funding: **\$640,000**, 2017-2020 (PI at UB, led by *Giner Inc*)
- “*PGM-free OER Catalysts for PEM Electrolyzer*”, U. S. Department of Energy, Energy Efficiency Renewable Energy (EERE) Office, UB funding: **\$69,445** (Phase I), 2017-2018 (PI at UB, led by *Argonne National Laboratory*)
- “*Low Temperature NH₃ Cracking Membrane Reactor for H₂ Generation*” U. S. Department of Energy, Advanced Research Projects Agency-Energy (APRA-e) Office, UB funding: **\$285,000**, 2017-2020 (PI at UB, led by *Bettergy Corp*).
- “*High-Efficiency Ammonia Production from Water and Nitrogen*” U. S. Department of Energy, Advanced Research Projects Agency-Energy (APRA-e) Office, UB funding: **\$320,000**, 2017-2020 (PI at UB, led by *Giner Inc.*).
- “*Advanced Electrocatalysts through crystallographic enhancement*” U. S. Department of Energy, EERE, Fuel Cell Technologies Office, UB funding: **\$240, 000**, 2016-2019 (PI at UB, led by *Los Alamos National Laboratory*).
- “*Advanced catalysts and MEAs for reversible alkaline fuel cells*”, U. S. Department of Energy, EERE, Fuel Cell Technologies Office, UB funding: **\$280, 000**, 2015-2017 (PI at UB, led by *Giner Inc.*)
- “*Nanographene anode for highly efficient energy storage*”, Los Alamos National Laboratory, UB funding: **\$150, 000**, 2014-2017 (PI).

SUNY and UB internal funding

- “*Atomic-metal-rich carbon electrocatalysts for sustainable energy via CO₂ reduction*” **\$35,000**, RENEW Award (co-PI); PI: Luis Velarde (CHE), Michel Dupuis (CBE), 2017-2018.
- “*Si Nanocomposite Anode Coated with Lithium-Rich Ferroelectric Layer for High-Performance Lithium-Ion Batteries*”, **\$35, 000**, SMART Award (co-PI): PI Fei Yao at MDI. 2017-2018.
- “*Engineering graphene tubes as fuel cell supports*”, New York State Center of Excellence in Materials Informatics, **\$27, 000**, (PI), 2016-2017.
- “*3D Printing Flexible Solid-State High-Energy-Density Graphene Supercapacitors*”, UB SMART Award **\$34,500** (co-PI); PI: Chi Zhou from Industry System Engineering, 2016-2017.
- “*Engineering Photocatalysts for Clean H₂ Generation*” IMPACT Award, **\$33,000**, (PI); Co-PIs: Hao Zeng and Peihong Zhang, 2016-2017.
- “*Advanced carbon nanomaterials for supercapacitor energy storage*”, SUNY Network of Excellence in Materials and Advanced Manufacturing. **\$12,500**, (PI at UB, led by Stony Brook), 2015-2016.
- “*Solid-state graphene-based high-performance supercapacitors*”, New York State Center of Excellence in Materials Informatics, **\$25, 000**, 2015 (PI), 2014-2015.

PUBLICATIONS: (*More than 180 scientific publications in total with >13,900 citations [Google Scholar], h-index: 58 (i10 index: 137);*

Google Scholar profile: <http://scholar.google.com/citations?user=fRf374gAAAAJ&hl=en>

(I) Refereed journals

The Papers published after joining UB (August 2014-now)

Graduate students from my group are marked using **Bold**;

Undergraduate students are highlighted in **Green**;

Corresponding authors are marked using **Asterisk (*)**

As the leading author for the papers contributed from my own groups

(a) Accepted and published

1. **J. Li, M. Chen**, D. A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, **H.G. Zhang**, C. Lei, H. Xu, G. E. Sterbinsky, Z. Feng, D. Su, K. L. More, G.F. Wang, Z. Wang **G. Wu***, Atomically Dispersed Manganese Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells, *Nature Catalysis*, accepted, 2018.
2. K. Liu, **Z. Qiao** (co-first author), S. Hwang, Z. Liu, H. Zhang, D. Su, H. Xu, **G. Wu***, G. F. Wang*, Prediction and Validation of Mn and N Co-doped Carbon as Promising High-Performance Catalysts for Oxygen Reduction Reaction, *Applied Catalysis B: Environmental*, under minor revision, 2018.
3. **M. Chen**, S. Hwang, S. Karakalos, **K. Chen**, **Y. He**, **S. Mukherjee**, D. Su, **G. Wu***, Pt-M Alloy Nanoparticles Decorated on Large-Size Nitrogen-Doped Graphene Tubes for Highly Stable Oxygen-Reduction Catalysts, *Nanoscale*, accepted, Doi:10.1039/C8NR05888A, 2018.
4. **H. Zhang, J. Li**, Q. Tan, L. Lei, Z. Wang, **G. Wu***, Metal-Organic Frameworks and Their Derived Materials as Electrocatalysts and Photocatalysts for CO₂ Reduction: Progress, Challenge, and Perspective, *Chemistry – A European Journal*, doi:10.1002/chem.201803083, 2018.
5. **N. Mohd-Adli**, H. Zhang, S. Mukherjee, **G. Wu*** Electrocatalysis for Ammonia Electrooxidation for Fuel Cell and Hydrogen Generation Applications, *Journal of the Electrochemical Society*, accepted, 2018.
6. **X. X. Wang**, S. Hwang, Y. T. Pan, K. Chen, Y. He, S. G. Karakalos, H. Zhang, J. S. Spendelow, D. Su, **G. Wu**, Ordered Pt₃Co Intermetallic Nanoparticles Derived from Metal-organic Frameworks for Oxygen Reduction, *Nano Lett.* 18, 7, 4163-4171, 2018.
7. **Mukherjee, S.**; Cullen, D. A.; Karakalos, S.; Liu, K.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G.; **Wu, G.***. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N₂ and H₂O in alkaline electrolytes. *Nano Energy*, 48, 217-226, 2018.
8. Pan, F.; **Zhang, H** (co-first author); Liu, K.; Cullen, D. A.; More, K. L.; Wang, M.; Feng, Z.; Wang, G.; **Wu, G.***; Li, Y.* Unveiling Active Sites of CO₂ Reduction on Nitrogen Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. *ACS Catalysis*, 8, 3116–3122, 2018.

9. **Wang, Xiao Xia**; Cullen, David; Pan, Yung-Tin; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; **Wang, Jingyun**; Engelhard, Mark; **Zhang, Hanguang**; **Yanghua He**; Shao, Yuyan; Su, Dong; More, Karren; Spendelow, Jacob; Wu, G.*, Nitrogen Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells, *Advanced Materials*, 30, 1706758, 2018.
10. **Yanghua He, Bryan Matthews**, Xiaoxia Wang, **Jingyun Wang**, and Wu G.*, Innovation and Challenges in Materials Design for Flexible Rechargeable Batteries: from One-dimensional to Three-dimensional, *Journal of Materials Chemistry A*, 6, 735-753, 2018. (*Impact factor*: 8.9)
11. **Mukherjee S.**; **Devaguptapu S.**; **Sviripa A.**, Lund C. R.; Wu G.* Low-Temperature Ammonia Decomposition Catalysts for Hydrogen Generation, *Applied Catalysis B: Environmental*, 226, 162-181, 2018.
12. **Chen M**, Wang L, Yang H, Zhao S, Xu H, Wu G.*, Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: a mini review, *Journal of Power Sources*, 375, 277-290, 2018. (*Impact factor*: 6.4)
13. **Devaguptapu , S**; Hwang, S; Zhao, S ; Karakalos, S; Xu, H; **Gupta, S**; Su, D; Wu, G.* Morphology Dependent Performance of Carbon-free Spinel NiCo_2O_4 Catalysts for Bifunctional Oxygen Reduction and Evolution in Alkaline Media, *ACS Applied Materials and Interface*, 9, 44567–44578, 2017. (*Impact factor*: 7.5)
14. **Wei M.; Liang Q; Kuo M**; Karakalos S; Zhang H.; Fu Z.; Swihart, M.S.; Wu G..* Engineering Reduced Graphene Oxides with Enhanced Electrochemical Properties through Multiple-Step Reduction, *Electrochimica Acta*, 258, 735-743, 2017. (*Impact factor*: 4.8)
15. **Gupta, S.**; Zhao, S; Wang, X; Hwang, S; Karakalos, S; Devaguptapu, S; Mukherjee, S; Su, D; Xu, H; Wu, G.*, FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon, *ACS Catalysis* 7, 8386–8393, 2017. (*Impact factor*: 10.6)
16. **Zhang, H.**; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; **Qiao, Z.**; Xie, X.; Wang, C.; Su, D.; Shao, Y.; Wu, G.*, Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation, *Journal of the American Chemical Society*, 139, 14143-14149, 2017. (*Impact factor*: 13.9).
17. **Zhang, F.; Wei, M.; Shao, Y.; Wu, G..***; Zhou, C.*., 3D Printing Technologies for Electrochemical Energy Storage. *Nano Energy*, 40, 418-431, 2017. (*Impact factor*: 12.3).
18. **Qiao, Z.; Zhang, H.**; Karakalos, S.; Hwang, S.; **Xue, J.**; **Chen, M.**; Su, D.; Wu, G..., 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. *Applied Catalysis B: Environmental*, 219, 629-639, 2017. (*Impact factor*: 9.4).
19. **Wei, M.**; Zhang, F.; Wang, W.; Alexandridis, P.; Zhou, C.; Wu, G.*., 3D Direct Writing Fabrication of Electrodes for Electrochemical Storage Devices. *Journal of Power Sources* **2017**, 354, 134–147. (*Impact factor*: 6.4)
20. **Gupta, S.**; Zhao, S.; **Ogoke, O.**; Lin, Y.; Xu, H.; Wu, G.*, Engineering Favorable Morphology and Structure of Fe-N-C Oxygen-Reduction Catalysts Via Tuning Nitrogen/Carbon Precursors. *ChemSusChem*, 10 (4), 774–785, 2017. (*Impact factor*: 7.2)
21. **Zhang, H.; Osgood, H.**; Xie, X.; Shao, Y*.; Wu, G.*, Engineering Nanostructures of PGM-Free Oxygen-Reduction Catalysts Using Metal-Organic Frameworks. *Nano Energy*, 31, 331-350, 2017. (*Impact factor*: 12.3)

22. **Ogoke, O.; Wu, G.*; Wang, X.; Casimir, A.;** Ma, L.; Wu, T.; Lu, J*. Effective Strategies for Stabilizing Sulfur for Advanced Lithium-Sulfur Batteries. *Journal of Materials Chemistry A*, 5, 448-469, 2017. (*invited review; impact factor: 8.26*)
23. **Paranjape, N.; Chandra, P.; Wu, G.*;** Lin, H.*. Highly-Branched Cross-Linked Poly (Ethylene Oxide) with Enhanced Ionic Conductivity. *Polymer*, 111, 1-8, 2017. (*co-advisor with Prof. Haiqing Lin*). (*Impact factor: 3.7*)
24. **Sheng, H.; Wei, M.; D'Aloia, A.; Wu, G.*.** Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors. *ACS Appl. Mater. Interfaces*, 8 (44), 30212–30224, 2016. (*Impact factor: 7.5*)
25. **Osgood H.; Devaguptapu S. V.;** Xu H.; Cho J.; **Wu, G.*** Transition Metal (Fe, Co, Ni, and Mn) Oxides for Oxygen Reduction and Evolution Bifunctional Catalysts in Alkaline Media, *Nano Today*, 11, 11, 601–625, 2016. (*invited review, Impact factor: 15.0*)
26. **Gupta S.; Qiao L., Devaguptapu S.V.;** Zhao S; Xu H. Swihart M.T.*; **Wu G***. Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template-free Graphitization for Bifunctional Oxygen Reduction and Evolution, *Advanced Energy Materials*, 6 (22), 1601198, 2016. (*Impact factor: 15.23*)
27. **Casimir A.; Zhang H.; Ogoke O.;** Lu J*; **Wu G***, Silicon-based Anode for Lithium-ion Batteries: Effectiveness of Materials Synthesis and Electrode Preparation, *Nano Energy*, 27, 359–376, 2016. (*invited review; impact factor: 12.3*)
28. **Gupta S.; Kellogg W.;** Xu H.; Liu X.; Cho J*.; **Wu G.***, Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. *Chemistry-An Asian Journal*, 11 (1), 10–21, 2016. (*invited Focus Review article; impact factor: 4.59*)
29. **Wang, X.;** Li, Q.; **Pan, H.;** Lin, Y.; **Ke, Y.;** **Sheng, H.;** Swihart, M. T*.; **Wu, G***. Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. *Nanoscale*, 7, 20290-20298, 2015. (*co-advisor with Prof. Swihart; impact factor: 7.3*)
30. **Wang X; Ke Y; Pan H; Ma K; Xiao QQ; Wu G;*** Swihart MT*, Cu-Deficient Plasmonic Cu_{2-x}S Nanoplate Electrocatalysts for Oxygen Reduction, *ACS Catalysis*, 5 (4), 2534-2540, 2015. (*co-advisor with Prof. Swihart; impact factor: 10.6*).
31. **Wu, G*.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H.;** Wang, H.-L.*; Dai, L*., Carbon Nanocomposite Catalysts for Oxygen Reduction and Evolution Reactions: from Nitrogen Doping to Transition-Metal Addition. *Nano Energy*, 29, 83–110, 2016. (*invited review; impact factor: 12.3*)
32. **Wang, X.; Zhang, H.; Lin, H.; Gupta, S.;** Wang, C.; Tao, Z.; Fu, H.; Wang, T.; Zheng, J*.; **Wu, G*.**; Li, X. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. *Nano Energy* 2016, 25, 110-119. (*the first author was a visiting Ph.D student at UB; impact factor: 12.3*)
33. **Wu, G*.,** Current Challenge and Perspective of PGM-Free Cathode Catalysts for PEM Fuel Cells. *Frontiers in Energy* 2017, doi:10.1007/s11708-017-0477-3. (*Invited review*)
34. **Tan, Q.;** Zhu, H.; Guo, S.; Chen, Y.; Jiang, T.; Shu, C.; Chong, S.; **Hultman, B.;** Liu, Y.*; **Wu, G.*** Quasi-zero-dimensional cobalt-doped CeO₂ dot on Pd catalysts for alcohol electrooxidation with enhanced poisoning tolerance. *Nanoscale*, 9, 12565-12572, 2017. (*impact factor: 7.3*)

As one of the leading authors for the papers collaborated with other institutes

35. .X. Zheng, J. Wu, X. Cao, C. Jin, H. Wang, **J. Abbott**, P. Strasser, R. Yang,* X. Chen, **G. Wu**,* Enhanced Oxygen Chemisorption on N, P and S Co-doped Graphene Derived from Onium Salts for Zn-air Battery Cathodes, *Applied Catalysis B: Environmental*, accepted, 2018.
36. A. M. Liu, X. Ren, Q. Yang , **J. Sokolowski** , J. Guo , Y. Li , L. Gao , M. An* , **G. Wu***, Theoretical and Experimental Studies of the Prevention Mechanism of Organic Inhibitors on Silver Anti-tarnish, *Journal of the Electrochemical Society*, 165, H725-H732, 2018
37. X Chen, F Ma, Y Lia, J Liang, **B Matthews**, **J Sokolowski**, J Han, **G Wu**,* L. Xing,* Q. Li*, .Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O₂ cathode with enhanced electrochemical performance for Li-Ion batteries,, *Electrochimica Acta*, doi.org/10.1016/j.electacta.2018.07.183, 2018.
38. C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu, Y. Xia, C. Yuan, B. Yang, Z. Li, X. Zhang, L. Lei, **J. Abbott**, Y. Zhong, X. Xia, **G. Wu***, Q. He*, Y. Hou*, Fe-N₄ Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium, *Advanced Energy Materials*, 1801912, 2018.
39. S. Jiang, **K. Ithiuphalap**, X. Zeng, **G. Wu***, H. Yang, 3D porous cellular NiCoO₂/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions, *Journal of Power Sources*, 399, 66-75, 2018
40. Z. Huang, X. Qin, X. Gu, G. Li, Y. Mu, N. Wang, **K. Ithiuphalap**, H. Wang, Z. Guo, Z. Shi, **G. Wu***, M. Shao*, Mn₃O₄ Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries, *ACS Applied Materials & Interfaces*, 10, 23900-23909. 2018
41. H. Ge, L. Cui, Z. J. Sun, D. Wang, S. Nie, S. Zhu, **B. Matthews**, **G. Wu***, X. M. Song*, T. Y. Ma*, Unique Li₄Ti₅O₁₂/TiO₂ multilayer arrays with advanced surface lithium storage capability, *Journal of Materials Chemistry A* , DOI: 10.1039/C8TA03075H (2018).
42. C. Shan, K. Wu, H-J. Yen, C. N. Villarrubia, T. Nakotte, X. Bo, M. Zhou, **G. Wu**, H.-L. Wang, Graphene oxides used as a new “dual role” binder for stabilizing silicon nanoparticles in lithium ion battery, *ACS Appl. Mater. Interfaces* 10, 15665-15672 (2018).
43. Li, J.; Zhang, Y.; Gao, T.; Han, J.; Wang, X.; **Hultman, B.**; Xu, P.; Zhang, Z.; **Wu, G.***; Song, B.* A confined “micromreactor” synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes. *Journal of Power Sources*, 378, 105-111, 2018.
44. Ma, F.; Liang, J.; Wang, T.; Chen, X.; Fan, Y.; **Hultman, B.**; Xie, H.; Han, J.; **Wu, G.***; Li, Q.* Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes. *Nanoscale*, 10 (12), 5634-5641, 2018.
45. Wang T., Xie H., **Chen M.**, **D'Aloia A.**, Cho J.P., **Wu G.***, Li Q.,* Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design, *Nano Energy*, 42, 69-89, 2017.

46. Wang, T.; Wang, C.; Jin, Y.; **Sviripa, A.**; Liang, J.; Han, J.; Huang, Y.; Li, Q.; Wu, G., Amorphous Co-Fe-P Nanospheres for Efficient Water Oxidation. *Journal of Materials Chemistry A*, 5, 25378 - 25384, 2017.

47. Xie, H.; **Wang, J.**; **Ithisuphalap, K.**; Wu, G.; Li, Q., Recent advances in Cu-based nanocomposite photocatalysts for CO₂ conversion to solar fuels. *Journal of Energy Chemistry*, 26, 1039-1049, 2017.

48. Shan, C.; Yen, H.-J.; Wu, K.; Lin, Q.; Zhou, M.; Guo, X.; Wu, D.; **Zhang, H.**; Wu, G.*; Wang, H.-L.*., Functionalized Fullerenes for Highly Efficient Lithium Ion Storage: Structure-Property-Performance Correlation with Energy Implications. *Nano Energy* 2017, 40, 327-335, 2017.

49. Hua, X.; Tian, D.; Xia, F.; Zhou, C.*; Wu, G.*., Ultrasensitive Electrochemiluminescent Immunosensor using MoS₂/g-C₃N₄ Nanosheets. *Journal of The Electrochemical Society* 2017, 164 (9), B1-B7.

50. Han, L.; Qin, W.; Jian, J.; Liu, J.; Wu, X.*; Gao, P.*; **Hultman, B.**; Wu, G*, Enhanced Hydrogen Storage in Sandwich-structured rGO/Co_{1-x}S/rGO Hybrid Papers through Hydrogen Spillover. *Journal of Power Sources* 2017, 358, 93–100.

51. Ma, F.; Li, Q.*; Wang, T.; **Zhang, H.**; Wu, G.*., Energy storage materials derived from Prussian blue analogues. *Science Bulletin*, 62 (5), 358–368, 2017. (invited review)

52. Li Y.; Liu C.*; **Osgood H.**; Wu G.*, CeO₂-Modified α -MoO₃ Nanorods as a Synergistic Support for Pt Nanoparticles with Enhanced COads Tolerance during Methanol Oxidation, *Physical Chemistry Chemical Physics*, 19 (1), 330-339, 2017.

53. Chen, Y.; Lu, S.; Zhou, J.; Wu, X.; Qin, W.*; **Ogoke, O.**; Wu, G.*., 3D Graphene Frameworks Supported Li₂S Coated with Ultra-Thin Al₂O₃ Films: Binder-Free Cathodes for High-Performance Lithium Sulfur Batteries. *Journal of Materials Chemistry A*, 5, 102-112, 2017. (Front cover page)

54. Yen, H. J.; Tsai, H.; Zhou, M.; Chen, A.; Holby, E. F.; Choudhury, S.; **Zhang, H.**; **Zhu, L.**; Lin, H.; Dai, L.; Wu G.*; Wang H.L.*., Structurally Defined Nanographene Assemblies via Bottom-up Chemical Synthesis for Highly Efficient Lithium Storage. *Adv. Mater* 28 (46), 10250–10256, 2016. (impact factor: 18.96)

55. Li, Q.; Wang, T.; **Havas, D.**; **Zhang, H.**; Xu, P.; Han, J.; Cho, J*.; Wu, G.*. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode. *Advanced Science* 3 (11), 1600140, 2016,

56. Gao, W.; **Havas, D.**; **Gupta, S.**; Pan, Q.; He, N.; **Zhang, H.**; Wang, H.-L.*.; Wu, G.*. Is reduced graphene oxide favorable for nonprecious metal oxygen-reduction catalysts? *Carbon* 102, 346-356, 2016.

57. Ge, H.; Hao, T.; **Osgood, H.**; Zhang, B.; Chen, L.; Cui, L.; Song, X.-M.*; **Ogoke, O.**; Wu, G.*. Advanced mesoporous spinel Li₄Ti₅O₁₂/rGO composites with increased surface lithium storage capability for high-power lithium-ion batteries. *ACS Appl. Mater. Interfaces* 8, 9162–9169, 2016.

58. Liu, R.; Liu, Y.; Kang, Q.; **Casimir, A.**; **Zhang, H.**; Li, N.*; Huang, Z.; Li, Y.; Lin, X.; Feng, X., Wu G.*. Synergistic Effect of Graphene and Polypyrrole to Enhance the SnO₂ Anode Performance in Lithium-ion Batteries. *RSC Advances* 6, 9402-9410, 2016

59. Wang, Y.; Li, N*.; Wang, X.; **Havas, D.**; Li, D.; Wu, G*., High-definition Conductive Silver Patterns on Polyimide Film via an Ion Exchange Plating Method. *RSC Advances*, 6, 7582-7590 2016.
60. Liu, X.; Park, M.; Kim, M. G.; **Gupta, S.**; **Wang, X.**; Wu, G*; Cho, J*. High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. *Nano Energy*, 20, 315-325, 2016.
61. Wang, Z.; Li, N*.; Wang, M.; Wang, X.; Li, D.; **Dana, H.**; **Zhang, H.**; Wu, G*., A Block Copolymer as An Effective Additive for Electrodepositing Ultra-low Sn Coatings. *RSC Advances*, 5, 83931-83935, 2015.
62. Li Q; **Pan H**; Higgins D.; Zhang G; Cao R; Cho J*; Wu G*, Metal-Organic Framework Derived Bamboo-like Nitrogen-Doped Graphene Tubes as an Active Matrix for Hybrid Oxygen-Reduction Electrocatalysts. *Small*, 11, 1443-1452, 2015. (Highlighted in *Materials Views* <http://www.materialsviews.com/graphene-tubes-electrocatalysis/>)
63. Chen C-F*; King G, Dickerson R M; Papin P A; **Gupta S**, **Kellogg WR**; Wu G.* Oxygen-Deficient BaTiO_{3-x} Perovskite as an Efficient Bifunctional Oxygen Electrocatalyst, *Nano Energy*, 13, 423–432, 2015.
64. Wang C; Higgins D; Wang F; Li D.; Liu R; Xia G; Li N*; Li Q; Xu H; Wu G.* Controlled synthesis of micro/nanostructured CuO anodes for lithium-Ion batteries, *Nano Energy*, 9, 334-344, 2014.
65. Yu S; Li N*; Higgins D; Li D; Li Q; Xu H; Spendelow JS; Wu G*, Self-Assembled Reduced Graphene Oxide/Polyacrylamide Conductive Composite Films, *ACS Appl. Mater. Interfaces*, 6 (22), 19783-19790, 2014.
66. Ren X.; Song Y.; Liu A.; Yang P.; Zhang J.; An M. *; **Matera D.**; Wu G.*, Computational Chemistry and Electrochemical Studies of Adsorption Behavior of Organic Additives during Gold Deposition in Cyanide-free Electrolytes. *Electrochimica Acta*, 176, 10-17, 2015.
67. Ren X.; Song Y.; Liu A.; Zhang J.; Guohui Y.; An M.*; **Osgood H.**; Wu G.*. Role of polyethyleneimine as an additive in cyanide-free electrolytes for gold electrodeposition. *RSC Advances*, 5, 64806, 2015
68. Liu X.; Liu W.; Ko M.; Chae S.; Park S.; **Casimir A.**; Wu G.*; Cho J.*. Metal (Ni, Co)-Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. *Advanced Functional Materials*. 25, 5799-5808, 2015.
69. Ge, H.; Chen, L.; Yuan, W.; Zhang, Y.; **Osgood, H.**; **Matera, D.**; Song, X.-M.*; Wu, G.*. Unique mesoporous spinel Li₄Ti₅O₁₂ nanosheets as anode materials for lithium-ion batteries. *Journal of Power Sources*, 297, 436-441, 2015.
70. Li Z.; He Y.; Ke X.; Gan L.; Zhao J.; Cui G.*; Wu G.*. Three-dimensional Nanoporous Gold-Cobalt Oxide Electrode for High-Performance Electroreduction of Hydrogen Peroxide in Alkaline Medium. *Journal of Power Sources*, 294, 136-140, 2015.

71. Liu X.; Park M.; Kim M. G.; **Gupta S.**; Wu G.*; Cho J.*. Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries. *Angew. Chem.-Int. Edit.*, 54 (33), 9654-9658, 2015
72. Li Y; Liu C*; Liu Y; Feng B; Li L; **Pan H**; **Kellogg W R**; Higgins D; Wu G*. Sn-doped TiO₂ modified carbon to support Pt cathode catalysts for direct methanol fuel cells, *J Power Sources*, 286, 354-361, 2015.
73. Ke X; Li Z; Gan L; Zhao J; Cui G*; **Kellogg W**; **Matera D**; Higgins D; Wu G*. Three-dimensional nanoporous Au films as a high-efficiency enzyme-free electrochemical sensor, *Electrochimica Acta* 170, 337-342, 2015.

Other co-authored papers

74. Wan, H.; Bai, Q.; Peng, Z*.; Mao, Y.; Liu, Z.; He, H.; Wang, D.*; Xie, J.; Wu, G., A High Power Li-air Battery Enabled by a Fluorocarbon Additive. *Journal of Materials Chemistry A*, Doi:10.1039/C7TA08860D, 2017.
75. **Iozzo, D. A. B.; Tong, M.**; Wu, G.; Furlani, E. P.*, Numerical Analysis of Electric Double Layer Capacitors with Mesoporous Electrodes: Effects of Electrode and Electrolyte Properties. *J. Phys. Chem. C*, 119, 25235–25242, 2015. (co-advisor with Prof. Furlani).
76. Kneebone, J. L.; Daifuku, S. L.; Kehl, J. A.; Wu, G.; Chung, H. T.; Hu, M.; Alp, E. E.; More, K. L.; Zelenay, P.; Holby, E. F.*, A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. *The Journal of Physical Chemistry C*, DOI: 10.1021/acs.jpcc.7b03779, 2017.
77. Liu, K.; Wu, G.; Wang, G*., Role of Local Carbon Structure Surrounding FeN₄ Sites in Boosting Catalytic Activity for Oxygen Reduction. *J. Phys. Chem. C* 2017, 121 (21), 11319–11324.
78. Zhang, Z.; Peng, Z.; Zheng, J.; Wang, S.; Liu, Z.; Bi, Y.; Chen, Y.; Wu, G.; Li, H.; Cui, P.*, Long life-span of Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network. *J. Mater. Chem. A* 2017, 5, 9339-9349.
79. Tyminska, N.; Wu, G.; Dupuis, M*., Water Oxidation on Oxygen-Deficient Barium Titanate: A First Principles Study. *The Journal of Physical Chemistry C* 2017, 121 (15), 8378–8389.
80. Liu, R.; Liu, Y.; Chen, J.; Kang, Q.; Wang, L.; Zhou, W.; Huang, Z.; Lin, X.; Li, Y.; Li, P.; Feng, X.; Wu, G.; Ma, Y.; Huang, W*., Flexible Wire-Shaped Lithium-Sulfur Batteries with Fibrous Cathodes Assembled via Capillary Action. *Nano Energy*, 33, 325-333, 2017.
81. Wan, H.; Mao, Y.; Liu, Z.; Bai, Q.; Peng, Z.; Bao, J.; Wu, G.; Liu, Y.; Wang, D*.; Xie, J., Influence of Enhanced O₂ Provision Achieved with Fluoroether Incorporation on the Discharge Performance of Li-air Battery. *ChemSusChem*, 10 (7), 1385–1389, 2017.
82. Li, Q.; Zhu, W.; Fu, J.; Wu, G.; Sun, S*. Controlled Assembly of Cu Nanoparticles on Pyridinic-N Rich Graphene for Electrochemical Reduction of CO₂ to Ethylene. *Nano Energy* 24, 1-9, 2016.

83. Lü, X.; Howard, J. W.; Chen, A.; Zhu, J.; Li, S.; Wu, G.; Dowden, P.; Xu, H.; Zhao, Y*.; Jia, Q*. Antiperovskite Li_3OCl Superionic Conductor Films for Solid-State Li-Ion Batteries. *Advanced Science* 2016, DOI: 10.1002/advs.201500359, 2016.
84. Zhu, X.; Qian, F.; Liu, Y.; **Matera, D.**; Wu, G.; Zhang, S.*; Chen, J. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence. *Carbon*, 99, 338–347, 2016.
85. Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P.; Mukerjee S.* Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. *ACS Nano*, 9 (12), 12496–12505, 2015.
86. Li Q; Wen X; Wu G; Chung H; Zelenay P.*, High-Activity PtRuPd/C Catalyst for Direct Dimethyl Ether Fuel Cell, *Angew. Chem. Int. Ed*, 54, 7524-7528, 2015.
87. Gan L; Yang M; Ke X; Cui G*; Chen X*; **Gupta S**; **Kellogg WR**; Wu G. Synthesis of Ag Nanocubes with mesopores at Room Temperature via Selectively Oxidative Etching for Surface-Enhanced Raman Spectroscopy, *Nano Research*, 8, 2354-2362, 2015.
88. Li Q; Wu L; Wu G; Su D; Lv HF; Zhang S; Zhu W; **Casimir A**; Zhu H; Mendoza-Garcia A; Sun S*, A New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid, *Nano Lett.*, 15 2468-2473, 2015.
89. Xu Y; Ke X; Yu C; Liu S; Zhao J; Cui GF*; Higgins D; Chen Z; Li Q; Wu G, A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys, *Nanotechnology*, 25, 445602, 2014.

The papers published before joining UB (2003-2014)

90. Chen L; Wu G; Holby E, Zelenay P; Tao W; Kang Q, Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-Electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells, *Electrochim. Acta* 158, 175-186, 2015.
91. Wang C; Higgins D; Wang F; Li D.; Liu R; Xia G; Li N*; Li Q; Xu H; Wu G,* Controlled synthesis of micro/nanostructured CuO anodes for lithium-Ion batteries, *Nano Energy*, 9, 334-344, 2014.
92. Yu S; Li N*; Higgins D; Li D; Li Q; Xu H; Spendelow JS; Wu G*, Self-Assembled Reduced Graphene Oxide/Polyacrylamide Conductive Composite Films, *ACS Appl. Mater. Interfaces*, 6 (22), 19783-19790, 2014.
93. Xu Y; Ke X; Yu C; Liu S; Zhao J; Cui GF*; Higgins D; Chen Z; Li Q; Wu G, A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys, *Nanotechnology*, 25, 445602, 2014.
94. Liu A; Ren X; Zhang J; Wang C; Yang P; ; An M*; Higgins D; Li Q; Wu G*, Theoretical and experimental studies of the corrosion inhibition effect of nitrotetrazolium blue chloride on copper in 0.1 M H_2SO_4 , *RSC Adv*, 4, 40606-40616, 2014.

95. Ke X; Xu Y; Yu C; Zhao J; Cui G*; Higgins D; Chen Z; Li Q; Xu H; Wu G, Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H_2O_2 reduction, *J. Mater. Chem. A*, 2, 16474-16479, 2014.
96. Ke X; Xu Y; Yu C; Zhao J; Cui G*; Higgins D; Li Q; Wu G, Nanoporous gold on three-dimensional nickel foam: an efficient hybrid electrode for hydrogen peroxide electroreduction in acid media, *J. Power Sources*, 269, 461-465, 2014.
97. Li Q; Xu P*; Gao W; Ma S; Zhang G; Cao R; Cho J; Wang HL; Wu G*, Graphene/graphene tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in $\text{Li}-\text{O}_2$ batteries, *Adv. Mater.*, 26, 1378-1386, 2014.
98. Li Q; Cao R; Cho J*; Wu G*, Nanocarbon electrocatalysts for oxygen-reduction in alkaline media for advanced energy conversion and storage, *Adv. Energy Mater.*, 4 (6), 1301415, 2014. (*Invited Progress Report*).
99. Liu R; Li D; Tian D; Xia GF; Li N*; Spendelow J; Li Q; Wu G*, Core-shell structured hollow SnO_2 -polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries, *Nano Energy*, 6, 73-81, 2014.
100. Li Q; Cao R; Cho J*; Wu G*, Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries, *Phys. Chem. Chem. Phys.*, 16 (27), 13568-13582, 2014 (*Invited Perspective Article for themed issue of "Electrocatalysis – fundamental insights for sustainable energy"*).
101. Gao W; Wu G; Janicke MT; Cullen DA; Mukundan R; Galande C; Ajayan PM; More KL; Dattelbaum A.M.*; Zelenay P.*, Ozonated graphene oxide film as a proton exchange membrane, *Angew. Chem. Int. Ed.*, 53, 3588-3593, 2014. (*Very Important Paper- Top 10%*)
102. Lü X*; Wu G; Howard JW; Chen A; Zhao Y; Daemen LL; Jia QX*, Li-rich anti-perovskite Li_3OCl films with enhanced ionic conductivity, *Chem. Commun.*, 50, 11520-11522, 2014.
103. Li Q; Wu G*; Cullen D A; More K L; Mack N H; Chung H; Zelenay P*, Phosphate-Tolerant Oxygen Reduction Catalysts, *ACS Catal.*, 4, 3193-3200, 2014.
104. Holby EF*; Wu G; Zelenay P; Taylor CD; Structure of $\text{Fe}-\text{N}_x\text{-C}$ defects in oxygen reduction reaction catalysts from first principles modeling, *J. Phys. Chem. C*, 118 (26), 14388-1439, 2014.
105. He Q, Wu G, Liu Ke, Khene S, Mugadza T, Deunf E, Nyokong T, Chen S*, Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media, *ChemElectroChem*, 1, 1508–1515, 2014.
106. Cui G*; Liu S; Wang K; Li Q; Wu G, Discovering P-doped mechanism in non-magnetic Ni-P films for HDD substrate: A combined experimental and theoretical study, *RSC Adv.*, 4, 14663-14672, 2014.
107. Wu C; Cheng Q; Wu K; Wu G; Li Q*, Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. *Anal. Chim. Acta.*, 825, 26-33, 2014.
108. Li Q; Wu G; Johnston CM; Zelenay P*, Direct dimethyl ether fuel cell with much improved performance, *Electrocatalysis*, 5 (3), 310-317, 2014.

109. Chung H; Wu G; Li Q; Zelenay P,* An Role of two carbon phases in oxygen reduction reaction on the Co-PPy-C catalyst, *Int. J. Hydrogen Energy*, 39, 15887-15893, 2014.
110. Zheng X; Tian D; Duan S; Li Q; Zhou C*; Wu G*, Polypyrrole composite film for the highly sensitive and selective electrochemical determination sensors, *Electrochim. Acta*, 130, 187-193, 2014.
111. Wang C; Li Q; Wang FF; Xia G; Liu R; Li D; Li N*; Spendelow J; Wu G*, Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries, *ACS Appl. Mater. Interfaces*, 6, 1243-125, 2014.
112. Liu R; Li D; Tian D; Xia GF; Li N*; Mack NH; Li Q; Wu G*, Promotional role of B_2O_3 in enhancing hollow SnO_2 anodes for Li-ion batteries, *J. Power Sources*, 251, 279-286, 2014.
113. Xiao N; Li DY; Cui GF; Li N*; Li Q; Wu G*, Adsorption behavior of triblock copolymer suppressors on the cathode during the copper electrodeposition, *Electrochim. Acta*, 116, 284-291, 2014.
114. Wu G*; More KL; Xu P; Wang H-L; Ferrandon M; Kropf AJ; Myers DJ; Ma S; Zelenay P*, Carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability, *Chem. Commun.*, 49, 3291-3293, 2013. (*Front Inside Cover*)
115. Li Q; Xu P*; Zhang B; Wang J; Tsai H; Wang HL; Wu G*, One-step synthesis of Mn_3O_4 /reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous $Li-O_2$ batteries, *Chem. Commun.*, 49, 10838-10840, 2013.
116. Xia GF; Li N*; Wang C; Liu R; Li Q; Lu X; Spendelow J; Zhang JL; Wu G*, Fe_2O_3/SnO_2 /graphene ternary nanocomposite as a high-performance anode for lithium ion batteries, *ACS Appl. Mater. Interfaces*, 5, 8607-8614, 2013.
117. Wu G; Zelenay P*, Nanostructured nonprecious metal catalysts for oxygen reduction reaction, *Acc. Chem. Res.*, 46, 1878-1889, 2013. (*Invited Review*)
118. Cui G*; Liu S; Zhao J; Holby EH; Li Q; Wu G, AuSn20 Eutectic electrodeposition through alternative complexing of pyrophosphoric acid: insights from electrochemical and DFT methods, *J. Phys. Chem. C*, 117, 21228-21233, 2013.
119. He Q*; Li Q; Ren X; López-Suárez FE; Lozano-Castelló D; Bueno-López A; Wu G*, High-loading cobalt oxide coupled with graphene as oxygen-reduction catalysts in anion-exchange membrane alkaline fuel cells, *J. Phys. Chem. C*, 117, 8697-8707, 2013.
120. Li Q; Xu P; Zhang B; Tsai H; Zheng S; Wu G*; Wang HL*, Structure-dependent electrocatalytic properties of Cu_2O nanocrystals for oxygen reduction reaction. *J. Phys. Chem. C*, 117, 13872-13878, 2013.
121. Xiao N; Li D; Cui G; Li N*; Tian D; Li Q; Wu G*, An effective triblock copolymer as a suppressor for microvia filling *via* copper electrodeposition, *Electrochim. Acta*, 109, 226-232, 2013.
122. Li Q; Xu P*; Zhang B; Wu G; Zhao H; Fu E; Wang H-L*, Self-supported Pt nanoclusters via galvanic replacement from Cu_2O nanocubes as efficient electrocatalysts, *Nanoscale*, 5, 7397-7402, 2013.

123. Tian D.; Li DY; Wang FF; Xiao N; Liu RQ; Li N*; Li Q; Gao W; Wu G, A Pd-free activation method for electroless nickel deposition on copper. *Surf. Coat. Technol.*, 228, 27-33, 2013.
124. Zhai T; Lu XH; Cui G*; Wu G; Qu JQ; Tang Y, Efficient Electroless nickel planting from highly active Ni-B nanoparticles for electric circuit pattern on Al_2O_3 ceramic, *J. Mater. Chem. C*, 1, 5149-5152, 2013.
125. Ferrandon M*; Wang X; Kropf AJ; Myers DJ; Wu G; Johnston CM; Zelenay P*, Stability of iron species in heat-treated polyaniline-iron-carbon polymer electrolyte fuel cell cathode catalysts, *Electrochim. Acta*, 110, 282-291, 2013.
126. Li D*; Li N; Xia G; Zheng Z; Wang J; Xiao N; Zhai W; Wu G, An in-situ study of copper electropolishing in phosphoric acid solution, *Int. J. Electrochem. Sci.*, 8, 1041-1046, 2013.
127. Liu R; Li N*; Xia G; Li D; Wang C; Xiao N; Tian D; Wu G, Assembled hollow and core-shell SnO_2 microspheres as anode materials for Li-ion batteries, *Mater. Lett.*, 93, 243-246, 2013.
128. Chen Z; Dai C*; Wu G; Nelson M; Jin H; Cheng Y, Effects of carbon source on performance of $\text{Li}_3\text{V}_2(\text{PO}_4)_3/\text{C}$ cathode materials synthesized via carbon thermal reduction for Li-ion batteries, *Int. J. Electrochem. Sci.*, 8, 8153-8166, 2013.
129. Xiao N; Li N*; Cui G; Tian D; Yu S; Li Q; Wu G, Triblock copolymers as suppressors for microvia filling via copper electroplating, *J. Electrochem. Soc.*, 160, D188-D195, 2013.
130. Tian D; Li N*; Xiao N; Wang FF; Yu SY; Li Q; Gao W; Wu G, Replacement deposition of Ni-S films on Cu and its catalytic activity for electroless nickel plating, *J. Electrochem. Soc.*, 160, D95-D101, 2013.
131. Zheng Z; Li N*; Wang CQ; Li DY; Meng FY; Zhu YM; Li Q; Wu G, Electrochemical deposition synthesis of Ni-S/ CeO_2 composite electrodes for hydrogen evolution reaction, *J. Power Sources*, 230, 10-14, 2013.
132. Wu G*; Mack NH; Gao W; Ma S; Zhong R; Han J; Zelenay P, Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen-reduction in nonaqueous lithium-O₂ battery cathodes, *ACS Nano*, 6, 9764-9776, 2012.
133. Li D*; Li N; Xia G; Zheng Z; Wang J; Xiao N; Zhai W; Wu G, Effect of sodium dodecyl sulfate on copper anodic dissolution in phosphoric acid solution, *Int. J. Electrochem. Sci.*, 7, 9271-9277, 2012.
134. Xiao N; Li N*; Li D; Tian D; Liu R; Wu G, The Synergistic effect between a triblock copolymer and chloride ions in Cu electrodeposition into microvias, *ECS Solid State Lett.*, 1, 67-69, 2012.
135. Zheng Z; Li N; Wang C-Q; Li D-Y; Zhu Y-M; Wu G, Ni- CeO_2 composite cathode material for hydrogen evolution reaction in alkaline electrolyte, *Int. J. Hydrogen Energy*, 37, 13921-13932, 2012.
136. Han J; Zhu J; Li Y; Yu X; Wang S; Wu G; Xie H; Vogel S; Zhao YS*; Goodenough JB*, Lithium-ion conduction pathways in garnet-type $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$, *Chem. Commun.*, 48, 9840-9842, 2012.

137. Ferrandon M*; Kropf AJ; Myers DJ; Artyushkova K; Koslowski U; Bogdanoff P; Wu G; Johnston CM; Zelenay P, Multi-technique characterization of a polyaniline-iron-carbon oxygen reduction catalyst, *J Phys. Chem. C*, 116, 16001-16013, 2012.
138. Wu G; More KL; Jonhston CM; Zelenay P*, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, *Science*, 332, 443-447, 2011.
139. Wu G*; Nelson M; Ma S; Meng H; Cui G; Shen PK, Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction, *Carbon*, 49, 3972-3982, 2011.
140. Wu G; Johnston CM*; Mack N; Nelson M; Artyushkova K; More KL; Zelenay P*, Synthesis and performance of polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells, *J. Mater. Chem.*, 21, 11392-11405, 2011.
141. Cui G*; Zhao J; Liu S; Wu G, Structural and corrosion properties of NiP_x metallic glasses: Insights from EIS and DFT, *J. Phys. Chem. C.*, 115, 21169-21176, 2011.
142. Cui G; Meng H; Shen PK*; Zhao J; Wu G, Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation, *J. Power Sources*, 196, 6125-6130, 2011.
143. Meng H; Wang C; Shen PK*; Wu G, Palladium thorn clusters as catalyst for electrooxidation of formic acid, *Energy Environ. Sci.*, 4, 1522-1526, 2011.
144. Jaouen F*; Proietti E; Lefèvre M; Chenitz R; Dodelet JP; Wu G; Chung H; Johnston CM; Zelenay P*, Recent advances in non-precious metal catalysts for the oxygen-reduction reaction in polymer electrolyte fuel cells, *Energy Environ. Sci.*, 4, 114-130, 2011.
145. Wu G*; Nelson MA; Mack NH; Ma S; Sekhar P; Garzon, FH; Zelenay P*, Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst, *Chem. Commun.*, 46, 7489-7491, 2010.
146. Chen Z; Dai C*; Wu G; Hu X, High rate Li₃V₂(PO₄)₃/C composite cathode material for lithium ion batteries, *Electrochim. Acta*, 55, 8595-8599, 2010.
147. Gu Y; Wu G; Hu XF; Chen DA; Hansen T; Loya H-C; Ploehn HJ*, PAMAM-stabilized Pt-Ru nanoparticles for methanol electro-oxidation, *J. Power Source*, 195, 425-434, 2010.
148. Wu G*; Dai C; Wang D; Li D; Li N, Nitrogen-doped magnetic onion-like carbon as supports of Pt particles in a hybrid cathode catalyst for fuel cells, *J. Mater. Chem.*, 20, 3059-3068, 2010.
149. Wu G*; Cui G; Li D; Shen PK; Li N, Carbon-supported Co_{1.67}Te₂ nanoparticles as electrocatalysts for oxygen reduction reaction in alkaline electrolyte, *J. Mater. Chem.*, 19, 6581-6589, 2009.
150. Subramanian NP; Li X; Nallathambi V; Kumaraguru SP; Colon-Mercado H; Wu G; Lee JW; Popov BN, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte fuel cells, *J. Power Sources*, 188, 38-44, 2009.

151. Wu G*; Li D; Dai C; Wang D; Li N, Well-dispersed high loading Pt nanoparticles supported by shell-core structured carbon for methanol electrooxidation, *Langmuir*, 24, 3566-3575, 2008.
152. Wu G*; Swaidan R; Li D; Li N, Enhanced methanol electro-oxidation activity of PtRu catalyst supported by heteroatom-doped carbon, *Electrochim. Acta*, 53, 7622-7629, 2008.
153. Nallathambi V; Lee J; Kumaragur SP; Wu G; Popov BN*, Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM fuel cells, *J. Power Sources*, 183, 34-42, 2008.
154. Cui G*; Liu H; Wu G; Zhao J; Song S; Shen PK, Electrochemical impedance spectroscopy and first-principle investigations on the oxidation mechanism of hypophosphite anion in the electroless deposition system of nickel, *J. Phys. Chem. C*, 112, 4601-4607, 2008.
155. Wu G*; Swaidan R; Cui G, Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process, *J. Power Sources*, 172, 180-188, 2007.
156. Wu G*; Xu BQ*, Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between MWNT and SWNT, *J. Power Source*, 174, 148-158, 2007.
157. Li X; Colón-Mercado HR; Wu G; Lee JW; Popov BN*, Development of method for synthesis of Pt-Co cathode catalysts for PEM fuel cells, *Electrochem. Solid State Lett.*, 10, B201-B205, 2007.
158. Wu G*; Li L; Li JH; Xu BQ*, Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films, *J. Power Sources*, 155, 118-127, 2006.
159. Li L; Wu G; Xu BQ*, Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids, *Carbon*, 44, 2973-2983, 2006.
160. Li L; Wu G; Ye Q; Deng W; Xu BQ*, Electrochemical modification of Pt/C catalyst by silicomolybdic acid, *Acta Phys. Chim. Sin.*, 22, 419-423, 2006.
161. Wu G*; Li L; Li JH; Xu BQ*, Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation, *Carbon*, 43, 2579-2587, 2005.
162. Wu G; Chen YS; Xu BQ*, Remarkable support effect of SWNTs in Pt catalyst for methanol electro oxidation, *Electrochim. Commun.*, 7, 1237-1243, 2005. (*Top 10 cited paper within 5 years in the journal*)
163. Zhao D; Wu G; Xu BQ*, Synthesis and characterization of Au@ Pt nanoparticles, *Chin. Sci. Bull.*, 50, 1846-1848, 2005.
164. Wu G; Li L; Xu BQ*, Electrochemical impedance spectroscopy of methanol electrooxidation on PtRu/C catalysts, *Chem. Res. Chin. Uni.*, 4, 032, 2005.
165. Wu G*; Li N; Zhou DR, Electrochemical anomalous codeposition of Co-Ni alloys from sulfamate electrolytes and its mechanism, *J. Chem. Engr. Chin. Uni.*, 1, 8-12, 2005.
166. Wu G*; Li L; Xu BQ, Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation, *Electrochim. Acta*, 50, 1-10, 2004.

167. Wu G*; Li N; Zhou DR; Mitsuo K; Xu BQ, Anodically electrodeposited Co plus Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media, *J. Solid State Chem.*, 177, 3682-3692, 2004.
168. Wu G*; Li N; Dai CS; Zhou DR, Electrochemical preparation and characteristics of Ni-Co-LaNi₅ composite coatings as electrode materials for hydrogen evolution, *Mater. Chem. Phys.*, 83, 307-314, 2004.
169. Wu G*; Li N; Zhou DR; Mitsuo K, Electrodeposited Co-Ni-Al₂O₃ composite coatings, *Surf. Coat. Tech.*, 176, 157-164, 2004.
170. Wu G*; Li N; Wang DL; Zhou DR; Xu BQ; Mitsuo K, Effect of alpha-Al₂O₃ particles on the electrochemical codeposition of Co-Ni alloys from sulfamate electrolytes, *Mater. Chem. Phys.*, 87, 411-419, 2004.
171. Wu G*; Li N; Zhou DR, Microstructure and properties of Co-Ni-Al₂O₃ composite coatings at the high temperature, *Acta Mater. Comp. Sin.*, 21, 8-13, 2004.
172. Wu G*; Li N; Dai C; Zhou DR, Anodically electrodeposited cobalt-nickel mixed oxide electrodes for oxygen evolution, *Chin. J. Catal.*, 25, 319-325, 2004.
173. Wu G*; Li N; Zhou DR; Xu BQ, Influence of alpha-Al₂O₃ nanoparticles on the anomalous electrodeposition of Co-Ni alloys, *Acta Phys. Chim. Sin.*, 20, 1226-1232, 2004.
174. Li DY; Li N*; Du MH; Wu G; Liu X, Codeposition of Al₂O₃ powders with nickel in a sulphamate bath, *Mater. Sci. Technol.*, 12, 199-201, 2004.
175. Wu G*; Li N; Wang DL; Zhou DR, A kinetic model for the electrolytic codeposition of α -Al₂O₃ particles with Co-Ni Alloy. *Acta Phys. Chim. Sin.*, 19, 996-1000, 2003.
176. Wu G*; Li N; Zhou DR, Electrocatalytic behavior of the codeposited Ni-Co-LaNi₅ coatings for hydrogen evolution in alkaline medium, *Chin. J. Inorg. Chem.*, 19, 739-744, 2003.
177. Wu G*; Li N; Zhou D; Mitsuo K, Microstructure of Co-Ni-Al₂O₃ composite coatings by electroforming, *J. Mater. Sci. Technol.*, 19, 133-134, 2003.
178. Cui GF*; Li N; Li DY; Huang JG; Wu G; Jiang LM, Applications and Prospects of Electroless Ni and Ni/Au Plating in Microelectronic Field, *Electroplating Pollution Control* 23 (4), 7-9, 2003.
179. Wu G; LI N*; Du M; Zhou D, Microstructure and hardness of electrodeposited Co-Ni alloy coatings, *Mater. Sci. Technol.*, 10, 419-423, 2002.

(II) Conference Proceeding Full Papers:

180. Higgins D.; Wu G.; Chung H. T.; Martinez U.; Ma S.; Chen Z.; Zelenay P. Manganese-Based Non-Precious Metal Catalyst for Oxygen Reduction in Acidic Media. *ECS Trans.* 2014, 61, 35-42.
181. Babu S. K.; Chung H. T.; Wu G.; Zelenay P.; Litster S. Modeling Hierarchical Non-Precious Metal Catalyst Cathodes for PEFCs Using Multi-Scale X-ray CT Imaging. *ECS Trans.* 2014, 64, 281-292.

182. Hussey DS; Spernjak D; Wu G; Jacobson DL; Liu D; Khaykovich B; Gubarev MV; Mukundan R; Zelenay P; Borup RL, Neutron imaging of water transport in polymer-electrolyte membranes and membrane-electrode assemblies, *ECS Trans.* 58, 293-299, 2013.
183. Holby EF; Wu G; Zelenay P; Taylor CD, Modeling non-precious metal catalyst structures and their relationship to ORR, *ECS Trans.* 58, 1869-1875, 2013.
184. Li Q; Wu G; Bi Zheng; Johnston CM; Zelenay P, A ternary catalyst for dimethyl ether electrooxidation, *ECS Trans.*, 50, 1933-1941, 2013.
185. Holby EF; Wu G; Zelenay P; Taylor CD, Metropolis monte carlo search for non-precious metal catalyst active sites candidates, *ECS Trans.*, 50, 1839-1845, 2013.
186. Wu G; Chung HT; Nelson M; Artyushovka A; Johnston CM; Zelenay P, Graphene-enriched Co₉S₈-N-C non-precious metal catalyst for oxygen reduction in alkaline media, *ECS Trans.*, 41, 1709-1717, 2011.
187. Li Q; Wu G; Johnston CM; Zelenay P, Anode catalysts for the direct dimethyl ether fuel cell, *ECS Trans.*, 41, 1969-1977, 2011.
188. Wu G; Artyushkova K; Ferrandon M; Kropf J; Myers D; Zelenay P, Performance durability of polyaniline-derived non-precious cathode catalysts, *ECS Trans.*, 25, 1299-1311, 2009.
189. Kropf AJ ; Myers D ; Smith M; Chlistunoff, J ; Wu G ; Zelenay P, In situ XAFS analysis of cobalt-containing fuel cell cathode electrocatalysts, *Abs. Papers Am. Chem. Soc.*, 237, 52, 2009.
190. Wu G; Chen Z; Artyushkova K; Garzon FH; Zelenay P, Polyaniline-derived non-precious catalyst for the polymer electrolyte fuel cell cathode, *ECS Trans.*, 16, 159-170, 2008.
191. Nallathambi V; Wu G; Subramanian N; Kumaraguru S; Lee JW; Popov B, Highly active carbon composite electrocatalysts for PEM fuel cells, *ECS Trans.*, 11, 241-247, 2007.
192. Li X; Colon-Mercado H; Wu G; Lee JW; Popov B, Development of stable Pt-Co cathode catalysts for PEM fuel cells, *ECS Trans.*, 11, 1259-1266, 2007.

(III) Contributions to Books

After joining UB

- T Wang, Q Li,* G Wu*, "Heteroatom - Doped, Carbon - Supported Metal Catalysts for Electrochemical Energy Conversions" for "Carbon - Based Metal - Free Catalysts: Design and Applications", Editors: Liming Dai, *John Wiley & Sons, Inc.*, 2018.
- Wu G*, Xu P., "Graphene Composite Catalysts for Electrochemical Energy Conversion" for "Multifunctional Nanocomposites for Energy and Environmental Applications", Editors: Zhanhu Guo, Yuan Chen, Na Luna Lu, *John Wiley & Sons, Inc.*, 2018.
- Chung H., Wu G., Higgins D., Zamani P., Chen Z., and Zelenay P*. "Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction "for Electrochemistry of N4 Macroyclic Metal Complexes, Volume 1: Energy, Editors: J. H. Zagal, F. Bedioui, Springer, 2016.
- Li Q; Wu G,* "Nanocarbon-based catalysts for oxygen reduction reaction in various electrolytes" for *Nanocarbons for Advanced Energy Conversion*, Editor: Xinliang Feng, *John Wiley & Sons, Inc.*, 2015.

- Wu G* and Wilkinson D.P., “Future catalyst approaches for electrochemical energy storage and conversion” for *Advanced Materials and Technologies for Electrochemical Energy*, Editor: Jiujun Zhang, *CRC press*, 2015.
- Wu G* and Gao W, “GO/rGOs as advanced materials for energy storage and conversion” for *Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications*, Editor: Wei Gao, *Springer*, 2015.

Before joining UB

- Elbaz L; Wu G; Zelenay P, “Heat-treated non-precious-metal-based catalysts for oxygen reduction” for *Electrocatalysis in Fuel Cells: Non and Low Platinum Approach*; Editor: Minhua Shao, *Springer*, 2013.
- Wu G*, Chen Z; Zhang JJ, “Nanostructured transition metal-N-C catalysts for oxygen reduction in PEM fuel cells” for *Nanostructured and Advanced Materials in Fuel Cells*, Editor: San-Ping Jiang and Peikang Shen, *CRC Press*, 2013.
- Li Q; Wu G,* “Carbon composite cathodes for alkaline PEM fuel cells” for *Non-Noble Metal Catalysts for Fuel Cells*, Editors: Jean-Pol Dodelet and Jiujun Zhang, *John Wiley & Sons, Inc.*, 2013.

(IV) Patents & Patent Applications:

- “Catalytic Oxidation of Dimethyl Ether”, US Patent App. 13/840,831.
- “Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst”, U.S. Application Serial No. 13/094,594
- “Preparation of supported electrocatalysts comprising multiwalled carbon nanotubes”, U.S. Application Serial No. 61/333,667
- “Non-precious fuel cell catalysts comprising polyaniline”, U.S. Application Serial No. 13/267,579
- “Carbon-based composite electrocatalysts for low temperature fuel cells”, U.S. Patent 7629285