Applied Ontology 0 (2019) 1-0 1
IOS Press

Formal ontology of space, time, and physical
entities in Classical Mechanics

Thomas Bittner

Department of Philosophy, State University of New York at Buffalo, 135 Park Hall, Buffalo, NY, 14260.
e-mail: bittner3 @buffalo.edu

Abstract. Classical (i.e., non-quantum) mechanics is the foundation of many models of dynamical physical phenomena. As
such those models inherit the ontological commitments inherent in the underlying physics. Therefore, building an ontology of
dynamic phenomena requires a clear understanding of the ontology of classical mechanics. The axiomatic theory presented here
in conjunction with the specification of its intended interpretation in the underlying physics aim to provide a formal framework
that is general enough to formalize the ontological commitments of classical mechanics in a way that is consistent with various
underlying spacetime ontologies.
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1. Introduction

Following a long tradition in philosophy (Sider, 2001; Zemach, 1970; Simons, 1987; Lowe, 2002; Haw-
ley, 2001), formal ontologies such as Basic Formal Ontology (Smith, 2016) and DOLCE (Gangemi et al.,
2003) explicitly distinguish between the categories of continuants and occurrents (Grenon and Smith,
2004; Masolo et al., 2003). Continuants are entities that persist self-identically through time while under-
going changes by having different parts and different qualities at different times. By contrast, occurrents
evolve over time and never exist in full at a given moment in time. Examples of continuants are objects
such as my body, my heart, etc. Examples of ocurrants are processes such as my life, the beating of my
heart, etc. The logical properties of these categories as well as the logic of their interrelations are relatively
well understood (Hawley, 2001; Smith and Grenon, 2004). On this basis current ontologies provide means
for systematically and consistently recording facts about continuants having different properties at differ-
ent times, or facts about different relations holding at different times, processes occurring across certain
time intervals, and so on. In addition current ontologies provide means for distinguishing changes that are
merely logically and combinatorially possible from changes that are possible in virtue of being consis-
tent with metaphysical laws such as the laws of mereology (e.g., transitivity of parthood and weak/strong
supplementation property of parthood (Simons, 1987; Goodday and Cohn, 1994), etc.).

1.1. Ontology, physics and dynamic systems

Unfortunately, current ontologies lack the capabilities to formally characterize change over time by dis-
tinguishing changes and processes that are logically, combinatorially, and metaphysically possible from
changes and processes that are physically possible. By contrast, Physics as the science of the dynamic
character of ever-changing physical reality provides conceptual, formal and computational means to sin-
gle out physical possibilities by identifying dynamically possible processes and dynamically possible se-
quences of instantaneous states of affairs. An important conceptual pillar of modern physics is that dy-
namic constraints are expressed geometrically (Earman, 2002; Redhead, 2002). The methodology of ge-
ometrizing physics was introduced by Klein, Hilbert, Noether, and others (Klein, 1872; Hilbert, 1924,
2005; Brading and Castellani, 2002a,b; Brown and Brading, 2002) in the Erlangen program and has been
fundamental to modern physics since. The central idea is that dynamic phenomena can be studied geomet-
rically by considering the properties of a space (and the phenomena ‘in’ it) that are invariant under a given
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group of transformations. Groups of transformations formally capture the idea that there are processes and
sequences of processes that change some properties while leaving others unchanged. To understand the
geometric nature of dynamic reality in this sense is critical to understanding what is physically possible.

Given the ubiquity and the foundational role of the physical sciences in all branches of science and
engineering, it ought to be at the core of every ontology of dynamic reality to conceptually explicate what
it means for a process to be physically/dynamically possible or for a sequence of instantaneous states
to be physically/dynamically possible. The lack of such capabilities in current formal ontologies is an
expression of a conceptual gap between physical theories and formal ontologies.

In addition to the conceptual gap between physical theories and formal ontologies there is a formal
gap. Physical theories are usually stated semi-formally in the language of differential geometry. Reason-
ing is based on solving differential equations using methods of differential calculus combined with other
means of algebraic reasoning (vector algebra or geometric algebra) or numerical computations (Arnold,
1992; Arfken et al., 2005; Hestenes, 2002). By contrast, formal ontologies are based on the explicit ax-
iomatic representation of geometric/topological/mereological relations within the formal calculus of pred-
icate logic. While reasoning using differential calculus heavily uses structural properties implicit in the
geometry of the underlying spaces, formal ontologies seek to explicate such structural aspects within the
framework of a fully axiomatized formal theory.

To help bridging the conceptual as well as the formal gap between physical theories and formal ontolo-
gies this paper provides a geometry-based analysis of ontologically and conceptually relevant structural
aspects of classical mechanics and then develops an axiomatic theory that captures the notion of ‘dynamic
possibility’ in the context of a mereology-based axiomatic theory. The resulting formal theory in conjunc-
tion with its computational realization in Isabelle/HOL (Nipkow et al., 2002; Paulson and Nipkow, 2017)
are intended to serve as a framework to relate conceptual and formal structures of physical theories to con-
ceptual and formal structures in formal ontologies in a way that supports the computational verification of
the resulting formalisms.

Ideally, a formal ontology is an axiomatic theory that is strong enough to make underlying commit-
ments explicit by excluding the models that are inconsistent with those commitments. Unfortunately, to
express many of the ontological commitments inherent in classical mechanics requires highly expressive
languages including the language of differential geometry (Fecko, 2006). In order to deal with the fact
that a formal ontology expressed in (a language that in essence is equivalent to) the language of first or-
der logic will not be strong enough to make explicit all the ontological commitments that are explicit or
implicit in physical theories, the following intermediate path is taken: In the first part of the paper a class
of models that captures ontologically relevant aspects of classical mechanics is specified semi-formally
in the language of differential geometry. This class of models is general enough to capture a significant
number of ontologically relevant classical mechanics.

The axiomatic theory that is developed in the second part focuses on the logic of parthood, instantiation
and location but is tightly linked to this class of models through the explicit specification of the intended
interpretation of the primitives of the formal theory. To make explicit what is meant by ‘physically or
dynamically possible’ a modal predicate logic is used (Sec. 4).! In this way the presented formal ontology
provides means to give precise and formal formulations of specifications of primitives that in many cur-
rently existing ontologies are realized only as informal elucidations. In BFO (Smith, 2016), for example,
there are informal elucidations of the form: "ELUCIDATION: A spatial region is a continuant entity that
is a continuant_part_of spacer as defined relative to some frame R." (Smith, 2016, 035-001). The for-
mal ontology presented here provides a precise interpretation of primitives such as ’Spatial Region’ and
’continuant_part_of spacer’ in a way that directly corresponds to the understanding of such notions in
classical mechanics. A summary of how informal elucidations of the current version of BFO can be given
a precise formulation is given in Sec. 7.2.

'Some features of second order logic are used in order to avoid axiomatic schemata which would be difficult to represent in
the HOL-based computational representation of the formal theory.
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Fig. 1. From left to right: A simple pendulum system II consisting of the bob mounted to the ceiling via a massless rod. The
location of the bob is represented by its center of mass. Since the pendulum swings in a fixed plane, the spatial location of the bob
is determined by the angle 0; the configuration space of II with II’s cosine-shaped worldline; the state space of IT with its circular
trajectory of sequences of states determined by location and velocity; the phase space of IT with its trajectory of sequences of
states determined by location and momentum. (Adopted from Wikimedia Commons (2016).)

1.2. Classical mechanics from an ontological perspective

The term ’Classical mechanics’ here is understood as non-quantum mechanics. Within the realm of
classical mechanics the focus is on the mechanics of systems consisting of finitely many particles that can
be described without the machinery of dynamic field theories (Marsden and Ratiu, 1999) and statistical
mechanics (Frigg, 2012). Although nowadays classical mechanics is superseded by quantum mechanics
and does include dynamic field theories as well as statistical mechanics, the scope of the paper is still rich
enough to address ontologically relevant problems at the intersection of logic, metaphysics, and physics.

Classical mechanics in the sense understood in this paper is based on a number of fundamental meta-
physical, logical, and formal assumptions (Hestenes, 2002, p. 121):

(1) Every physical object/system is a composite of (atomic) particles.

(2) The behavior of particles is governed by their interactions with other particles. Interactions in turn
are processes in which particles participate.

(3) The properties of physical wholes are determined by the properties of their parts.> The aim of me-
chanics is it to describe wholes based on a classification of particles and a classification of interactions
between particles.

(4) There exists a four-dimensional spacetime in which particles are located and in which interactions
take places.

Based on (1-4) particles can be characterized in classical mechanics geometrically if the following con-
ditions are satisfied: (i) Every particle is located at a unique region of space at every time of its existence;
(i) Particles exclusively occupy their location at any given time; (iii) Continuity of existence manifests
itself in terms of continuous change of location, i.e., continuous motion; (iv) The state of motion of a
particle at a given point in time is uniquely determined by the location of the particle at that time in con-
junction with the rate of change of location (the velocity) of the particle at that time. If (i-iv) obtain then
(a) every particle is uniquely identified by the (sequence of) location(s) it occupies during its existence —
the particle’s worldline in spacetime and (b) every particle is uniquely identified by the (sequence of) its
states of motion — trajectories in spaces of possible states. Worldlines and trajectories are illustrated for a
simple pendulum in Fig. 1.

There are at least three frameworks for specifying possible behaviors of physical systems (Abraham and
Marsden, 1978; Arnold, 1997): the Lagrangian framework, the Newtonian framework, and the Hamilto-
nian framework. Roughly, in the Lagrangian framework the focus is on expressing physical possibilities in
terms of geometric constraints on possible worldlines in spacetime (e.g, constraints that result in cosine-
shaped worldlines like the one depicted in the image labeled ‘configuration space’ of Fig. 1). In the other

“This is not to imply that set of properties of the parts is a subset of the set of properties of the whole.

3Classical theories differ in their assumptions about the structure of spacetime as well as to whether spacetime is a substantive
manifold or whether spacetime is a metric field and the manifold is only a descriptive vehicle to label locations and to express
smoothness conditions (Rovelli and Vidotto, 2015).
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two frameworks the focus is on geometric constraints on possible trajectories in more abstract spaces (e.g,
constraints that result in circular trajectories like the ones depicted in the images labeled ‘state space’ and
‘phase space’ of Fig. 1). Each of the frameworks has strengths and weaknesses when considered as tools
for the working physicist: The Lagrangian formulation is particularly useful (in the sense of efficient to
work with) for constrained systems (roughly systems for which the laws that constrain possible changes
of location take the form F' = m&). On the other hand the Hamiltonian formulation is particularly use-
ful (again, in the sense of efficient to work with) for closed systems (roughly, systems in which energy
and momentum are conserved). Due to space limitations the discussion here will focus on the Lagrangian
framework. In addition to the Lagrangian, Newtonian, and Hamiltonian frameworks, approaches to clas-
sical mechanics differ in the spacetime structure they presuppose. In this context it will be necessary to
distinguish Newtonian spacetime as well as the Minkowski spacetime of special and general relativity
(Sec. 2).

Despite the differences of the various approaches to classical mechanics they all share a number of
ontological commitments which can be analyzed by explicating the following structural features at the
intersection between metaphysics and physics:

(I) Commitments regarding the structure of spacetime in which actual physical particles exist (and form
mereological wholes) and physical processes actually occur (Sec. 2);

(II) Commitments regarding the structure of spaces of possibilities (configuration/state/phase spaces)
which constrain geometrically what is physically possible (Sec. 3);

(III) Commitments regarding constraints on the actualization of logically, metaphysically, and physi-
cally possible entities. One way of expressing such constraints and commitments is in terms of re-
strictions on their instantiation of physical entities at regions of spacetime (Sec. 6).

The axiomatic theory presented in the second part of this paper aims to provide a formal framework that is
general enough to address (I-III) in a way that is (a) consistent with the various conceptions of spacetime in
classical mechanics and (b) lends itself to computational representations that facilitate formal validation.

For readers trained in formal and applied ontology but without much background in physics and differ-
ential geometry it may be beneficial to skim through the development of the formal ontology in Sec. 4 —
6 and the discussion in Sec. 7 before going through the details of the formal models and their differential
geometry in the first part of the paper.

2. The geometry of spacetime in classical mechanics

In this section the language of the differential geometry of manifolds is used to explicate some of the
ontological commitments underlying classical physical theories. Manifolds are mathematical structures
capable of capturing important topological and geometric aspects of spacetime and of physical systems.
In particular they provide formal means to spell out what smoothness and continuity of change means.
This is because their geometry is characterized not only by points, curves, and relations between them but
also by their tangent spaces and the geometric objects that populate these spaces (vectors, vector fields,
etc.) in conjunction with relations between them. In addition, manifolds establish the links between such
geometric objects and their numeric representations that are critical for the working physicist in order to
perform actual computations. For a brief review of differential geometry see Appendix A. A summary of
the notations introduced in Appendix A is given in Table 1. The mathematical structures introduced in this
and the next two sections will provide the intended interpretation of the axiomatic theory developed in the
second part of the paper.*

*There is an ongoing debate in the philosophy of physics and the philosophy of quantum mechanics about the reality of the
geometric structures invoked by the physical theories. The positions range from the claim that the geometric spaces discussed in
the next two sections are purely mathematical in nature and what is real are spacetime in conjunction with the geometric features
of spacetime that are picked out using the mathematical apparatus of differential geometry (one of the most common example of
this view is the instrumentalist view of the wave function in Quantum mechanics (Ney, 2012; North, 2012)). On the other end
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symbolic expression  description defined in
M Manifold Al
M; C M,y M3 is a submanifold of Mo A.l
LIS Union of a set S of manifolds such that the result is a manifold.
TeM Tangent space on manifold M at point x € M A.l
M Tangent bundle on M. T'M is the disjoint union of the tangent A.l
spaces T, M for all x € M
y:R—-> M parametric curve on M A2
yC M v =ar {7(1) € M | 7 € R} is the curve v C M represented A2
by the parametric curve y(7) with 7 € R
E= L1 £ is the tangent on ~y at point x € ~y A2
H:M—>%® H is a scalar field on M A2
X:M—>TM X is a vector field on M such that X, = X (z) € T, M for all A2
reM
VxR — M integral curve through x € M with respect to the vector field Eq. 23
X : M — TM.Le., if y(7) = y then X (y) is the tangent on
yaty € M
Table 1

Summary of Appendix A: Basic notions of differential geometry
2.1. Geometric structure

The topological structure of spacetime in classical mechanics is identified with the structure of a n-
dimensional Hausdorff (Alexandroff, 1961) manifold® with the topology ST = (R x M) for some (n—1)-
dimensional manifold M (See Appendix A). The topology of time is identified with the topology of the
real numbers and the topology of space is identified with the topology of some Hausdorff manifold M. In
classical mechanics the dimension of M is usually 3. The geometric structure of the spacetime manifold
ST is induced by a symmetric bilinear functional g on ST (Arnold, 1997) — the metric field. Roughly,
a metric field g on a manifold ST is a symmetric mapping g, : (1,87 x T,8T) — R, that, at every
point x € ST, maps pairs of vectors &, 7 in the tangent space 1,,S7 of ST at point x (Table 1) to a real
number such that g, (£,1) = gz(n,€) (g is symmetric at all points z of the underlying manifold). The
expression |£]? =45 9=(&, &) defines the square of the length || of the vector £ € T,,ST according to the
metric g of ST at point x (see Arnold (1997) for details). Thus, if the tangent space 1, ST sufficiently
closely approximates the neighborhood of « in M then if the vector £ € T,,ST begins at x and ends at the
point y € M then |£] is just the distance between the points = and y according to the metric field g in the
neighborhood of z. Differential geometry then provides means to combine local linear approximations to
determine the length of smooth curves in possibly curved spacetime manifolds (Arnold, 1997).

Classical mechanics includes the following postulate (illustrated in the left of Fig. 2):

Postulate 1 (adopted from the work of Belot (2007)). The geometry g of the spacetime manifold (ST, g)
singles out: (a) a distinguished class o(T) (see below) of hyper-surfaces that correspond to instants of
time (or time-slices) and (b) a distinguished class 1" of curves that correspond to (geometrically) possible
worldlines of particles.

Let ST be a n + 1 dimensional manifold with topology (% x M) where M is a manifold of dimension
n (usually 3). In addition, let 7 be a n-(usually 3) dimensional manifold (7, g7) carrying a Riemanian
geometry (i.e., g7 is required to be symmetric, definite positive, and may vary smoothly) (Arnold, 1997):

of the spectrum there are positions that hold that the structures discussed below are as real as spacetime itself (examples include
the view of wave function realism in Quantum mechanics (Ney, 2012; North, 2012) and views of structural realism (Ladyman,
2016)). The presentation here aims to remain neutral with respect to the various interpretational choices. The aim is to provide a
framework in which such choices can be made explicit.

>Roughly, in a Haunsdorff manifold there are for any distinct points x,y € M disjoint (open) neighborhoods U, Uu,c M
such that x € Uy, y € Uy, and U, N Uy = 0.



6 T. Bittner / Formal ontology of space, time and physical entities in Classical Mechanics

Y1Y2Y37"

Y172Y37"

1 (T) (T
1, (T) <@ 01,(T) .
0'7152 (7-) : Ut2 (T) time =2 ——» o

> o4, (T) €2 = 0 ~—

(imc—(i%l ‘flz <0

Fig. 2. T-slicings ¢’ and o of a spacetime with worldlines 1 — ~3,7” (left); Partition of spacetime into regions of |£|* > 0,
|€]* = 0, and €] < O (right).

Definition 1 (7 -slicing — adopted from the work of Belot (2007, Def. 27)). A T -slicing of (ST ,g) is a
smooth map (diffeomorphism) o : & x T — (R x M) with the following properties (Illustration in the
left of Fig. 2):

(i) Every slice (t,o({t} x T)) = {(t,0¢(z)) | = € T} of the T-slicing o att € R is a hypersurface
(an instant, a timeslice) according to the geometry g of (ST, g). In what follows it will be convenient
to use the notation o(T) to refer to the timeslice {(t,o¢(x)) | © € T} in terms of the slicing o;

(ii) The T -slicing respects the worldline structure of spacetime in the sense that the set v* =45 o (R x
{z}) = {(t,0¢(x)) | t € R}, forany x € T, is a possible worldline of a particle through (t, o+(x)) €
ST according to the geometry g of (ST, g), i.e., ¥* € T.

(iii) The T-slicing o is such that for every t € R the mapping oy : T — o4(T) is an isomorphism
between T and o (T).

In the configuration space of Fig. 1 time slices are the vertical lines that are parallel to the 8 axis. Def. 1
gives rise to the following naming conventions:

Definition 2. The manifold T is called the abstract instant of the T -slicing o and each o(T) is called a
concrete time instant of the slicing o. The parameter t € R of o is called coordinate time associated with
0. % is the set of all T -slicing of a given underlying spacetime.

The time axis in the configuration space of Fig. 1 represents coordinate time. Similarly, in the left of Fig.
2 the parameters %1, to, t3 are coordinate times
Def. 1 is used to further constrain what is geometrically possible:

Postulate 2. For every kinematically possible spacetime (ST, g) there exists a T -slicing, i.e., ¥ # (.

In physical theories Postulates 1 and 2 are complemented additional kinematic and dynamic constraints
that restrict what is physically possible. This is discussed in what follows.

2.2. Classical spacetimes

Postulates 1 and 2 allow for a wide range of possible spacetime geometries including Newtonian space-
time, the global Minkowski spacetime of special relativity (Einstein, 1951; Minkowsk, 1908), and the
locally Minkowskian spacetime of general relativity (Einstein, 1951).

Newtonian spacetime. Newtonian spacetime has the geometric structure of an Euclidean manifold, i.e.,
the geometry of ST is isomorphic to the geometry of R4: (R*, 1) = (ST, g). The metric ¢ is a functional
that is symmetric, definite positive, and the same at all points of spacetime. In such a geometry there is a
unique slicing o of spacetime into timeslices, i.e., ¥ = {o'}. All timeslices are equipped with an Euclidean
geometry that is isomorphic to the geometry of 2. Newtonian spacetime does not place restrictions on
the rate of change of location (velocity) of physically possible entities. This puts Newtonian spacetime in
conflict with Classical electrodynamics where there is a maximum for the speed of light. (Norton, 2012)
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symbolic

expression  description

(ST,9) Spacetime manifold of topology (R x M) and geometry (metric field) g

Ga Metric field: g, : T,ST X T,ST — Ratx € ST, defines the length |£] of a
vector £ € T, ST via |€]> = g.(€,€)

(T,971) Abstract time slice with geometry g7. If ST has the topology R x M then T

has the dimension of M
T-slicingo A T-slicing o of (ST, g) isasmoothmapo : R x T — (R x M)

oe(T) Concrete timeslice (time instant, hyperplane of simultaneity) of spacetime ac-
cording to the 7 slicing o. Le., 04 (T) = {(¢,0¢(z)) | © € T }. oy is a isomor-
phism from 7 to o+ (7).

o(T) A particular slicing of spacetime S7 into hyperplanes of simultaneity

~® worldline « consistent with the slicing o identified by the point x € T, i.e.,

7' = At oe(x)) | t € R}
r The set of geometrically possible worldlines (Postulate 1)
PN The set of T -slicings (Def. 2) of a given underlying spacetime
Table 2

Spacetime ontology in terms of differential geometry

Global Minkowski spacetime. According to the theory of Special Relativity (Einstein, 1951; Minkowsk,
1908), spacetime (ST, g) has the structure of a manifold with topology (R x ®3) and a constant pseudo-
Riemanian geometry induced by the metric . That is, (ST, g) = ((R® x R3),n). In a constant pseudo-
Riemanian geometry the time-slices have an Euclidean geometry, i.e., the geometry of space is isomorphic
to R3. By contrast, spatio-temporal distances may be positive, zero, or negative. At every point z € ST
the metric n(x) partitions spacetime in regions of positive, negative and zero distance with respect to x
— the so-called light cone at = (right image of Fig. 2). More precisely, the metric field n of (S7,7) is
symmetric and indefinite but the same at all points of spacetime. A spacetime curve 7 is time-like if and
only if the square of the length all of the tangent vectors of ~ is positive®. The set of all time-like worldlines
of a Minkowskian spacetime is:

Pvy=g{yvel|VzeM:Vr'eR:z=~(7) —
VE € TuM : € = Lry(7) ;= — nu(£,€) > 0}

The restriction to time-like curves in Minkowski spacetime thereby geometrically encodes the postulate
of Special relativity that there is maximal velocity for particles — the speed of light.

€]

Postulate 3. The kinematically possible worldlines of particles in Minkowski spacetime are the time-like
curves of I'py.

Definition 3 (Proper time). The length of a time-like curve v € 'y according to the metric n is called
proper time.

The topology ST = (R x R?) in conjunction with the metric 1 does not fix a unique 7 -slicing o of
spacetime. That is, there are many distinct 7 -slicings of ST in X. Proper time (Def. 3) is considered more
fundamental than coordinate time (Def. 2) since it is directly linked to the underlying spacetime geometry
and does not depend on a particular slicing of spacetime.

The spacetime of general relativity. According to the general theory of relativity, spacetime has the
structure of a pseudo-Riemanian manifold with topology S7 = (R x M), where M is a three dimensional
Riemanian manifold — a smooth but possibly curved manifold. In contrast to the spacetime of special
relativity, the metric structure of spacetime according to general relativity is such that in the neighborhood
of every point x € ST the Minkowski metric 7 is only a linear approximation of the spacetime metric g,
at that point. In addition, the metric field g, may vary (smoothly) from point to point.

®0f course, the sign is pure convention which depends on the specifics of the definition of the Minkowski metric 1 (Minkowsk,
1908).
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Newtonian ST global Minkowski ST | local Minkowski ST
ST geometry global Euclidean | global Minkowski locally Minkowski
metric field is constant constant varies smoothly
distance function | symmetric symmetric symmetric
¢ is g2 > 0 €[ > 0or [¢]* = Oor|¢]* < 0
geometry of euclidean euclidean locally euclidean
timeslices constant constant varies smoothly
worldlines I I'n D 'yl

Table 3

Classical spacetimes that are consistent with Postulates 1 and 2.

From the perspective of formal ontology, the main result of the general theory of relativity (Einstein,
1951) is that the metric field is spacetime (Rovelli, 1997). The abstract (mathematical) structure of the
underlying manifold only provides means to label positions and identify positions across the various fields
that constitute physical reality. By contrast, the metric field is part of physical reality and interacts with
other fields.

3. Geometry and physical possibilities

In addition to spacetime, classical mechanics also presupposes additional spaces (manifolds) which
geometrically encode what is physically possible in the spirit of the Erlangen program (Klein, 1872). In the
Lagrangian framework the space that geometrically encodes the physical possibilities is the configuration
space.

3.1. Configuration spaces

In Lagrangian mechanics, the space of geometric possibilities of a single particle (system) arises from
a manifold with the topology (R x M) which is structurally identical to the spacetime manifold S7. By
Postulates 1 and 2 the manifold ((} x M), g) gives rise to the class of worldlines I', which constitutes the
space of geometrical possibilities of a single particle system. Additional constraints then further restrict
what is geometrically possible to what is kinematically possible (e.g., Postulate 3).

Example 1. Consider the configuration space of the simple pendulum in Fig. 1. The system consists of a
single massive particle (the bob) mounted to the ceiling via a massless rod. For many physical systems
— like the simple pendulum — it is possible to constrain geometric possibilities to certain sub-manifolds
of spacetime. In the case of the simple pendulum possible spatial locations are constrained to a class of
curves determined by the plane of movement and the length of the rod. The location in spacetime (and
therefore in configuration space) can be described by a time and an angle. The configuration space of the
simple pendulum is a manifold Oy with the topology R x R and a geometry such that Qi — S7T. That
is, Opr is a two-dimensional euclidean space with one spatial dimension, #, and one temporal dimension,
t, as displayed in Fig. 1. The temporal dimension is the coordinate time of the unique 7 -slicing of the
underlying Newtonian spacetime.

The restriction of possible locations to certain submanifolds of spacetime leads to the notion of gener-
alized coordinates (Abraham and Marsden, 1978) in Lagrangian and Hamiltonian mechanics. To simplify
the presentation in this paper the notion of generalized coordinates is omitted outside the sequence of
examples regarding the simple pendulum.

\Y

In contrast to the configuration space of a single particle system, the space that gives rise to the
geometric and kinematic possibilities of a m-particle system is a manifold Q(S7) with the topology
(R x (M1 x ... x M,y,)). Thatis, Q(ST) is constituted of the product of m manifolds My, ..., M,, and
the real numbers R. Every submanifold of the form (R x M;) with 1 < ¢ < m is an isomorphic copy
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of the underlying spacetime manifold S7. In addition every submanifold ((® x M;), g) gives rise to the
class of possible worldlines I'; — the space of geometric possibilities of the ith particle of the underlying
m-particle system. Every geometric possibility of an m-particle system as a whole is a combination of m
worldlines (y1,...,%m) € I'1 x ... x I';;, along which respectively each of the m particles can evolve
within realm of geometric possibilities of the system as a whole. The dimension of the configuration space
Q(ST) may be relatively small as in the case of an (insulated) two-particle system or gigantic as in the
case of the observable universe as a whole with its approximately 1036 particles.” Postulate 1 is assumed to
generalize to the higher-dimensional spaces Q(S7) of geometric possibilities of multiple particle systems
in the obvious ways:

Postulate 4 (Geometry of configuration space). For a configuration space Q(ST) the geometry g of the
underlying spacetime manifold ST singles out: (a) a distinguished class o(Q(T)) (see below) of hyper-
surfaces of Q(ST) that correspond to instants of time and (b) a distinguished class I'y x ... x 'y, of
curves that correspond to possible worldlines of systems of m particles.

Let Q(ST) = (R x (My x ... x M,,)) be a configuration space that satisfies Postulate 4. Let 7< =
(71 X ... X Tm, g) be a system of m isomorphic copies of abstract time slices with geometry g such that
there is a submanifold (77, g) C T < for every of the 1 < i < m particles.

Definition 4 (7 <-slicing). A T <-slicing of Q(ST) is a smooth map o : R x (Ti X ... X Tm) —
(R x (My X ...x M,,)) with the obvious generalizations of the properties specified in Def. 1:

(i) Every slice | ||, {(t,0:(z)) | = € T} of the T %-slicing o at t € R is a hypersurface according
to the geometry g of (Q(ST), 9);

(ii) The T 2-slicing respects the worldline structure of the configuration space: For every (1,...,2m) €
Ti X ... X T the curves (7', ..., 7Em) € {(t,o1(z1)) | t € R} x ... x {(t,00(z)) | t € R}
form a possible m-tuple of worldlines of a system of m particles through (t, (o¢(x1),...,0¢(zm))) €

Q(ST) ifand only if (7', ..., yEm) € Ty X ... x Ty,
(iii) The T 2-slicing o is such that for every t € R the mapping oy : T; — o¢(T;) is an isomorphism
between T; and o (T;).

Classical mechanics then requires :
Postulate 5. For every kinematically possible configuration space Q(ST) there exists a T 2-slicing.

Not all combinations of m single particle worldlines that are possible according to Postulate 5 are possible
for composite systems. For example, kinematically possible worldlines of classical particles must not
overlap because distinct particles cannot occupy the same spacetime location. In addition there are further
constraints on kinematic possibilities that arise from the underlying spacetime structure. For example, in
Minkowski spacetime kinematically possible worldlines in configuration space are time-like.

In what follows '€ C T'; x ... x T, is the classes of kinematically (T'9) possible worldlines in the con-
figuration space of a m particle system. The context will disambiguate between the kinematically possible
worldlines in configuration spaces that arise from Newtonian spacetime or from Minkowski spacetime.

3.2. Lagrangian mechanics and dynamic possibilities

Only a subset of the kinematically possible worldlines are dynamically, i.e., physically, possible. To
specify the dynamics of a physical system in the Lagrangian framework is to identify worldlines along
which physically possible processes can occur and along which physically possible particles can evolve.
The left part of Figure 3 depicts kinematically possible worldlines of a free particle p in a two-dimensional
configuration space, i.e., (R x ®) = ST = Q(ST). The paths from ’start’ to ’finish’ represent (parts of)

"In concrete coordinate based descriptions of an m-particle system in a configuration space Q(ST) of dimension 3m+ 1 — one
dimension for coordinate time (Def. 2) and three spatial coordinates of each of the m particles. Complex systems of worldlines
(Y1, ...,7m) are described by a single curve in the 3m + 1 dimensional space.
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symbolic
expression description
Q(ST) configuration space of a m-particle system with topology (R x (M; X ... X Mp,)) where every

M is associated with the space of possible locations of the ¢-th particle of a m particle system

(R x M;),g) Subspace of the kinematic possibilities of the i-th particle of the configuration space of a m
particle system — an isomorphic copy of the underlying spacetime manifold (ST, g)
(T2, 97) Abstract time slice of a configuration space Q(S T) with geometry g7 such that 7< = (7 x
. X Tm, g7) is a system of isomorphic copies of T -slices (7;, g7) with geometry g

T<-slicing o A TQ—slicing o of (Q(ST),g)isasmoothmap o : R x T< = Q(ST)

ot (TQ) Hyper 1ane of simultaneity in configuration space accordlng to the 72 slicing 3. Ie.,
or(T=) =A{(t, (oe(x1), ..., o(zm))) | (21,...,2m) € T2}, such that for 1 < i < m: oy
is an 1som0rphlc map from 'T to a4 (7;).

a(T9) A particular slicing of configuration space Q(S7T) into hyperplanes of simultaneity

Iy The geometrically possible worldlines of the ith particle in the submanifold ((R x M;), g) of
Q(8T)

re/r- Set of kinematically / dynamlcallg possible systems of worldlines of a m particle system with
configuration space Q(S7): CTrecrlix...xI'y

Prj¢ | Pri* Set of kinematically / dynamically possible worldlines of spacetime along which a m-particle
system can evolve
Table 4

The differential geometry of possibilities in a configuration space of a m particle system

kinematically possible woldlines, i.e., members of I'C. The curve labeled *path taken’ is the dynamically
possible curve from ’start’ to *finish’ and is a member of I'*  T'C.

The essence of the Lagrangian framework is to identify the dynamically, i.e., physically, possible world-
lines within the larger class of kinematically possible worldlines using a scalar field that is called The
Lagrangian L. Intuitively, at each point in configuration space the Lagrangian field describes the possible
interactions of a particle at that point with other particles in the system. There is the potential (in the sense
of a disposition (Choi and Fara, 2016)) for interactions at every point of spacetime and this gives rise to
continuous potential fields in configuration space. The possible interactions of a particle p at a given loca-
tion o with the other particles in the system are constrained by the potential fields in the neighborhood of z
in conjunction with p’s state of motion. The information about all possible interactions at = in conjunction
with all possible states of motion of a particle at x is encoded in the value of the Lagrangian field at x.

More precisely, the Lagrangian L is a scalar field on the tangent bundle 7'Q(S7T) of the configuration
space Q(ST). Thatis, £ is a function that takes a point x € Q(S7T) and a vector £ € T, Q(ST) to the real
numbers while taking into account the potential fields in the neighborhood of x. Consider the free particle
p in the left of Fig. 3 and let v — Q(S7T) be one of the kinematically possible worldlines displayed in the
picture. In addition, let £ € T,,(Q(S7T)) be a tangent vector on +y at point x € Q(S7T ). In most classical
systems the value of the Lagrangian £L(x, {) is identical to the difference of the kinetic energy (K) and the
potential energy (U) of p at z. The kinetic energy of a particle p at x is usually determined by p’s velocity
¢ at x and p’s mass. The potential energy of p at x is determined by the interaction of p with (fields in) the
environments near x. For the free particle in the left of Fig. 3 the potential field is zero.

Example 2 (Cont. from Example 1). As discussed above, the location of the bob of the simple pendulum is
a function of the angle 6. Assume that # = 0 in the equilibrium position (the position of minimal height).
The configuration space Qry is a two-dimensional euclidean space with one spatial dimension ¢ and one
temporal dimension ¢ as displayed in Fig. 1. The tangent bundle (Appendix A) T'Qp of QO consists of
points ((0,t), ) such that § € T{9,1)Qn- The Lagrangian field Ly is a mapping of type Ly : TQn — R.
As in most classical systems the Lagrangian field of the simple pendulum varies across space but not
across time and therefore the temporal coordinate is omitted in the specification of the Lagrangian field.
The Lagrangian field of the simple pendulum is defined as:

L11(0,0) = K(6) —U(#) = %ml%z —mgl(1 — cosf) (2)
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Here m is the mass of the bob, g is the gravitational constant which specifies the gravitational interaction
of the Earth with massive objects near its surface and [ is the length of the massless rod.

\Y

position
paths not
taken

finish

path taken

start

time

Fig. 3. Kinematically and dynamically possible worldlines (left)(Quincey, 2006); Dynamically possible worldline and the under-
lying Lagrangian vector field (right) (Dawkins, modified).

To determine the space of dynamically, i.e., physically, possible worldlines of a physical system with
configuration space Q(S7) is to identify kinematically possible curves that are stationary with respect
to the Lagrangian field £. The formal expression of this this statement is known as Hamilton’s principle
(Postulate 7 of Appendix B). Consider, again, the left part of Fig. 3. Intuitively, the curve labeled ’path
taken’ is the dynamically possible curve from ’start’ to ’finish’ because infinitesimal changes of the curve
in the interval between ’start’ to *finish’ do not change the ’sum’ (i.e., the integral) of all values for £ along
the curve within this interval (See Eq. 25 of Appendix B). An infinitesimal change of the curve means that
the system takes a slightly different path in the configuration space to get from ’start’ to *finish’ (Def. 6 of
Appendix B).

The Lagrangian (scalar) field £ in conjunction with Hamiltons principle gives rise to a Lagrangian
vector field X* on the configuration space Q(S7). The dynamically possible worldlines v € T'* are
the integral curves (Eq. 23 of Appendix A.2) of the vector field X* (Def. 5 of Appendix B). The image
in the right of Fig. 3 displays the dynamically possible worldline ¥ € T'* as an integral curve of the
Lagrangian vector field X~. Roughly, the image is a graphic representation of the geometry underlying
an equation of motion of the form F(y(t)) = m#(t), where F is the Lagrangian vector field and the
curves v € I'X that make the equation true are the integral curves and therefore the dynamically possible
worldlines (Appendix B). 4(¢) is the rate of change of the rate of change at y(t) for all ¢ € R, i.e., the
acceleration on a particle moving along v at y(t).

Example 3 (Cont. from Example 2). The Lagrangian field of Eq. 2 of Example 2 gives rise to the La-
grangian vector field. This field maps every point in configuration space to the gradient (direction of steep-
est slope) of the potential field U at that point:

oL
X5 :(0,t) € O — 5—91-[’(9,0 € Tio,CQn ®

Since the potential field (like the Lagrangian field) varies across space but not across time the gradient is
a vector along the #-axis of length mgl(1 — sin #). The dynamically possible worldlines v € Fﬁ are the
integral curves of this vector field. The integral curves are the parametric curves y(¢) = 6(t) that make
the equation of motion

0(t) + %sin&(t) =0 )

true. The equation of motion is obtained from the Lagrangian field via Hamilton’s principle as described
in Appendix B. A particular curve v* among the set of dynamic possibilities (a specific solution) is picked
out by specifying a point = (6, t) in conjunction with the rate of change 6 of ~y at x — the initial state of
the particular system.

\Y
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3.3. Projecting onto spacetime

Every kinematic and therefore every dynamic possibility in the space of kinematic and dynamic pos-
sibilities I'* C I'? is a system of worldlines (71,...,%,) € I'T © along which a system with m parti-
cles can evolve according to the laws of kinematics and dynamics. In the presented geometric framework
possibilities in configuration space need to be projected back into spacetime:

Postulate 6. The kinematic possibilities of a m-particle system in configuration space correspond to
mereological sums of worldlines in spacetime. The m-tuples of possibilities (Y1, . .., Ym) € '€ are related
to worldlines v C ST via projections of the form:

Prif =ar (o) €79 (-9} ) ST, ®)

where the union of manifolds | |{1,...,Vm} represents mereological sums of worldlines.

The set of kinematically possible worldlines of spacetime along which kinematically possible m-
particle systems can evolve is:

PriS =ar {pri2 (s )| (15 - - - Ym) € T2} (6)

Similarly prj~ is a map that take m-tuples of dynamically possible worldlines of configuration space to
submanifolds of spacetime. Prjﬁb is the corresponding set of spacetime (sub)manifolds. The mappings
prj,% and prjfn a play a critical role in constraining the interpretation of the predicates of the formal theory.

4. A logic of metaphysical, kinematic, and dynamic possibilities and their actualization in
spacetime

At the ontological level a three-dimensionalist (Lowe, 2002) (BFO- or DOLCE-like (Smith, 2016;
Gangemi et al., 2003)) top-level ontology is assumed. In such an ontology there is a fundamental distinc-
tion between the categories of continuants and occurrents. Physical particles and fields are continuants
and physical interactions and movements are occurrents. To specify the classes of kinematic and dynamic
possibilities in the framework of a formal ontology a two-dimensional modal predicate logic is used. The
modal logic is two- dimensional because there are two kinds of modalities in the formal ontology corre-
sponding to two kinds of accessibility relations that characterize the underlying physics (details are dis-
cussed in Sec. 4.2 and Sec. 7.1). The computational representation is realized using the HOL-based theo-
rem proving environment Isabelle (Paulson and Nipkow, 2017; Paulson, 1994). (Details in Sec. 7.3.) The
second order features of Isabelle/HOL are essential to the encoding of the modal aspects of the formal the-
ory (Benzmiiller, 2015; Benzmiiller and Woltzenlogel Paleo, 2015). In this context it then makes sense to
employ the resources of the underlying higher order logic also in the object language of the formal theory.
Second order features are, however, used only in a very limited way to (a) avoid the kinds of axiomatic
schemata that are often used for formalizing mereological sums (Sec. 5.1) and (b) for expressing that there
are finitely many atomic entities (Sec. 6.3).

In the first two subsections the syntax and the semantics of the formal language are specified in the
standard ways (Gabbay, 2003; Hughes and Cresswell, 2004). A specific class of models, XS-structures,
are introduced in the third subsection. JCS-structures are intended to connect the physics encoded in the
differential geometry of the first part of the paper with the formal ontology in the second part.
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4.1. Syntax

The formal language includes three disjoint sets of variable symbols: Varsy, VARsr, and Varg. Varsr
contains variables denoted by letters u, v, w, possibly with subscripts (u1, v2, etc.). VARsr contains vari-
ables denoted by capital letters A, B, etc. Varg contains variables x, y, z, possibly with subscripts. VARE
contains variables denoted by capital letters X, Y, etc. Var is the union Varsy U VARsr U Varg U VARE.
Pred is a set of predicate symbols. If F'is a n-ary predicate symbol in Pred and t1, . .., t,, are variables in
Varthen F't; . ..t, is a well-formed formula. Complex, non-modal formulas are formed inductively in the
usual ways, i.e., if o and 3 are well-formed formulas, then so are —a, A 5, V 5, — B, (), (Ix)
(Gabbay, 2003; Hughes and Cresswell, 2004). All quantification is restricted to a single sort of variables.
If not marked explicitly, restrictions on quantification are understood by conventions on variable usage.

Finally, the modalities OF, 0%, OF and O are included in the formal language, i.e., if a is a well-
formed formula, then so are (' and (O’ with i € {T', ©}.

4.2. Semantics

A model of such a multi-dimensional sorted modal language is a structure (Dsy, Dg, K, V). Dsr and Dg
are non-empty domains of quantification. XC is a non-empty set of possible worlds. V is the interpretation
function: if F' € Pred is a n-ary predicate then V(F') is a set of n + 1-tuples of the form (di,...,d,, &)
with dy,...,d,, € D and k € K, where D = P(Dsr) U Dsr U Dg. (P(Dsr) is the set of all subsets of
Dsr). In all possible worlds x € K the variables respectively range over all the members of Dsy and Dp.
A variable assignment . is a function such that (i) for every variable u € Varsy, pu(u) € Dsr, (ii) for every
variable x € Varg, p(x) € Dg, (iii) for every variable A € VARsy, u(A) € P(Dsr), and (iv) for every
variable X € VAREg, u(X) € P(Dg).

Every well-formed formula has a truth value which is defined as follows:

Vu(Fti...ty, k) =1if (u(t1),...,pu(tn), k) € V(F) and 0 otherwise;
Viu(a A B,k) =1ifV,(a, k) = 1and V, (B, k) = 1 and 0 otherwise;
Vu(a Vv B,k) =1if V,(a, k) = Lor V,(B, k) = 1 and 0 otherwise;
V,(—a, k) = 1if V, (o, k) = 0 and 0 otherwise;
V(o= B,k) =1if V, (o, k) = 00r V, (B, k) = 1 and 0 otherwise;
V. ((t)o, k) = 1if V,(ar, k) = 1 for every t-alternative p of 1 and 0 otherwise,
where a t-alternative p of p is a variable assignment that assigns the same domain
members to all variables except for ;
V, (O, k) = 1if V,(a, k') = 1 forall &’ € K such that R' (k, ") and 0 otherwise,
where R! is the accessibility relation on /C for OI'.
V,(O%, k) = 1if V,(a, k') = 1 for all " € K such that R¥(k, k') and 0 otherwise,
where R* is the accessibility relation on K for (1%,

”w
“w

)

A well-formed formula « is true in (Ds7, Dg, KC, V), i.e. V(o) = 1, if and only if V, (o, k) = 1 for all
k € K and all assignments p. Formula « is valid if « is true in all models. To simplify the presentation,
the explicit distinction between V and V,, will be omitted. Variables in the object language are written in
italics and for corresponding domain members the Sans Serif font is used.

I = T'* x ¥ is a set of possible worlds which has the internal structure of a product of two sets '~ and
3. K gives rise to a product frame of a two-dimensional modal logic (Gabbay, 2003). The accessibility
relations R!" and R of the resulting frame structure are defined as:

R =g {{{n,0), (12,0)) | (11,0, (12,0) € K}
R* =g {{(v,01), (.02)) | {v,01), (1. 02) € K}

RF and R¥ are both reflexive, symmetric, and transitive. That is, both, (I'*, R") and (X, R*) form equiv-
alence frames. In addition the two accessibility relations are compositionally related as folows (Fig. 4):

®)

81n the computational realization distinct quantifiers are introduced for each sort of variables.
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2 o 1y B 2 2
ot (vo,00) — (v%,0%)
RT RT RT
1
RT Y R®
ol — o (vhel) — (vho?)
JTE ]:F .7:2 X .FF

Fig. 4. Two accessibility relations in distinct frames (left) and two accessibility relations in a two dimensional product frame
(right) (adapted from the work of Gabbay (2003, p. 125))

If there are 1, 01, Y2, 0 such that RY ({y1,01), (2, 01)) and R*((72, 1), (72, 02))
then the pair (71, 72) € K is such that R* ({1, 01), (1, 02)) and RY ({1, 02), (72, 02));
If there are 1, 01, ¥2, 02 such that RE(<’)/1, 01>, <’)/1, O’2>> and RF<<’)/1, Jg), <’)/2, (72>)
then the pair (y2,01) € K is such that RY((y1, 01), (2,01)) and R* ({72, 01), (72, 02)).

©)

The ways in which these abstract and formal definitions are related to the underlying (meta)physics are
discussed in the course of the development of the formal theory and summarized in Sec. 7.

The formal theory includes the rules and axioms of Isabelle/HOL® as well as the S5-axiom schemata
K, Tryi, and 5 for i € {T', ¥} (Hughes and Cresswell, 2004). ¢ is defined in the usual way as the dual
of O fori € {I', ¥} (D). The Barcan formula and its converse are true in all models (BCr;).

D<>i <>iOé = ﬁ[ji—‘a KDi \:‘%O&—) /8) _> (DZOC N DZ,B)
To  Ola— a BCqi (z)0'a + O'(z)a
5o Ola — O« MSon O'0%a < 00

Lemma 1 ((Hughes and Cresswell, 2004, p. 249)). The system S5 (K+T+5) + BC is sound for all equiv-
alence frames.

Both modal operators are independent and the order of their application is immaterial (M Sp).
Lemma 2. M Sq is true in all product frames K = (T* x ¥, R"', R¥).

The proof follows immediately from Fig. 4 and Eq. 9. In what follows the notation Lo will be used as an
abbreviation for ' (0>« or equivalently 0*[" ov. Similarly for {c.

All axioms of the formal theory below are true in all possible worlds have an implicit leading [] operator.
In addition, leading universal quantifiers are omitted.'® Axioms BCr;; and M St ensure that the order of
leading universal quantifiers and leading L] operators is immaterial.

4.3. KCS structures

According to classical mechanics the number and kinds of fundamental particles is constant and so is
the number of spatiotemporal regions.!!'? In what follows the number of particles that exist is a metaphys-
ical parameter of the formal theory — the parameter m in Eq. 10. Within such metaphysical constraints of

° Again, none of the second order features of Isabelle/HOL that are used in the object language of the formal theory (Dsum
and A19) are essential. The theory could be expressed easily in a regular two-dimensional first order modal predicate logic with
identity.

1In the computational representation all quantifiers and modal operators are are stated explicitly.

Particle creation and annihilation is the subject of quantum field theory (Teller, 1997; Brown and Harré, 1996).

'2At this point it is assumed that in the context of a classical framework it is consistent to believe that the expansion of the
universe leads to the expansion of existing regions but not to the creation of new regions.
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what particles exist, the kinematic component of classical mechanics constrains along which worldlines
the metaphysically given particles can evolve and at which worldlines physical processes that involve
those particles can be located. Within the class of kinematic possibilities there is the class of dynamic
possibilities which, according to Hamilton’s principle, are the stationary curves of a system that is charac-
terized by a Lagrangian field £ (Sec. 3.2, Appendix B). The specific Lagrangian fields that determine the
dynamic possibilities of specific physical systems are often determined empirically (North, 2009) and are
treated logically as parameters of the formal theory. The relationships between metaphysical, geometri-
cal, kinematic, and dynamic possibilities are explicated in the metalanguage of the formal ontology using
KS-structures of the form

KS(m, L) =g (Dsr, D, K, V, 1,1, TS, InstST, AtE). (10)

The properties of ICS-structures are discussed in the remainder of this subsection and in the course of the
development of the axiomatic theory.

4.3.1. Regions of spacetime

The members of Dsr include the non-empty sub-manifolds of spacetime S7 . In particular, ST € Dsy.
Similarly, the set of all non-empty sub-manifolds of the members of Prj< (the set of all the mereological
sums of worldlines along which processes that involve systems constituted of m particles can possibly
evolve according to the geometry and the kinematics of spacetime (Eq. 5)) is a subset of Dgr, i.e., {7y €
Dsr | 3Y € Prj€ A v C +'} # (0. In addition, for all slicings & € X, the set of non-empty sub-manifolds
of the concrete time slices on the slicing o are members of Dgr, i.e., {U € Dgr | Jo € X : It € R:uC

ot(T)} # 0.

4.3.2. Physical possibilities

I = T'“ x ¥ is a set of physical possibilities. I'* is a set of dynamically possible worldlines along
which worlds/systems with m particles can evolve in a configuration space Q(S7T) with a Lagrangian
field £ (Eq.27 of Appendix B). X is a set of 7 <-slicings ¢ (Sec.3). The accessibility relations R' and
R* and their properties of reflexivity, symmetry, and transitivity in conjunction with the fact that R and
R* commute in the sense of Eq. 9 explicate a number of metaphysical commitments (to be discussed in
more detail in Sec. 7): (1) there are no logical distinctions among the dynamically possible worldlines in
I'Z, i.e., all physically possible worlds are equivalent from a logical perspective; (2) there are no logical
distinctions among the possible 7 <-slicings in X — in particular, there is no preferred slicing of spacetime;
and (3) there is no logical primacy of one accessibility relation over the other. That is, the logic of the
relation between physically possible worlds is independent of the logic of slicings of spacetime and vice
versa. In the object language this is expressed by the axiom M So.

4.3.3. The domain of entities

On the intended interpretation Dg is the domain of possible entities (particulars and universals) in a
world with m atoms — the set AtE with AtE C Dpg. While the number and kinds of atomic particles
that exist are fixed, whether and which complex continuants are formed by the given atomic entities is
a contingent matter. Whatever complex entities can exist, however, must obey the laws of mereology in
a way that is consistent with the mereology of the underlying spacetime. The domain Dg of possible
entities and the domain Dgr of regions of spacetime are linked via the relation of instantiation InstST C
Dr x Dg x Dgr x K.

As indicated in Eq. (10), the sets L, T1, TS, InstST, AtE of LS (m, L) serve as the interpretations of the
axiomatic primitives of the formal theory in the context of the worlds in K. A summary is given in Table
5.

4.4. An example model
For illustrative purposes and to check the consistency of the formal theory it will be useful to use a

simple and finite set-theoretic model to illustrate some important aspects of the KS-structures that were
introduced above. Due to its simplistic nature this model falls short of capturing many of the topological,
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symbolic

expression  description see

K Product frame with possible worlds of the form (y, o) € T*x%  Egs. 8, 9, Lemma 2

RF accessibility relation R C (I'“ x ¥) x (I'* x X) relating the  Eq. 8, Fig. 4
members of I'*

R® accessibility relation R C (I'“ x ¥) x (I' x X) relating the  Eq. 8, Fig. 4

members of %

KS(m, L) Intended class of models parametrized by a fixed number m of  Eq. 10
atomic particles and a Lagrangian L.

Dsr domain of regions formed by sub manifolds of spacetime in  Sec. 4.3.1
including spacetime itself, kinematically possible worldlines,
time slices, etc.

C the submanifold relation between members of Dsr, i.e.,
EC Dsr X Dsr

Dk domain of entities formed by particulars (continuants and oc-  Sec. 4.3.3
currents) and universals

\ interpretation function

u set serving as interpretation for the predicate signifying the Eq. 12
mereological union of two regions of spacetime; U C (Dsr X
DST X DST X IC)

n set serving as interpretation for the predicate signifying the Eq. 12
mereological intersection of two regions of spacetime; M C
(DST X DST X DST X IC)

TS set serving as interpretation for the primitive predicate for time Eq. 14
slices; TS C Dsr x K

InstST set serving as interpretation for the primitive instantiation pred-  Sec. 6.1
icate; INstST C Dg x Dg X Dsr X K

AtE set serving as interpretation for the primitive predicate for Sec. 6.3
atomic entities; AtE C Dg x K

Table 5
The class of intended models KS(m, £) =4 (Dsr, Dg, K, V,U, 1, TS, InstST, AtE). (Overview)

geometric and differential structures that were discussed in the first part of the paper. Nevertheless it will
make it easier to link the first part of the paper to the more logic and ontology orientated second part.

70(2)  75(2) 7(2) 0(2)  75(2)

0 0 1 1
o3(z0) | o3(x1) a3(T) | o3(21) @ | ) o
c_02 c_12 c_02 c_12 c_02 c_12 c_02 c_12 c_02 c_12
0 0 1 1 70(1) 75(1) m(1) F0(1) (1) Ml
oy (zo) | oi(z1) a3(20) | oy (z1)
() ] 6 (1)
c_01 c_11 c 01 c 1 c_01 c_11 c_01 c_11 c_01 c_11
0 0 L 1 7(0) 7%5(0) %1(0) 70(0) 35(0)
ap(zo) | og(z1) ollzo) | 20D %) | 720 50 71(0)
c_00 c_10 c_00 c_10 c_00 c_10 c_00 c_10 c_00 c_10
@ ®) 0 1 © @ @©
o o
7- x_0 x_1

Fig. 5. A simple toy model.

Consider a two-dimensional ’spacetime’ with six distinct locations as indicated in Fig. 5(a), i.e., ST =
{c00, €10, €01, C11, Co2, C12} according to the labeling in the figure. In this spacetime the sub-manifold
relation simplifies to the subset relation and thus the domain of spacetime regions is the set of non-empty
subsets of ST, i.e., Dsy = {r C ST | r # 0}.

Let 7 = ({zo,z1},g) be an abstract time slice (Def. 1, Fig. 2 (left)) with a geometry g defined as:

Oifu=w
9(u,v) = lifuwv
the slicing ¢ is defined as og(mi) = cio, 09 (z;) = ci1, 09(x;) = cio (Fig. 5(b)) and the slicing o is

. Suppose further that there are two slicing of spacetime ¥ = {¢%, o'} such that
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defined as Ué(xi) = c10, 01 (70) = co0, o1 (71) = c11, oa(20) = o1, 0a(T1) = C12, U%(ﬂ?i) = ¢qo for
i € {0, 1} (Fig. 5(c)). That is, a? for 7 = 0, 1, 2 are the three time slices that compose the slicing oY, and
ail for i = 0, 1,2, 3 are the four time slices that compose the slicing o!. Clearly, unlike ¢, ¢! is not an
isomorphism as required in Def. 1 because its inverse does not always exist. This is an artifact of the finite
nature of S7.

The worldlines that are kinematically possible with respect to the slicing o are visualized in Fig. 5(d).
The worldlines that are kinematically possible with respect to the slicings ¢° and ¢! are visualized in Fig.
5(e) and listed in Eq. 11. The temporal parameter of the -y; is understood to correspond to the (coordinate)
time according to the slicing o of ST, i.e., 7 € 0...2. The aim here is to illustrate that, according to
Postulate 3 which imposes a maximal velocity, it impossible for a particle to move from one position in a
timeslice to another position in the very same timeslice.

(1) = cor, TED...2; 75(0) = c10,v5(1) = c11,75(2) = co2; (11
mn(r)=cr, 7€0...2; v7(0) = c10,77(1) = co1, v7(2) = co2.

If one demands, in accordance with classical mechanics, that distinct particles cannot occupy the same
location in spacetime then worldlines of distinct particles cannot intersect. In a world with two atomic
particles the worldlines 7 and ~y; are the only kinematically possible particle worldlines. The only kine-
matically possible complex worldline in this world is (70,71) such that T'C = {(vo,71)}. The projec-
tion of (7p,71) from the configuration space Q onto the spacetime manifold ST is prj<((v0,71)) =
Lo, 1} = 76-

The corresponding laws of physics that are encoded in the Lagrangian field £ are such that neither
of the two atomic particles can change its spatial location , i.e., £ = 0. Suppose that neither particle
has potential energy. In such a world the underlying Lagrangian is of the form L(z, %) = %m:i:2 =0
and e = T¥ = {(qp,71)} is the set of dynamically possible worldlines in configuration space. The
projection on the spacetime manifold is 3.

In what follows the two atoms are called Aty and At;. Respectively Aty and At; evolve along the
worldlines vy and ;. In addition it is assumed that there exists a complex object Compl,, that is constituted
by the atoms Aty and At;. The worldline of Compl, is 73. On these assumptions X C T'* x ¥, the set of
physical possibilities, is £ = ({(70,71)}, {o%, o1 }).

Within the realm of physical possibilities in /C an ontology that commits to the existence of continuant
particulars, occurrent particulars as well as to universals which are instantiated by such particular entities
(e.g., BFO (Smith, 2016), DOLCE (Gangemi et al., 2003), etc.) then is committed to acknowledging the
existence of at least the following entities:

(i) The continuants Atg, At;, and Compl;

(ii) The occurrents Occy, Occy, and Occy (the respective lives of the above continuants);

(iii) At least two universals (UCy and UQg) which are respectively instantiated by the continuants and
occurrents.

On the given assumptions the set of physically possible entities is
Dg = {Aty, At;, Compl,, Occy, Occy, Occy, UCy, UOy }.

This example is constructed to minimize the number of physical possibilities without being trivial.
This simplicity of the example model greatly reduces the complexity of the (mostly brute force and case-
based) proofs that establish that the axioms of the formal ontology are satisfied in this toy model. In
general, within the framework of highly expressive languages, the more skilled the developer of the of the
computational realization of an ontology the more realistic and sophisticated the models that are realized
will be.
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5. Mereology of spacetime

In this section a formal theory of regions of spacetime that is based on work by Champollion and Krifka
(2015); Bittner and Donnelly (2004, 2006a) is developed. The theory is mereological in nature and thereby
mirrors the fundamental assumptions (1) and (2) of Sec. 1.2. As a mereological theory it falls short to
explicate many of the topological and geometric aspects of the manifold structures that are critical for
capturing the commitments underlying the kinematics and dynamics of classical mechanics. Those aspects
are captured in the meta-language which specifies the class of intended models — KS-structures. They
are linked to the mereology-based object language via the intended interpretation of the primitives of the
formal theory.

5.1. Mereology

To capture the mereological structure of spacetime regions the primitive binary operation U : Dsr X
Dsr — Dgr is introduced in the object language of the formal theory. On the intended interpretation LI is
the mereological union of regions U; and Us. More precisely, LI is interpreted as an operation that yields
the least upper bound | | : P(Dsr) — Dsr of the set {uy, U2} with respect to the ordering imposed on Dsr
by C. (See e.g., Champollion and Krifka (2015).) As specified in Eq. 12, the mereological sums are the
same at all possible worlds. This explicates at the level of the interpretation of the formal theory that the
mereological structure of spacetime is absolute in the sense that it is the same on all physical possibilities
and slicings.

The second primitive of the formal theory is the ternary functional relation M. On the intended inter-
pretation I is the mereological intersection that holds between regions Uj, Uz and U3 if and only if the
greatest lower bound [ ] : P(Dsr) — (DsrUD) is non-empty and ug = [ [{u1, uz}. (See e.g., Champollion
and Krifka (2015).) As in the case of mereological unions, the mereological intersections are the same at
all possible worlds (Eq. 12).

V(W) =U=g {(u1,u2,u3, k) € Dst x Dsy X Dsr x K | uz = | J{u1,us}}

= 12
V(I_I) =1 =df {<U1, Usg, Us, H> € Dsr X Dsr X Dy x K ‘ Us = |_|{U1,U2}} (12)

The binary predicate of parthood, P uwv, is defined to hold if and only if the union of » and v is identical to
v (Dp).B3 Proper parthood (PP), overlap (O), and summation are defined in the standard ways (Simons,
1987). The predicate ST holds of a region which has all regions as parts (Dsy).

Dp Puw=ulUv=w
Do Owv = (Fw)(Pwu A Pwv)
Dgym Sum A = (VYw) (O zw < (Fz)(z € AN O zw))

On the intended interpretation parthood is the submanifold relation and S7 holds of the spacetime manifold
ST . The overlap predicate is true if the greatest lower bound (with respect to C) of two regions (1) is a
member of Dgy. The Sum predicate holds of the least upper bounds of some non-empty subsets of Dy

DppPPuv=Puv Av #u
Dgr ST u = (v)P vu

V(P) = {{ui,uz,Kk) € Dgr x Dsgr x K | u; C Uz}

V(ST) = {(S8T,k) € Dsy x K| ST =|]Dsr} (13)
V(Sum) C {(u,A k) € Dst x P(Dsy) x K| A# D Au=]|]|A}

V(O) = {(UV,k) €EDsyr X Dsr x K| IWEDsr: WL uUA WLV}

Axioms are introduced requiring that U is idempotent, associative, commutative (A1 — A3). Structures
satisfying (A1 — A3) are called join semi-lattices. In the context of mereology join semi-lattices lack a

In most axiomatic formulations of mereological theories the parthood relation is selected as a primitive. There are many
equivalent choices of primitives and axiom systems which are all well understood (Simons, 1987; Varzi, 2003; Champollion
and Kirifka, 2015). The particular choice of primitives and associated axioms here is such that it best integrates in the existing
infrastructure of Isabelle/HOL to facilitate the computational realization of the formal theory.
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minimal element. This is reflected in axiom A4 which ensures that an intersection of two overlapping
regions exists. The resulting structure is a lattice without minimal element. Furthermore an axiom of
separation (A5) holds (Champollion and Krifka, 2015).'* There exists a spacetime region which has all
regions as parts (A6). Axioms A7 and A8 express in the object language that the mereological structure
of spacetime is absolute in the sense that it is the same on all physical possibilities and slicings.

Aluldu=u A5 PP uv — (Fw) (=0 uw A v = u U w)
A2u U (vUw) = (uUv)Uw A6 (Fu)(ST u)

A3ulv=vUu ATulUv=w — OulUv =w)
A4 0 uwv — (Fw) (N vow) A8 Muvw — O(MN uvw)

One can prove that P is antisymmetric, reflexive, and transitive (T1-3). If the parthood predicate holds
then it holds across all physical possibilities (T4). Region z is part of region y only if every region that
overlaps z also overlaps y (T5). The spacetime region is unique (T6). Sums are unique whenever they
exist (T7). Two regions overlap iff they have a non-empty mereological intersection (T8).

T1P uu T5 (u)(O ur — O uy) — P zy
T2Puv ANPovu—u=v T6STuNSTv —>u=wv
T3PuvANPovw— Puw T7 Sum uA N SumvA — u="v
T4 P uv — OP uv T8 O uv +» (Fw) (M uovw)

T1 — T8 show that A1 — A6 are the axioms of an extensional mereology (Simons, 1987; Varzi, 1996)
with a maximal element. Additional theorems that follow from the axioms can be found in the file
Plattice.thyathttp://www.buffalo.edu/~bittner3/Theories/OntologyCM/ (See
also Table 6).

5.2. Time slices

A third primitive is the unary predicate 7S. On the intended interpretation TS holds of time slices ot(7)
induced by the T -slicing o

V(TS) = TS=4{{u,(y,0)) €Dy xK|FteR:u=0(T)} (14)

The following mereological axioms for 7§ are added: distinct time slices do not overlap (A9); there are at
least two non-overlapping time slices (A10); every region overlaps some time-slice (A11).

A9 TSUuNTSvANOuwv —u=v A 5 O
A10 (Fu)(F)(TSu A TS v A =0 uv) 11 (Fu)(TSu A O wv)

In terms of the primitive time slice predicate spatial and soatio-temporal regions are defined: Spatial
regions are regions that are parts of some time slice (Dgg). Spatio-temporal regions are regions that overlap
two distinct time slices Dgrg).

DSR SRu = (Ht)(TS tAP ut)
Dgrr STR u = (E|t1)(§|t2)<TS ti NTS t9 A O uty A O utg A —=O tltg)

On the intended interpretation SR u means: Spatial regions u are parts of spacetime which, on a given T -
slicing o are sub-manifolds of some time slice induced by . On the slicing o the region w is not extended
at all in time. By contrast, on a given slicing spatio-temporal regions extend across time slices.

4By not requiring uniqueness of separation, Axiom (A5) is slightly weaker than the version in (Champollion and Krifka,
2015). For this reason the notions of mereological sum and the least upper bound of a set do not exactly coincide as indicated in
Eq. 13.
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V(SR) = {(U, (7, 0)) € Dsp x K | Tt € R : u T 0y(T)}
V(STR) = {{u, (v,9)) € Dsy x K | u E prji2(7) A (15)
E|t1,t2€§R: tl#tz/\UﬂUtl(T)#@/\Uﬁatg(r)#@}

This interpretation reflects at the level of the formal models that which submanifolds of S7 count as
spatial regions depends on the underlying slicing o.

One can prove: time-slices are maximal spatial regions (T9). Any part of a spatial region is a spatial
region (T10). Spacetime is a spatio-temporal region (T11); Spatio-temporal regions are parts of spatio-
temporal regions (T12); Spatio-temporal regions are not spatial regions (T13).

T9 TSu <+ SRuA T11 STu — STR u
(v)(SRv A O uv — P ou) T12 STRu N Puv — STRv
710 SRu N Pvu — SRv 713 STRu — ~SRu

Two regions are simultaneous if and only if they are parts of the same time-slice (Dspy)-
Dgiyy SIMU wv = (3w)(TS w A P uw A P vw)

On the intended interpretation:
V(SIMU) = {<U,V, <")/, 0'>> S DST X DST x IKC ‘ deceR:u C O't(T) AV LE Ut(T)} (16)

One can prove that SIMU is an equivalence relation (reflexive, symmetric, transitive) on the sub-domain
of spatial regions. SIMU wuwv is always false if u or v is a spatio-temporal region. Of course, which spatial
regions are simultaneous depends on the underlying slicing of spacetime.

5.3. Newtonian vs. Minkowski spacetimes

If ST is a Newtonian spacetime then 7S holds of the timeslices of the unique 7 -slicing o, i.e., ¥ = {o’}.
In such structures the axiom Ay holds (trivially). One can then prove that if a region is a spatial/spatio-
temporal region on some slicing then it is a spatial/spatio-temporal region on all slicings and that simul-
taneity is absolute (I'y1 — T'x3).

Ay TSu— O*TSu T2x STR u — O*STR u
T1nx SRu — O*SRu T3xn SIMU uwv — O¥SIMU wv

By contrast, if S7 has the global or local structure of a Minkowski spacetime then there are many
slicings, i.e., #X > 1. In such spacetimes the axiom A ;s holds requiring that simultaneity is not absolute.

Apr SIMU wv A u # v — O =SIMU uv

In Minkowski spacetimes some regions of spacetime are spatial regions on some slicings but not on others.
Similarly for some spatio-temporal regions.

6. Instantiation in spacetime

To link the ontological categories of a formal ontology to geometric structures that capture the physical
possibilities (Sec. 2 — 3 and Appendix B) a formal theory by Bittner and Donnelly (2006a) that explicitly
spells out the ways in which different kinds of entities can instantiate or can be instantiated in spacetime is
used. This choice allows to mirror at the formal level recent trends in physics to focus on the instantiation
and co-instantiation of universals rather than taking the location of particulars as fundamental (Pooley,
2013; Maudlin, 1993; Earman and Norton, 1987). The aim, again, is to provide a framework to explicate
choices and commitments rather than to defend or criticize specific choices.
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6.1. Instantiation, location, and categorization

A primitive ternary relation /nst between two entities and a region is introduced in the object language
of the formal theory. Inst xyu is interpreted as y is instantiated by x at region u (or, equivalently, x
instantiates y at region u or x is an instance of y at region u). On the intended interpretation: V(Inst) =4
InstST C D x Di x Dsr x K where the set InstST is part of the underlying XS structure (Eq. 10).
The following axioms (some are adopted from the work of Bittner and Donnelly (2006a)) are included in
the formal theory to constrain InstST: if = instantiates y at u then it is not physically possible that some
z is an instance of x at some region v (A12); every entity instantiates or is instantiated on some physical
possibility (A13); every entity is instantiated or instantiates at spatial regions or at spatio-temporal regions
(A14); if = instantiates at a spatial region then on all slicings: z instantiates at spatial regions (A15); if =
is instantiated at a spatio-temporal region then on all slicings: z is instantiated at spatio-temporal regions
(A16); if x instantiates y at a spatio-temporal region u then x is uniquely located (A17); if « instantiates
at two simultaneous spatial regions v and v then u and v are identical (A18).

A12 Inst zyu — —O(32)(Fv) (Inst zzv)

A13 O(Jy) (Fu) (Inst xyu V Inst yzu)

Al4 Inst xyu — (SR u V STR u)

A15 Inst zyu A SR v — 0% (2)(v)(Inst xzv — SR v)

A16 Inst yzu A STR v — 0% (2)(v) (Inst zxv — STR v)

ALT Inst xyu N Inst xzo ASTR u ASTRv — u = v

Al8 Inst xyu A Inst xzv ASRu ASRv A SIMU uv —u=v

Axiom (A12) guarantees that there is a categorical distinction between entities that instantiate and enti-
ties that are instantiated on all physical possibilities. Axioms (A14-16) ensure that entities cannot be in-
stantiated/instantiate at different kinds of regions of spacetime. That is, the categorial distinction between
entities that instantiate at spatial regions (continuants) and entities that instantiate at spatio-temporal re-
gions (occurants) is independent on the slicing of the spacetime manifold. Axioms (A17-18) explicate the
distinction between instantiation at spatial regions and instantiation at spatio-temporal regions. Axioms
(A16-17) ensure that entities that are instantiated at a spatio-temporal region (ocurrants/processes) are in-
stantiated at a single spatio-temporal region and this region must counts as a spatio-temporal region on all
slicings. This requirement restricts the spacetime regions at which entities can be instantiated. It mirrors
in the object language restrictions on kinematically possible worldlines as they are expressed for example
in Postulate 3. For entities that instantiate at spatial regions (continuants) the slicing affects which entities
instantiate simultaneously and at which spatial regions an entity is instantiated.

In terms of the instantiation primitive one can define: Entity x is located at region u if and only if there
exists an entity y such that x instantiates y at v or x is instantiated by y at v (Dp); Entity x exists at
timeslice ¢ iff there is a region at which z is located and that overlaps ¢ (Dg). An entity is persistent iff it
is not confined to a single time-slice (Dp,). Entity z is a particular if and only if = is a persistent entity
that instantiates at some region (Dp,,,). Entity x is a universal if and only if x is a persistent entity that is
instantiated at some region (Dyy;).

Dp, Pex = (Fu)(Fv)(L zu A L xzv A =SIMU uv)
Dpays Part x = Pe x A (y)(3u) (Inst xyu)
Dyyi Uni x = Pe x A (3y)(3u)(Inst yru)

Dy L xu = (y)(Inst zyu V Inst yxu)
Dp Ext =TSt A (Ju)(L zu A O ut)

Intuitively, L xu means: spatio-temporal entity x is exactly located at region u. This corresponds to the
usual understanding of the location relation in formal ontology (Casati and Varzi, 1999). In other words, x
takes up the whole region u but does not extend beyond u. Thus, my body is always located at a me-shaped
region of space at all times at which my body exists. My life is uniquely located at my worldline. On the
intended interpretation:
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V(L) = {<X, u, I£> € D x Dst x K |
Jy € Dg : (X,y,u,k) € InstST Vv (y, X, u, k) € InstST}
V(E) = {{Xt(v,0)) €D x Dy x K |IreR:t=0,(T) A
HUGDSTZ<X,U,<’Y,O'>>EV(L)/\UQt#@} (17)
V(Pe) = {{X(y,0))€eDpxK|3:u,veDsr:
(X,u,k) € V(L) A (x,v, k) € V(L) A (X,u,V,k) & V(SIMU)}
V(Part) = {(X,k) € V(Pe)|3dy € Dg:3u € Dsr: (X,y,uU,k) € InstST}
V(Uni) = {(X,k) €V(Pe)|3dy € Dg:3uec Dsr:(y,X,U,k) € InstST}

One can prove: if an entity « is located at a spatial region then x is located at spatial regions on all possible
slicings of spacetime (T14). Similarly for entities located at spatio-temporal regions (T15). Every entity is
either on all slicings located at spatial regions or on all slicings located on spatio-temporal regions (T16).
Particulars are particulars on all physical possibilities in which they exist (T17). Similarly for universals
(T18). It is physically possible for every entity to exist at some time(slice) (T19).

T14 L zu A SRu — O%(v)(L zv — SR v) T17 Part x — O((3u)(L xu) — Part x)
T15 L zu A STR v — O%(v)(L xv — STR v) T18 Uni x — O((3u)(L xu) — Uni x)
T16 (0%(L zu — SRw)) V (O (L xu — STRu)) T19 O(3t)(E xt)

Persistent entities are distinguished into continuants and occurrents. Entity x is a continuant iff x is
persistent and x is located at some spatial region (Dcopy) - By contrast,  is a occurrent iff x is located at
some spatio-temporal region (Docc).

Dcons Cont x = Pe x A (u)(L xu A SR u) Doee Oce = (3u)(L xu A STR u)
On the intended interpretation :

V(Cont) = {(x, k) € V(Pe) | 3u € Dy : (x,u, k) € V(L) A {u,x) € V(SR)}
V(Oce) = {(x,k) € V(Pe) | 3u € Dsr: (x,u,x) € V(L) A {u, ) € V(STR)}

One can prove that continuants are continuants on all slicings in which they persist (T20). Similarly for oc-
currents (T21). Occurrents are persistent entities (T22). Continuants are not occurrents (T23). Continuants
are always located at spatial regions (T24) and occurrents are always located at spatio-temporal regions
(T25).

(18)

T20 Cont x — 0% (Pe x — Cont x) T23 Cont x — —Occ x
T21 Occ x — 0% (Pe  — Occ ) T24 Contx N Lxzu — SRu
122 Occx — Pex T250ccx N Lzxu— STRu

One can also prove that occurrent particulars are uniquely located (T26), and continuant particulars
uniquely located within time slices (T27).

T26 Occx N Partx NLxuANLzv—u=wv
T27 Cont x A\ Partx N Lxu N Lzv ASIMUuwv — u=wv

Finally, an axiom is included that ensures that every persistent entity has a worldline (A19). Region u
is the worldline of entity x if and only if u a spatio-temporal region that is the mereological sum of all
locations at which x is located (Dwiop);

Dwiof WLOf zu = STR uw A w Sum {v | L zv} A19 Pe x — (Ju)(WLOf zu)
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On the intended interpretation WLOf is:

V(WLOf) = {(x,V,(y,0)) € Dg x Dsy x K | (v, (v,0)) € V(STR) and
v=[H{u€Dsr|{x.u,{y,0)) € V(L)} and v C prjy, (v)}
On this interpretation all entities instantiate at or along the worldlines singled out by the geometry of

the underlying spacetime manifold as required in Postulates 4 and 5 in conjunction with the dynamics
determined by the Lagrangian field according to Postulate 7.

(19)

6.2. Mereology of particulars

The mereological structure of the subdomain of continuants is characterized by the ternary parthood
relation P. which, holds between a time slice ¢ and two continuant particulars x and y that are instantiated
respectively at regions u; and ug such that u; is a part of ug and g is part of the time slice ¢ (Dp,).

Dp, P.zyt = Contx A Conty NTSt N\
(Fu1)(Fuz)(321)(Fz2) (Inst xzyuy A Inst yzoug A P uv A P ot)
On the intended interpretation P, means:

V(Pc) = {<X1,X2,t, l<,> € D X D X Dgr X K | <t, I‘{> S V(TS) VAN
Hyl,YQEDEiaul,UQGDsriul CuCtA (20)
(X1,Y1,U1, k) € InStST A (X2, Y, Us, &) € INstST}

One can then prove: Continuant x exists at a timeslice iff = is a part of itself at that time slice (T28) and
that at every timeslice P, is transitive (T29).

T28 Cont x — (E xt <> P, xxt) T29 P, xyt A P. yzt — P xzt

In Minkowski spacetime the parthood relation among continuants (P.) is logically linked to the underly-
ing slicing of spacetime. This is an immediate consequence of axiom (Ajs). Only continuants that exist
simultaneously at a time can be parts at that time.

The mereological structure of the subdomain of occurrents is characterized by the binary parthood
relation P, defined as: z is part of y if and only if the location of x is part of the location of y and the
location of x is a spatio-temporal region (Dp,);

Dp, P, xy = (Fu1)(Fue)(321)(322) (Inst xz1uq A Inst yzous A P uv A STR )

On the intended interpretation P, means:

V(Po) = {<X1,X2,/{> € DE X DE x IKC | Elyl,yQ € DE : 3U1,U2 S DST:
(X1,Y1,U1, k) € InStST A (Xa,Yq,U2, k) € INSIST A Uy C Uy, 2D
(u1, k) € V(STR), (Us, k) € V(STR)}

On the subdomain of occurrent particulars P, is reflexive (T30) and transitive (T31).

T30 Part x — (Occ x > P, xx) T31 P, xy N Pyoyz — Py xz
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6.3. Atomic entities

The final primitive of the formal theory is the unary predicate Az, which, on the intended interpretation,
holds of atomic entities (V(At.) =4 AtE C Dg x K) such that the following axioms hold (in accordance
with the conception of atoms in classical mechanics): There exist finitely many atomic entities (A20). If
x is an atomic entity then x is an atomic entity on all physical possibilities (A21); Atomic entities are
instantiated at all physical possibilities (A22); Atomic entities are always instantiated at parts of time slices
(A23). For every atomic entity x there is some slicing such that x is always instantiated at proper parts of
time slices (A24).'3 Every atomic entity is instantiated at some non-simultaneous regions on all slicings
of spacetime (A25). Atomic entities that are instantiated at regions where one region is part of the other
are identical (A26).

A20 finite {x | Az, x}

A21 At x — UAt, x

A22 At x — O(3y) (Fu)Inst zyu

A23 Ate x A Inst zyu — (Ft)(TS t A P ut)

A24 At, & — OF(t)(TS t — (Fu)(3y)(Inst xyu A PP ut))

A25 At, © — 0% (Jy)(32) (3u) (Fv) (Inst zyu A Inst zzv A =SIMU uv)
A26 At. 1 N Atexo A Inst x1y1ur A Inst xoysus A P ujus — 21 = 29

These axioms ensure that atoms cannot fail to be atoms and to instantiate in every physically possible
world. One could add a stronger version of axion A22 and demand an atom to instantiate the same uni-
versal in all physically possible worlds (A22* Az, = — (Jy)O(Ju)lnst zyu). Consider the oxygen atoms
that are part of my body at this point in time. If axiom (A22*) holds then they cannot fail to be oxygen
atoms. Note, however, that which wholes atoms form is contingent. Some or all of the oxygen atoms that
are currently part of my body could be part of the water of Lake Erie.

One can prove: On all physical possibilities atoms are located at spatial regions (T32); For every atomic
entity there is some slicing on which it exists at every time (T33); Atomic entities that are parts of one
another are identical (T34); Atomic entities are particulars on all physical possibilities (T35); Atomic
entities are persistent continuants on all possible slicings of spacetime (T36,T37).

T32 Ate x — O(u)(L zu — SR u) T35 Ate x — OPart
T33 Ate v — O¥(Vt)(TSt — E at)) T36 At, x — O%Pe x
T34 Ate x NAte y N (Pe xyt V Poyat) > x =y T37 At. & — O Cont x

This concludes the development of the mereology of persistent physical particulars.

7. Discussion

The presented formal theory is intended to serve as a framework to relate conceptual and formal struc-
tures of classical mechanics to conceptual and formal structures in formal ontologies. In this context two
important aspects of the formal theory developed above are emphasized: (i) techniques for formally cap-
turing the notion of ‘dynamic possibility’ in a formal ontology and (ii) the ways in which the presented
theory provides precise interpretations of fundamental primitives such as ’spatial-’, and ’spatio-temporal
region’, ’location’, ’instantiation’, *Atom’, etc. The former point is discussed in Sec. 7.1. To illustrate the
latter point formal specifications of informal elucidations from the current version of BFO (Smith, 2016)
are discussed in Sec. 7.2. The computational realization of the presented formal theory is discussed in Sec.
7.3.

'5In non-finite spacetimes this can be demanded of for all slicings.
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7.1. Physical possibilities

Ontology is the study of what can possibly exist (Lowe, 2002; Smith, 2003). An important aspect
of characterizing dynamic reality from an ontological perspective is to clearly and formally distinguish
processes and sequences of states of enduring entities that are logically, metaphysically, and physically
possible. In classical mechanics such possibilities are encoded in the geometry of set-theoretic structures
(manifolds) at several interrelated levels:

(i) The geometry of the spacetime manifold picks out possible worldlines and sequences of instanta-
neous states in conjunction with compatible slicings of spacetimes into hyperplanes of simultaneity
(timeslices). (Postulates 1 and 2)

(i) Kinematic constraints impose fundamental metaphysical restrictions on what is geometrically pos-
sible. For example, they constrain the causal structure by determining which worldlines are available
to connect points in spacetimes via physically possible processes (Postulates 2, 3). Kinematics also
constrains the ways in which the possible complex systems arise from the possibilities of simple sys-
tems (Postulate 4). Kinematic constraints manifest themselves in the specific geometry of spacetime
and the associated configuration spaces.

(iii) Dynamic constraints impose physical restrictions on what is kinematically possible. Physical con-
straints are geometric expressions of the laws of physics in the form of equations of motion. (Ap-
pendix B, particularly Postulate 7.)

To make these various kinds of possibilities explicit and to present them in a way that can be incorporated
in the meta theory of a formal ontology was the aim of the first part of this paper (Sec. 2 — 3). In the object
language of the formal ontology presented in Sec. 4 — 6 these distinctions are not encoded in the geometry
of some set-theoretic structure but expressed (as far as possible) explicitly in a language that is essentially
equivalent to one of a modal first order predicate logic. In the formal theory the physics and the ontology
are linked at the following levels:

(a) The level of the intended range of the variables of the formal ontology within the set-theoretic
structures of the underlying classical mechanics. The intended ranges of variables are spelled out
explicitly as part of the meta-theory of the formal ontology. (Sec. 4.3, Eq. 17, etc.)

(b) Physical possibilities are introduced via modal operators and the accessibility relations among phys-
ical possibilities. (Sec. 4.2, Fig. 4).

(c) Besides the mereological primitives, the most fundamental primitive of the axiomatic theory is the
instantiation predicate. On the intended interpretation it represents the actualization of mereologi-
cally possible entities at dynamically possible worldlines and sequences of states. The instantiation
predicate thereby links processes to worldlines (Sec. 6) and sequences of locations to continuant
entities.

This will be discussed in some more detail in what follows.

7.1.1. Ranges of variables

The object language of the formal ontology is expressed in a modal predicate logic with two fundamen-
tal sorts of variables: variables ranging over regions of spacetime and variables ranging over mereologi-
cally possible entities.'®

According to classical (i.e., non-quantum) mechanics the geometry of spacetime determines at what
regions of space and spacetime physical entities can be instantiated. In particular the underlying geometry
singles out possible worldlines and hyperplanes of simultaneity (timeslices) (Postulates 1 and 2). In the
meta-language of the formal ontology Dsr includes the set of all those regions as well as distinguished
classes of subregions thereof (Sec. 4.3). In the formal language region variables range over the members of
this set. Important subclasses of regions are (spatio-)temporal regions and spatial regions. In the presented

16 Again, to avoid axiomatic and definitorial schemata some second order features are used. Nevertheless, the object language
is essentially a modal first order language.
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framework a precise interpretation of the respective kinds of regions can be given. Spatio-temporal regions
are the sub-manifolds of all kinematically possible worldlines in a world of m particles, i.e., PrjS C
Dsr (Eq. 15). Kinematically possible spatial regions are sub-manifolds of hyperplanes of simultaneity
(timeslices) (Eq. 15).

According to classical mechanics the number and kinds of atomic particles is finite and constant. To
make explicit that the specific number of particles is accidental, the number of particles that exist was
chosen as a parameter of the formal theory. Within the formal theory only finiteness of the number of
atomic particles is required explicitly. From this it follows that the domain of (physical) entities Dg is
finite. In the formal theory axioms on instantiation and axioms for atoms constrain what kinds of complex
entities can be formed within the realm of physical possibilities.

7.1.2. Modalities

Physical possibilities and their expression in the modal part of the formal ontology fall in two basic
categories: physically possible worldlines and physically possible slicings of spacetime into hyperplanes
of simultaneity.

Physically possible worldlines: In addition to purely mereological constraints on what complex wholes
can exist (Simons, 1987, 1991; Casati and Varzi, 1994, 1999; Varzi, 1996), in physical theories there
are additional geometric, kinematic, and dynamic constraints on possible complex wholes. The geomet-
rically and kinematically possible ways in which atomic particles can or can not form complex wholes
are encoded in the geometry of the configuration space (e.g., Postulates 4 and 5). These constraints are
formulated in terms of restrictions on the worldlines along which complex entities can possibly evolve.
Further dynamic constrains in form of the Lagrangian field and Hamilton’s principle (Postulate 7) re-
strict the worldlines that are geometrically and kinematically possible to those that are physically possible
as described in Sec. 3.2 and Appendix B. The Lagrangian field encodes the laws of physics and enters
the formal ontology as a parameter of the meta-theory. Dynamically possible worldlines of configuration
space, i.e., worldlines in the set I'Z that satisfy Hamilton’s principle (Postulate 7) are, when projected onto
spacetime (Eq. 5 and Eq. 6), the worldlines along which physically possible entities can evolve and at
which physically possible processes can be located. The formal structures of the meta-theory that give rise
to the set I'“ and the projection of its members via the mapping prj“ are summarized in Table 4.

In the modal part of the formal ontology physically possible worlds are the members of I'*. A modal
operator (1" was introduced which is interpreted as operating on the members of I'* via the accessibility
relation R that holds between members of I'“. The relation R' is reflexive, symmetric, and transitive,
i.e., an equivalence relation. This expresses formally the thesis that all physically possible worlds are
equivalent from a logical perspective.!”

Slicings of spacetime: ~ An important aspect that is widely ignored in current ontologies is that, according
to modern physics, it is meaningless to speak of space and spatial regions without reference to a specific
slicing of spacetime. In the presented theory slicings of spacetime are explicit part of the meta-language.
Possible spatial regions are picked out by the SR predicate: V(SR) C Dsr x K according to the underlying
slicing ¢ € ¥. In the the formal ontology the modal operator (1> is interpreted as operating on the
members of ¥ via the accessibility relation R™ that holds between members of ¥.. The relation R™ is
reflexive, symmetric, and transitive, i.e., an equivalence relation.

T-slicings o € 3 of spacetime are associated with reference frames of distinguished particles/systems
(called ’inertial observers’) moving with a constant velocity along their worldlines. That R is an equiv-
alence relation is an expression of the principle of relativity (Galilei, 1632; Einstein, 1951; Arthur, 2007).
In the context of Newtonian spacetime and the global Minkowski spacetime of special relativity this is a
formal expression of the claim that all inertial (non-accelerated) systems of reference are not only logically

""This choice precludes the interpretation of worldlines as worlds that are counterparts in the sense of David Lewis (Lewis,
1986). Lewis counterpart relation is usually understood as a similarity relation and not as an equivalence relation. A discussion
of this issue is certainly warranted but goes beyond the scope of this paper. See for example work by van Inwagen (1985); Sider
(2001).
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but also physically equivalent. More precisely, the relation R™ (o1, 02) has a direct physical interpretation
in the sense that the slicings o; and o9 are related by R* if and only if they are related by a Lorentz
boost!® ¢ : ST — ST (or are identical in Newtonian spacetime, i.e., ¢y = id):"’

R*(01,09) iff 3¢:02=(¢o0y) (22)

Combining possible worldlines and slicings into possible worlds. In formal ontology, possible worlds are
usually rather abstract. Taking into account the underlying physics allows for a more specific description
of possibilities and their interrelations. In the metalanguage of the presented ontology the structure I =
'Y x X is a set of physical possibilities which combines the two modal aspects discussed above:

— The dynamically possible worldlines in T'* along which worlds/systems with m particles can evolve
in a configuration space Q(S7) with a Lagrangian field £ (Eq.27 of Appendix B).
— The geometrically possible slicings 3. of spacetime into hyperplanes of simultaneity.

The accessibility relations R and R* and their properties of reflexivity, symmetry, and transitivity in
conjunction with the fact that R" and R* commute in the sense of Eq. 9 explicate the thesis that these two
modal aspects are logically independent (Sec. 4).

7.1.3. Instantiation in spacetime

The axiomatic theory is based on (a) a mereology (Simons, 1987) of spatio-temporal regions in con-
junction with the formal distinction between spatial regions and spatio-temporal regions, and (b) an in-
stantiation relation holding between an entity that instantiates, an entity that is instantiated, and a region
of spacetime at which the instantiating entity instantiates the instantiated entity (adapted from work by
Bittner and Donnelly (2006a)). Accordingly, the fundamental primitives of the axiomatic theory are the
parthood (expressed algebraically in terms of the join operation) and instantiation predicates. On the in-
tended interpretation instantiation relates mereologically possible entities to dynamically possible world-
lines. The focus on instantiation at regions of spacetime as the central formal notion mirrors in the for-
mal ontology a fundamental aspect of physical theories — the close interrelationship between spacetime
structure and physical possibilities (Sec. 2 — 3).

In terms of the instantiation predicate the categories of the formal ontology that refine the category
of entities can be introduced: Particulars are entities that on all physical possibilities instantiate and uni-
versals are entities that on all physical possibilities are instantiated. An entity is located at a region of
spacetime if and only if it instantiates or is instantiated at that region. Particulars are further distinguished
according to the number (a single region vs. multiple regions) and the kinds of regions (spatial regions
vs. spatial-temporal regions). Continuants are particulars that are located at multiple spatial regions in
different timeslices. By contrast, occurrents are located at unique spatio-temporal regions (worldlines).
Corresponding to the commitments of classical mechanics the mereology of (instantiating) entities has the
structure of an atomic mereology.

All axioms of the formal theory are true in all physically possible worlds and on all geometrically
possible slicings of spacetime. This explicates that metaphysical distinctions are more fundamental than
physical distinctions.

7.2. Elucidations in BFO-like ontologies

The presented formal theory aims to provide precise interpretations of fundamental primitives such as
’spatial-’, “temporal-’, and ’spatio-temporal region’, ’location’, ’instantiation’ and others more, many of
which in current versions of BFO (Smith, 2016) and similar ontologies only have informal specifications in
the form of elucidations. In what follows some elucidations of BFO that rely on notions that were specified
in the ontology presented above and for which the interpretation in this framework may be particularly
beneficial are discussed.

8 Transformations that map changes in the velocity of distinguished particles to changes in the slicing of spacetime (Sklar,
1977).

Y Transformations of the form ¢ : ST — ST on spacetime induce corresponding transformations of the ¢< : Q(ST) —
Q(ST) on configuration space Q(ST).
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ELUCIDATION (Smith, 2016, 035-001): "A spatial region is a continuant entity that is a continu-
ant_part_of spacer as defined relative to some frame R". In the context of the above theory, the term
"frame’ seems to be better interpreted as the weaker notion of a 7 -slicing o of spacetime (Def. 1). This is
because different frames can give rise to the same 7 -slicing of the spacetime manifold. ’Spacer’ seems
to refer to some time slice o;(7) and ’spatial region’ seems to refer to the members of the set V(SR)
restricted to a fixed slicing ¢ € ¥ (Eq. 15). In the object language of the formal theory elucidation
[035-001] is approximated by the theorem: (0*(SR u <+ (Fv)(TS v A P uv)) which immediately fol-
lows from Dgr. In the formal theory one can explicitly distinguish between spatial regions in Newto-
nian and Minkowski spacetimes using the notion of simultaneity: SIMU uv — O*SIMU wv (T3y) vs.
SIMU uv A u # v — OZ=SIMU uv (Ayy).

In the presented theory regions and entities are represented by disjoint sorts of variables. This represen-
tational choice does not allow to represent regions as kinds of entities. This is clearly a shortcoming of the
presented theory since, according to general relativity, spacetime interacts with matter and and vice versa.
Alternatively, regions could be defined as entities that are located at themselves along the lines described
in work by Casati and Varzi (1995).

However, to categorize a spatiotemporal region as a continuant entity may be a mistake because in
Minkowski spacetimes there are regions that count as spatial regions on some slicing and as spatio-
temporal regions on other slicings. The definitions of continuants and ocurrants (D¢, and Do) then
would imply that there are regions that count as a continuant entity on some slicing and as an ocurrant
entity on another slicing. That is, whether or not certain regions are continuant or ocurrants ceases to
be a classification that is independent on the underlying reference system. This ultimately would intro-
duce inconsistencies at least in the type of theories presented here. The same criticism can be raised for
elucidation 095-001 below.

ELUCIDATION (Smith, 2016, 095-001): "A spatiotemporal region is an occurrent entity that is part of
spacetime." In the formal theory entities and regions are disjoint sorts. For this reason spacetime regions
cannot be entities. As discussed above (elucidation (Smith, 2016, 035-001)), this can be overcome in a
language which does not have a sortal distinction between entities and regions. Problematic is the classi-
fication of spatial/spatio-temporal regions as continuants/ocurrents for the reasons discussed above.

ELUCIDATION (Smith, 2016, 100-001): "A temporal region is an occurrent entity that is part of time
as defined relative to some reference frame." This elucidation seems to be inconsistent with elucidation
(Smith, 2016, 095-001) at least in cases where the underlying spacetime structure is non-Newtonian. Ac-
cording to modern physics there is no unique separation of spacetime into spatial and temporal compo-
nents. There are slicings of spacetime such that mappings of the form o4(7") pick out three-dimensional
hyper-surfaces of simultaneity — timeslices (Def. 1). Nothing is instantiated/located at ¢ € R which is just
a parameter called coordinate time (Def. 2) that identifies a timeslice on a particular slicing (Def. 1).

Elucidation (Smith, 2016, 100-001) seems to call for the a definition of the notion of a reference system
associated with a given slicing. The postulates and definitions of Sec. 2.1 provide the formal tools needed
for the rigorous definition of the notion of ’reference frame’.

In the object language of the formal theory of Sec. 5 - 6 all formulas are evaluated with respect to the
slicing associated with the "actual world’ (the actualized physical possibility (w, o) € K). Thus time-slice
predicate TS picks out a hyperplane of simultaneity (space) associated with some instant of coordinate
time associated with the slicing o and the induced frame of reference. In the light of elucidation (Smith,
2016, 100-001) all the statements of the formal ontology interpreted with respect to a clearly defined
reference frame. The operators (1> and (> respectively allow for statements that are to be interpreted with
respect to frames of reference other than the current one.

ELUCIDATION (Smith, 2016, 080-003):  "To say that each spatiotemporal region s temporally_projects_onto
some temporal region £ is to say that ¢ is the temporal extension of s." In accordance with the discussion of
elucidation (Smith, 2016, 100-001) there are two possible interpretations of ‘temporally_projects_onto’:
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(i) Projection onto coordinate time means that on a given slicing o, every spatio-temporal region S €
Dsr has a corresponding interval in the range of the parameter ¢ representing coordinate time in the
sense of (Def. 2) such that PrijT, =4 S € Dsy — {t € R | o(T) N's # 0}.

(ii) Projection onto proper time along the worldline ~, of some distinguished particle x means that on
a given slicing o, every spatio-temporal region s € Dgr projects onto y* such that: PrjT, =4 s €
Dsr—{reR|TeR:0(T)NS#DAo(T) Ny" =~%(7)}.

In either case the notion of projection would be meaningful only in the context of a particular slicing of
spacetime in the sense of Def. 1 or in the trivial slicing of Newtonian spacetime (Sec. 2.2). This is relevant
particularly for the design of ontologies for domains in which Newtonian spacetime is an insufficient
approximation of the underlying spacetime structure. This includes ontologies that are intended to support
the identification, characterization, and tracking of space objects (Cox et al., 2016; Rovetto, 2016).

All elucidations of BFO that rely on the elucidation (Smith, 2016, 100-001) of "temporal region’ suffer
a similar ambiguity. This includes the elucidations of ’zero-dimensional temporal region’ (Smith, 2016,
103-003) [103-001], ‘one-dimensional temporal region’ (Smith, 2016, 103-003), ‘b exists_at t* (Smith,
2016, 118-003).

ELUCIDATION (Smith, 2016, 081-003): "To say that spatiotemporal region s spatially_projects_onto
spatial region 7 at ¢ is to say that r is the spatial extent of s at¢." As above, the notion of projection is mean-
ingful only in the context of a particular slicing in the sense of Def. 1. Assuming that the parameter ¢ in this
elucidation ranges over coordinate time (Def. 2) with respect to a given slicing o, spatially_projects_onto
can be understood in at least two ways:

(i) A spatio-temporal region S € Dgr projects onto lower-dimensional sub-manifolds of spacetime, i.e.,
s € Dgr projects onto r € Dgr at t if r = 04(7) M's. Thus, if 0,(7) M's # 0 then PrjS, =4 s €
Dt +— O't(T) rs.

(ii) A spatio-temporal region S € Dgr projects onto sub-manifolds of the abstract time slice 7 of
the underlying slicing o, i.e., 8 € Dsr projects onto r = 7T at  such that r = o, '(0y(T) M s) if
or(T) M's € Dsr. Thus, if 04(7) M's # 0 then PrjS, =4 S € Dt > 0} ' (o4(T) M'8).

Purely spatial relations (Cohn et al., 1997; Egenhofer and Herring, 1990; Egenhofer et al., 1994) seem to
hold between the sub-manifolds of the abstract time slice in the sense of (ii).

ELUCIDATION (Smith, 2016, 002-001): "b continuant_part_of c at ¢ =4 bis a part of c at ¢, ¢ is a
time and b and c are continuants." In the presented formal theory there is a strict distinction between the
mereology of spacetime regions and the mereology of continuants. Parthood among regions of spacetime
— represented by the predicate P in the object language of the formal theory — is characterized by an
unrestricted extensional mereology (Sec. 5). By contrast, parthood among continuants — represented in the
object language by the defined predicate P, — is restricted to time slices (Sec. 6.2). On this view it seems
to follow that the temporal parameter ¢ in BFO is to be interpreted as coordinate time with respect to one
particular slicing o (Def. 2).

The specific mereology of continuants proposed here is different from that of BFO. The focus here
was on continuants that are physical (material) entities formed by a finite number of atomic particles. In
addition the aim was to be consistent with earlier publications (Bittner et al., 2004; Bittner and Donnelly,
2004, 2006b; Donnelly and Bittner, 2008) and to have a mereology that allows distinct continuants to
have the same mereological makeup in the same physically possible world. The underlying reason is that
even in conjunction mereological and physical properties may be insufficient to distinguish mereologically
complex continuants (Thomson, 1998). This could be changed by adding some form of an antisymmetry
axiom and/or a version of the strong supplementation principle to the mereology of continuant entities
(Bittner and Donnelly, 2006b; Donnelly and Bittner, 2008).

The category of continuants is defined in the object language as persistent particulars that always in-
stantiate at spatial regions (Dc,y,;). On the intended interpretation is mirrored in the metalanguage and its
differential geometry as discussed in Sec. 6.1, Eq. 18.
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ELUCIDATION (Smith, 2016, 077-002): "An occurrent is an entity that unfolds itself in time or

..2% it is a temporal or spatiotemporal region which such an entity occupies_temporal_region or occu-
pies_spatiotemporal_region." In the presented theory, the definition of the category of occurrent (Do,
Eq. 18) takes advantage of the rigorously defined notions of (a) spatio-temporal region (Dgs7rg, Eq. 15), (b)
instantiation of entities at regions in spacetime (Sec. 6.1), and (c) the notion of the actual world (a member
of Prj*) (Eq.5 and Eq. 6). This allows to define occurrents in the object language as persistent particulars
that always instantiate at spatio-temporal regions in a way that on the intended interpretation is mirrored
in the metalanguage and its differential geometry as discussed in Sec. 6.1. In particular, physical occur-
rents need to be instantiated at spatio-temporal regions that are part of the actual world (line) (Eq. 19). As
pointed out in elucidation (Smith, 2016, 080-003) the distinction between temporal and spatio-temporal
region does not seem particularly helpful.

ELUCIDATION (Smith, 2016, 041-002,082-003,132-001): "b occupies_spatial_region r at ¢ means that
r is a spatial region in which independent continuant b is exactly located" ..."p occupies_spatiotemporal_
region s. This is a primitive relation between an occurrent p and the spatiotemporal region s which is its
spatiotemporal extent." ..."p occupies_temporal_region ¢. This is a primitive relation between an occur-
rent p and the temporal region ¢ upon which the spatiotemporal region p occupies_spatiotemporal_region
projects."

In the presented formal theory the occupation relations of BFO directly correspond to the location rela-
tion L which is defined in terms of the primitive instantiation relation (D, and Eq. 17). In terms of L the
predicate "b occupies_spatial_region r at t" is expressed as: Lgr brt' = Lbr ASRr NTSt' N Prt'. tis
important to see that in the presented formal theory ¢’ is a time slice. It is linked to the interpretation of ¢ in
BFO as coordinate time (Df. 2) via the ‘actual world’ (-, o) at which the location predicate is interpreted
in conjunction with expressions of the form o4(7) = ¢’ in the intended interpretation. Similarly, "p occu-
pies_spatiotemporal_region s" can be expressed as Lsrr bs = L bs A STR s. If ‘spatio-temporal region’
is understood as ’worldline of a distinguished reference particle’ then "p occupies_temporal_region t" can
be expressed as Lgrg bs = L bs A STR s A (3x)(Atg © N WLOf zs).

ELUCIDATION (Smith, 2016, 003-002): "b occurrent_part_of ¢ =g b is a part of ¢ and b and c are
occurrents.”" In the formal theory "b occurrent_part_of ¢ can be represented as P, bc (Sec. 6.2). The mere-
ology of occurrents — expressed in terms of P, — is relatively standard. Extensionality could be enforced
by adding an axiom similar to (T4). The lack of an antisymmetry axiom allows for distinct continuants
with identical mereological structure.

ELUCIDATION (Smith, 2016, 019-002): "A material entity is an independent continuant that has some
portion of matter as proper or improper continuant part." The notion of physical possibility/necessity is
clearly too weak to capture the notion of metaphysical dependence. Nevertheless the notion of matter
seems to mean something like ‘made up of physical particles’. Thus the predicate Cont (Dc,,; and Eq.
18) should be helpful for providing a formal specification of this elucidation. In addition, the fact that
the formal theory is presented in the language of a modal predicate logic makes it relatively easy to add
modalities that support the formal specification of metaphysical dependency.

ELUCIDATION (Smith, 2016, 024-001): "b is an object means: b is a material entity which manifests
causal unity ...and is of a type (a material universal) instances of which are maximal relative to this cri-
terion of causal unity." The presented formal theory does not provide an account of causality. Neverthe-
less the presented formal ontology can contribute to make this elucidation more precise and to express it
more rigorously: Whatever specific form causation takes, locations in spacetime at which causally related
events can take place must be connected by dynamically (or at least kinematically) possible worldlines.
For example Postulate 3 constrains causally accessible portions of spacetime by reference to the light cone
structure induced by Minkowski spacetime.

0The original elucidation also included instantaneous occurrent entities (stages in the sense of (Sider, 2001)) and the regions
they occupy. To simplify the formal theory stages have been excluded here. A formulation that does include the category of stages
can be found in (Bittner and Donnelly, 2004).
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ELUCIDATION (Smith, 2016, 138-001,XXX-001): "A history is a process that is the sum of the totality
of processes taking place in the spatiotemporal region occupied by a material entity or site, including
processes on the surface of the entity or within the cavities to which it serves as host." ..."b history_of ¢ if
c is a material entity or site and b is a history that is the unique history of ¢." ..."AXIOM: if b history_of
c and b history_of d then ¢ = d."

BFO’s category of a history seems to overlap with the formal category of occurrents in the sense of
Doc. and Eq. 18. Clearly, the framework presented here does not include sites, holes, surfaces, and the
processes in which they participate. Nevertheless occurrents in the sense of Dg.. and Eq. 18 do include
histories of material entities. Consequently, the BFO-predicate history_of has the worldline_of predicate
(Dwior and Eq. 17) as a sub-predicate. Thus the presented theory may help to make this elucidation more
precise and rigorous.

7.3. Computational realization

The discussion so far has focussed on the relations between (i) the formal ontology and its potential for
improving foundational ontologies such as BFO and (ii) the relations between the formal ontology and the
physics encoded in its meta-language. A third class of issues that deserves discussion is methodological
in nature and concerns the computational realization of the formal theory presented above. Clearly, it is
far from obvious that the presented theory is consistent. Moreover, even if it is consistent it is far from
obvious that the class of intended models — the KS-structures of Sec. 4.3 — are among the models of the
formal theory.

To address this class of issues a computational realization of the formal theory in the HOL-based frame-
work of the theorem proving environment Isabelle (Paulson and Nipkow, 2017; Paulson, 1994) was built
with the aims to formally verify (a) the consistency of the formal theory, (b) whether or not specific math-
ematical representations of physical systems are models of the formal theory, and (c) that all the theorems
of the formal theory presented in Sec. 5 and Sec. 6 are derivable from the axioms of the theory. HOL
is a framework of higher order logic which combines predicate logic (Copi, 1979) with lambda calculus
(Church, 1941) in a way that is based on Church’s Theory of types (Church, 1940). This highly expres-
sive formal framework as it is realized within the Isabelle theorem proving environment (referred to as
Isabelle/HOL) was chosen because, it provides all the tools needed to address the points (a) — (c). More-
over, at least in principle, this framework provides means to formally capture the mathematics required to
express the physics as discussed in the first part of this paper.

To achieve the goals (a) — (c) the computational representation employs a formal infrastructure of the
Isabelle/HOL system that is called Locales (Kammiiller et al., 1999; Ballarin, 2004). Locales are general-
izations of axiomatic type classes (Jones and Jones, 1997; Wenzel, 2005) that originally were introduced
as part of the functional language Haskell (Thompson, 1999). In the computational realization of the for-
mal theory presented here Locales are used to link the predicates of the formal theory to the X S-structures
in which they are interpreted. Intuitively, every predicate has an implicit argument that ranges over S
structures (similar to the implicit "this’ pointer in C ). The computational realization of the formal the-
ory has three fundamental levels: (I) the level of axiomatization; (II) the level of model instantiation; and
(III) the level of presentation.

(I) The level of axiomatization: At the level of axiomatization the axioms A1-26 are expressed in a non-
modal language with explicit reference to ICS-structures. The latter include the sets that determine the
domains of quantification, the accessibility relations, as well as the relations that serve as the interpretation
of the primitives of the formal theory. In essence, in the computational representation the axiomatization
is realized at a level that corresponds to the level of interpretation in the presentation of the formal theory
of Sec. 4 — 6. All theorems listed in the paper are proved at this level and then ’lifted’ to the level of the
presentation in the modal logic. (See level III.)
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(1I) The level of model instantiation: The Isabelle system also provides an infrastructure for instantiating
abstract model-theoretic structures by specific models and for creating proof obligations that, when ful-
filled, ensure that the specific model satisfies all the axioms (A1-A26) that are associated with the abstract
model-theoretic structures (X S-structures in this case). The specification of the concrete models is purely
definitional within Isabelle’s implementation of the HOL framework. Therefore no additional axioms that
could lead to inconsistencies are introduced. (See (Nipkow et al., 2002) for a discussion of the definitional
approach in Isabelle/HOL.) The infrastructure provided by Isabelle/HOL and its locales thereby provides
formal means to verify the consistency of a set of axioms as well as means to verify that the intended
models are among the actual models of a formal theory.

In principle Isabelle/HOL has the expressive power that is required for the formalization of the differ-
ential geometry that provided the language for expressing the physics in the first part of the paper. Un-
fortunately, presently no comprehensive formalization of differential geometry in Isabelle/HOL exists. To
illustrate the methodology, to provide a proof of the consistency of the axioms A1-26, and to show that the
axioms A1-26 have a model that at least to some degree resembles important aspects of the physics that is
encoded in the differential geometry in the first part of the paper, the example of Sec. 4.4, understood as a
specific model, is instantiated and thereby shown to satisfy the axioms of the formal theory.

(II1) The level of presentation: For the presentation of the formal theory in Sec. 5 — 6 a modal pred-
icate logic was selected. The choice of a modal language greatly simplifies the presentation and hides
specifics of the underlying interpretation. The modal operators provide means to talk about physical pos-
sibility/necessity as well as means to talk about slicings and properties that are dependent on, or indepen-
dent of, the underlying slicing of the spacetime manifold. Using a modal language facilitates conceptual
clarity while maintaining formal rigor.

At this level all axioms and theorems of the level of axiomatization are ’lifted’ to the modal language
described in Sec. 4 using the encoding of modal logic into Isabelle/HOL (or any other HOL framework)
by Benzmiiller (2015); Benzmiiller and Woltzenlogel Paleo (2015). This lifting heavily uses features of
the underlying lambda calculus. The lifting ensures that all axioms and theorems of in Sec. 5 and Sec. 6
are theorems in computational realization of the modal language.

A more detailed discussion of the computational realization goes beyond the scope of this paper.
The formal implementation in Isabelle/HOL in conjunction with the underlying methodological and de-
sign choices are presented in detail in (Bittner, 2017). The Isabelle/HOL theory files can be accessed
athttp://www.buffalo.edu/~bittner3/Theories/OntologyCM/. The links between the
formalism presented here and the specific Isabelle/HOL constructs are summarized in Table 6.

8. Conclusion

The aim of this paper was to develop a formal framework that explicates important ontological com-
mitments of classical mechanics. To be consistent with the various formulations and the various possible
spacetime ontologies that underly classical mechanics, a class of models based on 7T -slicings serve as the
intended interpretation of the formal theory. Thus, the focus of the metalanguage were geometric aspects
of spacetime and associated structures. By contrast, the focus of the object language were on the notion of
‘physical possibility’ in the context of the logical interrelations between mereological, instantiation, and
location relations.

The presented formal theory in conjunction with the development of its meta-theory and its computa-
tional representation is intended to illustrate the following points: Firstly, the clear separation of the semi-
formal treatment of geometric aspects in the meta-language and the strictly formal treatment of ontolog-
ical relations in the object language may help to deal with the tension between the limited expressivity
of first order logic and the high complexity of the languages that are needed to describe the fundamental
geometric structures that govern the kinematics and dynamics of the underlying physics. Secondly, the
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level content theory file axioms and definitions
@ Setup of the modal ’lifting’, definition =~ S5_2D_base Eq. 7, Dyi, Thi, 506, K,
of KS-structures, basic type declara- BCri, MSh
tions
@ Mereology PLattice Eq. 12, A1-A7, T1-T7, Dp,
D O> DSum
@D Time slices, Newtonian and Minkowski ~ TS_mereology Eq. 14, A8-A10, Dsg, Dgrr,
spacetimes Dsmy, T8-TI12, An, Awm,
Tn1-Tn3
@ Instantiation, location, particulars, uni- Inst_TS_mereology All - Al18, D1, Dpes Dpun,
versals, continuants, occurrents, Mere- Duniy Dcont, Doce, Dwrog, Dp,.,
ology of particulars Dp,, T13 -T30
@ Atomic entities AtE_Inst_TS_mereology = A20 - A26, T31 - T35

1) Definitions for the model of Sec. 4.4 ST_model_base

In Proof that the model of Sec. 4.4 satisfies ~ ST_model_proof
the axioms Al — A26

(II0) Presentation of the formal theory in the  S5_2D_lifted_theory Al — A26 as theorems, T1 —
modal language T35
Table 6

Overview of the computational representation of the formal theory in Isabelle/HOL. (Accessible at: http://www.buffalo.
edu/~bittner3/Theories/OntologyCM/.)

development of this paper has indicated the importance of formalizing both aspects of a formal ontology:
the axiomatic development in the object language and the specification of the structures that are intended
to serve as interpretations. Thirdly, the development of a computational realization of the ontology in Is-
abelle/HOL provides strong indications that computational tools for developing axiomatic theories have
reached a degree of maturity that allows for the development of large scale ontologies in highly expressive
languages.

The description of physical possibilities in this paper focussed on physically possible micro states of
systems of m particles. What was not addressed was how a m-particle system as a whole can be (perma-
nently or temporarily) in a solid (macro) state, in a liquid (macro) state or in the (macro) state of a gas. The
emergence of the macroscopic states of our experience in which certain mereological sums of microscopic
particles give rise to solid objects is beyond the scope of this paper. Future work needs to address the
distinction between micro- and macro states and the ways in which the emergence of the latter are studied
for example in statistical mechanics (Frigg, 2012; Redhead, 1995). This may lead to interesting insights
of the formal ontology of matter, stuff, and material objects.
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Fig. 6. Charts on a manifold (left) (Wikimedia Commons, 2015d); Tangent space 7, S at * € S on the manifold S (right)
(Wikimedia Commons, 2015a).

Appendix
A. Differential geometry

This section reviews some notions of differential geometry that are needed to develop the formal models
for the ontology to be developed in this paper. Firstly, manifolds are introduced. They are critical for
capturing geometrically notions of smoothness and continuity. Secondly, geometric objects such as scalar
fields, vectors, vector fields on manifolds are introduced. Thirdly, curves on a manifold and derivatives
establish relationships between scalar fields and vector fields via the notion of integral curves. Those three
classes of geometric objects and their interrelations geometrically encode what is physically possible.?!

A.l. Manifolds

A differentiable manifold is a topological manifold with a globally defined differential structure. A
topological manifold is a topological space that is locally homeomorphic to a linear (i.e. vector) space.
Formally, this local structure is given by local homeomorphisms — the charts ¢;, mapping open subsets
U; of M to subsets of ™ which are n-dimensional vector spaces (Fig. 6 (left)). The (global) differential
structure of a manifold is built up by combining the local linear structures, local charts, to a system of
atlases that cover the whole manifold such that on can reach any chart from any other chart by means of a
smooth transformation. A smooth transformation or diffeomorphism is an invertible map that takes smooth
curves to smooth curves, where a smooth curve is a curve that has derivatives of all orders everywhere.
Where distinct charts overlap they must be compatible. (Fig. 6 (left)).

At every point x of a differentiable manifold M, there is a linear space T, M ’attached’ to M at z
(Fig. 6 (right)), i.e., T, M is the tangent space of M at x. For all x € M, T,, M has the same dimension
as the manifold M at x. In planar (non-curved) manifolds like the Euclidean space M = R", the vectors
in the tangent space 1, M at every point x € M span the whole manifold M. That is, every point y € M
can be represented using a vector £ € T, M such that £ begins at x and ends at y. By contrast, in curved
manifolds like the surface of a sphere S C R3 only points in the immediate neighborhood U, of x € S
can be represented by vectors in the tangent space 7., S (Fig. 6 (right)).

The disjoint union of all tangent spaces 1T, M of M gives rise to the rangent bundle T M of M, i.e.,
TM = Uyen ({#} x T M). A point in the tangent bundle 7'M is a pair (z, &) with { € T, M. The
tangent bundle of a differentiable manifold of dimension d is a differentiable manifold of dimension 2 * d.

Between manifolds the submanifold relation C holds. Roughly, M; T My if and only if M is a subset
of Ms, M, and M, are manifolds, and the tangent spaces of M; are subspaces of the tangent spaces of
M.
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Fig. 7. A scalar field (left) (Wikimedia Commons, 2015b); a portion of the vector field (sin y,sin z) (middle) (Wikimedia
Commons, 2015c¢). Three integral curves for the slope field corresponding to the differential equation dy/dxz = z? -z — 1.
(right) (Wikimedia Commons, 2013)

A.2. Scalar fields, vector fields, and curves

A curve v on a manifold M is a mapping v : R — M from the real numbers to points of M. In what
follows the letter “y’ will be used to refer to parametric curves, i.e., functions of type v : 8 — M as well
as to the curves {y(7) € M | 7 € R} themselves. The context will disambiguate. If the curve ~y is smooth
then at every point x = ~(7) there is a unique vector ¢ in the tangent space 7, M such that £ is tangent
to ~y at the point z (i.e., { = %’}/(T”x). If - is a smooth curve on manifold M then v C M. Intuitively,
the tangent space 1, M contains all possible "directions" along which a curve on M can tangentially pass
through x. That is, tangent spaces arise naturally as structures formed by equivalence classes of curves on
the underlying manifold.

A scalar field H : M — %} on a manifold M is a smooth mapping from M to the domain of scalars
(real numbers R for measurable qualities) (Fig. 7 (left)). A vector field X : M — T'M on a manifold M
is a smooth mapping from M into the tangent bundle 7'M so that every point x € M maps to exactly
one vector £ € T, M of the tangent space T, M (Fig. 7 (middle)). 22 There is a close relationship between
the smooth curves of a manifold and the vector fields on that manifold. The smooth parametric curve
Yx,z : B = M is the integral curve of the vector field X € X' (M) through the point « € M if and only
if forall 7 € R:

d

E’VX@(T) = X(vx,2(7)) and vx -(0) = =. (23)

That is, at all points y = yx ,(7) the tangent to the curve yx ,(7) at y is the vector X (y) € T,,M. This
is illustrated in the right of Fig. 7. In standard presentations of classical mechanics integral curves appear
as the specific solutions of the differential equations that constitute the laws of physics — the equations of
motion of the underlying physical system (Appendix B).

B. Lagrangian mechanics and dynamic possibilities

To specify the dynamics of a physical system in the Lagrangian framework is to identify worldlines
along which physically possible processes can occur and along which physically possible particles can
evolve. The essence of the Lagrangian framework is to identify the dynamically, i.e., physically, possible
worldlines within the larger class of kinematically possible worldlines using a scalar field that is called
The Lagrangian.

*I'The presentation of this subject here must remain brief and rather selective. For details see for example overviews by Arnold
(1997); Butterfield (2007).

21n modern physics dynamic fields which change over time are studied (Abraham and Marsden, 1978; Teller, 1997; Wayne,
2000). For the purpose of this paper it will be sufficient to study static fields, i.e., fields that vary in space but do not change over
time.
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B.1. The Lagrangian vector field

Consider a physical system with configuration space Q(S7) and a set I'C of kinematically possible
worldlines. Let T“ C T'© be the set of dynamically, i.e., physically, possible worldlines. The members
(Y1, - - -, ¥m) of T are m-tuples of worldlines of a m particle system. Consider the i-th particle p;. Since
the space of kinematic possibilities of p;, (R x M;) C Q(ST), is a manifold and the kinematically possible
worldlines of p; are smooth curves in (R x M;), there is a vector field X on (R x M;) that is formed by
all the tangent vectors of all the dynamically possible worldlines in y; € Ff:

Definition 5 (Lagrangian vector field X* (Libermann and Marle, 1987)). The Lagrangian vector field
XE is the vector field, i.e., a mapping of type X5 : (R x M;) — T(R x M;), on (R x M;) C Q(ST).
The integral curves of the vector field X f are the dynamically possible worldlines of the i-th particle of
the underlying m particle system, i.e., the members of FZL

d
Yy €T, € R XE(Y() = ——(7)r=r. (24)
The Lagrangian vector field X* on the configuration space Q(ST) as a whole is X £ At every point
((t, (21, .- 2m)) € Q(ST) the vector field X* is determined by the vectors X (t, 1), ..., X5 (t, xm).

B.2. Lagrangians and actions

For many physical systems the Lagrangian vector field Xf and its integral curves Ff are uniquely
determined by a scalar field £ — the Lagrangian field — which is a function of type £; : T(R x M;) — R
on the tangent bundle T'(R x M;) the space of kinematic possibilities (R x M;) of the i-th particle. That
is (z,8) € T(R x M;) — Li(x,§) € R.

The Lagrangian scalar field £; : T(R x M;) — R has a scalar value £;( X5 (7i(7))) at all X (v;(7))
along ;. For a given Lagrangian field £; every kinematically possible curve +; is characterized by a quality
called the action Ar(v;). Roughly, the action along +; is the ‘sum’ of all the values of £;(X5(7i(7)))
along ;. It is computed by integrating £; along ~; (Eq. 25). The action of the m particle system as a whole
is the sum of the action along the worldlines of its constituting particles:

Ar(y15 -5 vm) =df (V155 Ym) = Elgigm/ (Li(XF (7)) dr. (25)

B.3. Stationary curves and Hamilton’s principle

"9, the set of kinematically possible worldlines of a 1 particle system forms a manifold and the *points’
of this manifold are the curves v in re (Woodhouse, 1992; Belot, 2007)23. As amanifold I'© has a tangent
bundle TT'C. Intuitively?*, if the possible infinitesimal changes of + are identified with the members ~/
of the tangent space TVFQ then infinitesimal changes of v do not change the action A, if and only if the
directional derivative®> d A, of the scalar field A, on I'? is zero in all *directions’ ~ eT. 7FQ.

Definition 6. A curve +y is stationary for L if and only if the action A () does not change for infinitesimal
changes of . That is, stationary(~y) iff: for all (v,~') € T,1'C : dAz(v,7') = 0.

Hamilton’s principle then states:

BThis subsection illustrates the abstract nature and the power of the formalism of of differential geometry which effortlessly
applies to ‘real’ spaces as well as to abstract ‘spaces’ of functions, etc.

**See (Belot, 2007)for a more precise presentation.

BLet H : M — R be a smooth scalar field on M. The directional derivative dH,, of the field H at point 2 € M in direction
& € T, M is a mapping dH, : T, M — R which returns the rate of change of H at z in direction &. That s, if v : [-1,1] - M
is a smooth curve with v(0) = z and -£~(0) = ¢, then the directional derivative is defined by

d
dH, =af _dT(H ov)(7) . (26)
T7=0
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Postulate 7 (Hamilton’s principle). The dynamically possible worldlines in the configuration space
Q(ST) are the kinematically possible curves 7y in 'S which are stationary for the scalar Lagrangian field
L:T(Q(ST)) — R. That is, the set T'* of dynamical possibilities is:

T5 =4 {y€T2|V(y,7) € T,TC : dAs(y,7) = 0} (27)

It follows from Def. 5 that the integral curves v € I'C of the Lagrangian vector field X £ are stationary
with respect to the scalar Lagrangian field £ on T'(Q(ST)).

In summary, in the Lagrangian framework, to determine the space of dynamically, i.e., physically, pos-
sible worldlines of a physical system with configuration space Q(S7) is to identify kinematically pos-
sible curves that are stationary with respect to the Lagrangian field £ on T(Q(ST)).?6 Every dynamic,
i.e., physical, possibility in this space of possibilities is a worldline v € T'* along which a system with m
particles can evolve. To actualize one of these possibilities in spacetime is what it means fo be a physical
system with m particles.

%More precise definitions of the action and the notion of stationarity in conjunction with necessary and sufficient conditions
for kinematically possible curves v € FQ(S'T) to be stationary for the Lagrangian field £ see overviews by Arnold (1997);
Butterfield (2007).



