
Thomas Bittner
Departments of Philosophy and Geography,
State University of New York at Buffalo
bittner3@buffalo.edu

Is there a quantum geography?

February 7, 2019

Springer



2

Abstract In this paper I argue that a quantum theory may be the appro-
priate tool for describing phenomena with indeterminate boundaries in the
context of the classification and delineation of geographic regions. A motiva-
tion for this claim stems from the observation that fundamental aspects of
information about the physical world that follow from the success of quan-
tum mechanics also apply to information about certain classes of geographic
phenomena. Those aspects include (Rovelli, 1996; Rovelli and Vidotto, 2015):
(i) information about the physical [geographic] world is fundamentally rela-
tional; (ii) information of the physical [geographic] world is fundamentally
granular; and (iii) information about the physical [geographic] reflects the
fundamentally indeterminate nature of certain aspects of the world at the re-
spective scales. (The words in the brackets were added by this author.) More
rigorous support for the above claim comes from recent work in theoretical
physics. This work has identified three information-theoretic conditions that,
when satisfied for a class of phenomena, call for a quantum theory as the
appropriate theoretical framework for that class. In this paper I show that
there are geographic phenomena which satisfy two of the three conditions
that call for a quantum theory. I then argue that the third criterium can
be validated or refuted in the geographic context by developing a quantum
theory for geographic phenomena with indeterminate boundaries with clas-
sification and delineation operations as means to obtain information about
those phenomena. Such a theory then can produce predictions that will either
be verified by observations on the ground and thereby confirm the need for
a quantum theory, or rule it out as a viable option.

0.1 Introduction

Is there a quantum geography? This seems to be a question with an obvious
answer: No! Things in the quantum world are too strange to inhabit the ge-
ographic world. We do not see geographic objects in different places at the
same time. Moreover, geographic phenomena do not seem to have contradict-
ing properties at the same time. It is the aim of this paper to suggest that
things are not such obvious and that there may be a quantum geography
after all.

First of all, the question ’Is there a quantum geography?’ is ill-posed (but
catchy). Quantum mechanics is a formalism that has been used successfully
to describe the behavior of entities at the sub-atomic scale. Therefore, a
better way of expressing the above question may be ’Are there geographic
phenomena that can be described best by a quantum theory?’. This question
seems to be answerable by addressing the following (sub)-questions: (a) What
is a quantum theory? (b) Are there necessary and sufficient conditions that
call for a quantum theory as an adequate description? (c) If there are such
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conditions, are there geographic phenomena for which such conditions are
satisfied.

In what follows I will address question (a) at an abstract level without
going into the details of the quantum formalism. The aim of the paper is not
to actually develop a quantum theory of (certain) geographic phenomena but
to argue for the need to develop one. The main focus of the paper is on ques-
tions (b) and (c) – necessary and sufficient conditions that, when fulfilled,
rule out classical logic and therefore classical geography which, like classi-
cal physics, is based on classical logic. Those conditions have been identified
in the realm of theoretical physics in an attempt to provide an interpreta-
tion of the formalism of quantum mechanics. I will review the arguments for
why theories of phenomena that satisfy the following three postulates are
necessarily non-classical but quantum mechanical (Rovelli, 1996):

Postulate 1 (Limited information) There is a maximum amount of rel-
evant information that can be extracted from a system.

Postulate 2 (Unlimited information) It is always possible to acquire
new information about a system.

Jointly, Postulates 1 and 2 entail (as will be discussed below) that information
about the systems that satisfy those postulates is subject to indeterminacy.
A quantum theory then assumes:

Postulate 3 (Indeterminacy as probability) The indeterminacy that
arises from Postulates 1 and 2 manifests itself in the probabilistic nature of the
processes in which information can be obtained by measurement/observation.

After discussing Postulates 1 – 3, I am going to argue that geographic
phenomena with indeterminate boundaries (Burrough and Frank, 1995), such
as ecoregions (Bailey, 1983; Omernik and Griffith, 2014) and regions that are
characterized by certain types of land cover (Andereson et al, 1976), fall
in the class of phenomena that are subject to those criteria. Conceptually,
the information-theoretic Postulates 1 and 2 are the most interesting and
relevant in the context of this paper. In particular I will discuss both in the
context of the classification and delineation of geographic regions, an area
of geography in which boundary indeterminacy has been studied extensively
(Bailey, 1983; Omernik and Griffith, 2014). Whether or not the indeterminacy
that arises from Postulates 1 and 2 manifests itself probabilistically is an
empirical question and can at least in principle be tested by experiment. I
will sketch a toy theory that is consistent with Postulates 1 and 2 and that,
when developed fully, will make predictions which are probabilistic nature
and that can be tested empirically.

There is one formalism of (non-relativistic) quantum mechanics which was
developed by Dirac (1930) and John von Neumann (1932). This formalism
produces predictions that have been verified over and over since that time.
By contrast, there are many interpretations of this formalism (Omnès, 1994;
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Wikipedia, 2012). Interpretations are attempts to describe the world which
brings about the phenomena that have the properties that are predicted by
the formalism. According to many interpretations the world described by the
formalism of quantum mechanics is essentially non-local. That is, according
to many interpretations of the formalism, the phenomena described by it
can interact instantaneously across arbitrary distances (Einstein et al, 1935;
Maudlin, 2002; Musser, 2015; Redhead, 1997; Romero, 2012). Physicists have
found ways to make this consistent with the theory of Special Relativity (Ein-
stein, 1905; Kennedy, 2003) which postulates that information cannot travel
faster than the speed of light. Nevertheless, the non-locality entailed by many
interpretations of quantum mechanics contradicts Tobler’s First Law of Ge-
ography which postulates that in geographic space ”everything is related to
everything else, but near things are more related than distant things.” (To-
bler, 1970) One of the few interpretations of quantum mechanics that pre-
serves locality is the relational interpretation of quantum mechanics (RQM)
(Rovelli, 1996). The fact that, on the relational interpretation, the formalism
of quantum mechanics is consistent with Tobler’s law in conjunction with the
strong information-theoretic focus of this interpretation are the reasons for
adopting it as the foundation of this paper.

The reminder of this paper is structured as follows: Firstly the basic ideas
of the relational interpretation of quantum mechanics are discussed. In the
context of this framework Postulates 1 and 2 arise which entail that the
underlying logic is non-classical. I briefly discuss the commitments and in-
tuitions that underly the probabilistic understanding of the indeterminacy
that arises from Postulates 1 and 2. For closure, I also briefly introduce some
aspects of the formalism of QM itself. The second part of the paper argues
that phenomena with indeterminate boundaries particularly in the context
of the classification and delineation are subject to Postulates 1 and 2. Those
who believe that Postulates 1 and 2 are true for the considered class of phe-
nomena are then committed to believe that, if one can verify Postulate 3
experimentally, that there is a quantum geography in the qualified way de-
scribed above. I will close by sketching a toy example that illustrates how
a quantum theory that produces such probabilistic predictions that can be
either confirmed or refuted by observations on the ground in principle looks
like.

0.2 Relational quantum mechanics

According to quantum mechanics (QM), any measurement/observation is
fundamentally a physical interaction between the system S being measured
and some observing system O. In relational quantum mechanics (RQM) such
a physical interaction is the establishment of a correlation between the ob-
served system and the observing system. This form of correlation corresponds
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to the notion of information in Shannon’s information theory (Shannon,
1948). Therefore, at the core of the relational interpretation of quantum me-
chanics (RQM) is the recognition, that measurement/observation are bidi-
rectional, information-theoretic processes (Yang, 2018).

The amount of information that one system has about another system can
be quantified as the number of the elements of a set of alternatives out of
which a configuration is chosen (Shannon, 1948). In this context the set of
alternatives are possible ways in which the observed and observing systems
can be correlated. Information is a discrete quantity: there is a minimum
amount of information exchangeable: a single bit, or the information that
distinguishes between just two alternatives. Therefore, the process of acqui-
sition of information (a measurement/ an observation) can be framed as
a “question” that an observing system asks an observed system (Wheeler,
1989). Since information is discrete, any process of acquisition of informa-
tion can be decomposed into acquisitions of elementary bits of information.
An elementary question that collects a single bit of information is a “yes/no
question”. In what follows, such yes/no questions are labeled as Q1, Q2, . . .

In RQM any system S, viewed as an observed system, is characterized
by the family of yes/no questions that can be asked to it. Following Rovelli
(1996) the set of yes/no questions is written as W (S) ≡ {Qi | i ∈ I}, for some
index set I. The result of a sequence of questions (Q1, Q2, Q3, . . .) to S, from
an observer system O, can be represented by a binary string (e1, e2, e3, . . .),
where each ei is either 0 or 1 (no or yes) and represents the response of the
system S to the question Qi.

0.2.1 The first postulate of RQM

The first postulate of RQM, Postulate 1, can be spelled out more precisely
in Wheeler’s (1989) information-theoretic framework (Rovelli, 1996): For all
Qi ∈W (S): if Qi can be inferred from (is determined by) an infinite string of
answers (e1, e2, e3, . . .), then Qi can also be inferred from (is determined by) a
finite string [e1, ..., eN ] of answers. Any system S has a maximal “information
capacity” N , where N is an amount of information that is expressed in bits.
N bits of information exhaust everything one can say about S.

Combinatorially there are 2N different binary strings of length N (left

of Fig.0.1). Since 2N possible answers s(1), s(2), ..., s(2
N ) to the N yes/no

questions are (by construction) mutually exclusive, one can identify 2N ques-

tions Q(1), . . . , Q(2N ) such yes answers to the question Q
(i)
c correspond to the

string of answers s(i). This is illustrated in the left part of Fig. 0.1 for the
specific case of two yes/no questions Q1 and Q2 which give rise to the set

Qc = {Q(i)
c | 1 ≤ i ≤ 2} of 22 = 4 combinatorially possible complete questions

(Beltrametti et al, 1984; Hughes, 1981; Rovelli, 1996).
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The set-theoretic unions of sets of complete questions Q
(i)
c (of the same

family c), give rise to a Boolean algebra (see Appendix .1) that has singleton

sets of the form {Q(i)
c } as atoms (right of Fig.0.1). Intuitively, the atoms of the

Boolean algebra are the 2N different states of S that can be distinguished
given N bits of information provided by answers to the yes/no questions
Q1, . . . , QN . The non-atomic nodes of the Boolean algebra describe disjunc-
tions of the form Qi

c ∨Qj
c in which there is less than N bits of information is

available. The maximal element of the Boolean algebra has minimal informa-
tion. By contrast, the atoms have maximal information. In the right of Fig.
0.1 the Boolean algebra that arises from the set Qc of 22 = 4 combinatorially
possible complete questions.

s
(i)
c

i Q1 Q2 Q
(i)
c

0 0 0 ¬Q1 ∧ ¬Q2

1 0 1 ¬Q1 ∧Q2

2 1 0 Q1 ∧ ¬Q2

3 1 1 Q1 ∧Q2

>

Q3⊥
c =

{Q0
c , Q

1
c , Q

2
c}

;;

Q2⊥
c =

{Q0
c , Q

1
c , Q

3
c}

OO

. . .

^^

Q0⊥
c =

{Q1
c , Q

2
c , Q

3
c}

ff

{Q0
c} =

Q1⊥
c ∩Q2⊥

c

∩ Q3⊥
c

[00]

OO ??

{Q1
c} =

Q0⊥
c ∩Q2⊥

c

∩ Q3⊥
c

[01]

__ DD

. . .

DDZZ

{Q3
c} =

Q0⊥
c ∩Q1⊥

c

∩ Q2⊥
c

[11]

ZZ OO

∅

`` OO

CC
::

Fig. 0.1 Set Qc = {Q(i)
c | 0 ≤ i < 4} of 24 combinatorially possible complete questions

Q
(i)
c formed by two yes/no questions Q1, Q2 (left) and the distributive orthomodular lattice

(a Boolean algebra) formed by the complete questions Q
(i)
c (right). See also (Hughes, 1981)

for details and illustrations.

The fact that there are 22 distinct pattern of answers to two yes/no ques-
tions logically/combinatorially possible does not guaranty that all the logical
possibilities are also physically possible. For example, of the set Qc of 24

logically possible complete questions only Q1
S and Q2

S are assumed to be
physically possible and QS is the set of physically possible complete ques-
tions, i.e., QS = {Q1

S , Q
2
S}. This results in the table in the left of Fig. 0.1.

The corresponding Boolean algebra is depicted in the right of the Figure.
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s
(i)
S

i Q1 Q2 Q
(i)
S

1 0 1 ¬Q1 ∧Q2

2 1 0 Q1 ∧ ¬Q2

{Q1
S , Q

2
S}

{Q1
S} = {Q2

S}
⊥

::

{Q2
S} = {Q1

S}
⊥

dd

∅

dd ::

Fig. 0.2 (left) Of the set Qc of 24 logically possible complete questions only Q1
S and Q2

S
are physically possible; (right) the distributive orthomodular lattice (a Boolean algebra)

formed by the physically possible complete questions Q1
S and Q2

S .

0.2.2 The second postulate

In the previous section, a single family c of complete questions Q
(i)
c was con-

sidered by an observer O to gather N bits of information about the observed
system S. Alternatively, O could use a different family b of N complete ques-

tions Q
(i)
b to gather N bits of information about S. The answers to Q

(i)
b

will still have a maximal amount of information about S formed by a N -bit

string. Again, unions of sets of complete questions Q
(i)
b (of the same family

b), give rise to a Boolean algebra that has the logically/combinatorially pos-

sible {Q(i)
b } as atoms. In the context of the example illustrated in Fig.0.1 and

Fig.0.2 this means that there may be a second set of two yes/no questions

{R1, R2} which give rise to a set QR = {Q(i)
R | 1 ≤ i ≤ 2} of physically

possible complete questions Q
(i)
R . The logical and algebraic structures of the

questions in QR mirror those of the questions in QS as they are displayed in
Fig.0.2.

Postulate 2 of RQM captures what happens if, after having asked the N
questions such that the maximal information about S has been gathered,
the system O asks a further question QN+1. According to RQM there are
two extreme possibilities: Firstly: the answer to the question QN+1 is fully
determined by the answers [e1, ..., eN ] to the previous questions and no new
information is gained. The second possibility is captured in the Postulate 2
demanding that it is always possible to obtain new information.

Jointly, Postulates 1 and 2 can be understood as follows (Rovelli, 1996):
Since the amount of information that O can have about S is limited by pos-
tulate 1, it follows that, if O has a maximal amount of information about
S, then, when new information about S is acquired by O, O must loose in-
formation. In particular, if a new question QN+1 (not determined by the
previous information gathered), is asked, then O looses (at least) one bit
of the previous information. So that, after asking the question QN+1, new
information is available, but the total amount of information about the sys-
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tem does not exceed N bits. For more details on the bidirectional nature of
measurement/observation see (Yang, 2018).

At the logic/algebraic level this is captured by the fact that postulates 1
and 2 imply that the set W (S) as a whole – with the families of complete

questions Q
(i)
b , Q

(i)
c , . . . , which classically form Boolean algebras – has the

structure of an orthomodular lattice (Grinbaum, 2005). The non-classical na-
ture of systems that adhere to postulates 1 and 2 manifests itself algebraically
in the fact that, unlike Boolean algebras, orthomodular lattices may lack the
property of distributivity.

s
(i)
S s

(i)
R

Q
(i)
S Q1 Q2

∧
iQi R1 R2

∧
iRi Q

(i)
R

Q1
S 1 0 Q1 ∧ ¬Q2 1 0 R1 ∧ ¬R2 Q1

R
Q1

S 1 0 Q1 ∧ ¬Q2 0 1 ¬R1 ∧R2 Q2
R

Q2
S 0 1 ¬Q1 ∧Q2 1 0 R1 ∧ ¬R2 Q1

R
Q2

S 0 1 ¬Q1 ∧Q2 0 1 ¬R1 ∧R2 Q2
R

Table 0.1 Two sets of complete questions QS and QR for 2 bits of information (adapted

from (Calude et al, 2014)).

Consider the families QS = {Q1
S , Q

2
S} and QR = {Q1

R, Q
2
R} of complete

questions and the associated two bits of information as displayed in Tab.
0.1. An orthomodular lattice that satisfies postulates 1 and 2 is displayed
in Fig. 0.4. To see how this structure comes about, consider the diagram in
Fig. 0.3. The diagram displays the lattices that arise from the ordering of the
subsets of QS (left) and QR (right) as discussed above (Fig. 0.2). The bottom
element of both lattices is the empty set of questions and represents the
possibility of ’no answer’. The nodes of the intermediate level represent the
yes answers to exactly one question which each yield two bits of information
(maximal amount of information). The top elements of the lattices represent
the situation of a positive answer to at least one question in the respective
set of questions. Logically, this corresponds to a yes answer to the question
Q1

S ∨ Q2
S from which neither a yes answer to the question Q1

S nor a yes
answer to the question Q2

S can be inferred. As discussed above, the top node
of the Boolean algebra associated with minimal information, i.e., zero bits
of information are gained from a yes answer to Q1

S ∨ Q2
S . Similarly for the

top element of the lattice formed by the complete questions in QR and the
information gained from a yes answer to the question Q1

R ∨Q2
R.

The orthomodular lattice which is consistent with postulates 1 and 2 can
be constructed from the two lattices in Fig. 0.3 as follows: (i) the bottom
nodes in both lattices which do not yield an answer are identified and form
the bottom element of the combined lattice; (ii) a new atomic node, {>R

S }
is introduced in the combined lattice, which identifies the top nodes >S and
>R of the lattices in Fig. 0.3. Both, >S and >R, stand for a yes answer to a
disjunctive question in which no information is gained. The intuition is that
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>S = {Q1
S , Q

2
S} no

info
>R = {Q1

R, Q
2
R}

{Q1
S}

>>

{Q2
S}

``

2 bits
of info

{Q1
R}

==

{Q2
R}

aa

∅

`` >>

no
answer

∅

aa ==

Fig. 0.3 Information content associated with sets of complete questions.

in the same sense in which there is only one empty set which represents the
absence of an answer to any question, there is only one atomic node that
represents the lack of information; (iii) the other two atoms of the combined
lattice are {Q1

S} and {Q1
R}, each of which is associated with two bits of

information; (iv) the nodes {Q2
S} and {Q2

R} respectively arise as complements
of {Q1

S} and {Q1
R} and as such yield two bits of information each; (v) The

node {Q1
S , Q

1
R} is identical to the complement of the node >R

S
⊥

. Since the
latter represents indeterminacy, the former needs to represent indeterminacy.
This is consistent with (a) the disjunctive reading of {Q1

S , Q
1
R} and (b) with

the fact that both Q1
S and Q1

R will result in identical bits of information and
thus can not distinguished.1

The lattice in Fig. 0.4 is an algebraic realization of the fact that, due to
the finite amount of possible information, distinct sets of complete questions
(QS and QR in this case) are incompatible in the sense that asking a question
of the form Qi

S ∨ Qi
R will fail to yield determinate information as discussed

above. Algebraically, this non-classical nature is reflected by the fact that the
distributive law does not hold in this structure:

(Q1
R ∧Q1

S) ∨ (Q1
R ∧ >R

S ) = ∅ 6= Q1
R ∧ (Q1

S ∨ >R
S ) = Q1

R

0.2.3 Probabilities

As discussed above, Postulates 1 and 2 imply that the information that can be
obtained in a setting that satisfies both postulates cannot be fully determin-
istic. The formalism of quantum mechanics models this indeterminacy prob-
abilistically. That is, the formalism of quantum mechanics provides means
to quantify indeterminacy by predicting the probability for sequences of re-
sponses that can be obtained from observing a system. This specific under-

1 Usually, the lattice in Fig. 0.4 is constructed starting from the standard two-dimensional
Hilbert space (e.g., (Calude et al, 2014)).
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{>R
S } ∪ {>

R
S }
⊥ =

{Q1
S , Q

1
R,>

R
S }

{Q2
S} = {Q1

S}
⊥

= {Q1
R,>

R
S }

s2S = [01]

;;

{Q1
S , Q

1
R} = {>R

S }
⊥

OO

{Q2
R} = {Q1

R}
⊥

= {Q1
S ,>

R
S }

s2R = [01]

cc

{Q1
S}

s1S = [10]

;; 55

{>R
S }

cc ;;

{Q1
R}

s1R = [10]

ccii

2 bits
of info

∅
no info

ee 99
OO

2 bits
of info

Fig. 0.4 An orthomodular lattice of the two sets of complete questions QS and QR where

the arrows indicate subset relations between subsets of QS and QR and unions thereof.
(Calude et al, 2014)

standing of indeterminacy is independent of the Postulates 1 and 2 and needs
to be captured by additional postulates (Rovelli, 1996; Trassinelli, 2018).

In first approximation the reading of indeterminacy as probability can be
captured in constraints on a family of functions of the form p : Qb×Qc → <.
Those functions take the members of two sets of complete questions, Qb and
Qc, to real numbers in a way that gives rise to a N × N matrix pij via the

assignment pij = p(Q
(i)
b , Q

(j)
c ). The aim is to constrain the functions of the

form p(Q
(i)
b , Q

(j)
c ) in such a way that their outcome can be interpreted as

follows (Rovelli, 1996):

pij = p(Q
(i)
b , Q

(j)
c ) is the probability that a yes answer to the

question Q
(i)
b of the b-family of complete questions will follow the

string s(j) of information that results from a yes answer to the

question Q
(j)
c of the c-family of complete questions.

(0.1)

For the outcome of pij = p(Q
(i)
b , Q

(j)
c ) to be interpretable as a probability

in this sense, functions of this form need to satisfy some basic properties of
probability functions (Rovelli, 1996): (i) 0 ≤ pij ≤ 1; (ii)

∑
i p

ij = 1 and (iii)∑
j p

ij = 1. That is, the function p gives rise to a N ×N matrix of functions
that yield real numbers between 0 and 1. All columns and rows of this matrix
sum up to 1 for any families of complete questions.

The probability functions for the sets QS and QR of complete questions are
displayed in Tab. 0.2. The tables are interpreted as follows. Questions that
belong to the same family are compatible and yield determinate predictions.
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This is displayed in the left and right subtables of Tab. 0.2. The probability

that a yes answer to the question Q
(1)
S of the S-family of complete questions

will follow the string s
(1)
S of information that results from a yes answer to the

question Q
(1)
S of the S-family of complete questions is one. That is, a sequence

of identical questions always yields the same information. By contrast, the

probability that a yes answer to the question Q
(2)
S of the S-family of complete

questions will follow the string s
(1)
S of information that results from a yes

answer to the question Q
(1)
S of the S-family of complete questions is zero.

That is, questions in the same family of complete questions are mutually
exclusive and asking a sequence of questions of the same family does not
introduce indeterminacy. In both case the information that comes from the
answer to the second question is already contained in the information that is
provided by a yes answer to the first question.

The table in the middle of Tab. 0.2 illustrates that the situation is very dif-
ferent if questions from distinct families of complete questions are asked. Both
questions yield a maximum amount of information and thus new information
obtained from the observed system S must overwrite existing information
in the observer O. This introduces indeterminacy which probabilistically ex-
presses itself as follows: The probability that a yes answer to the question

Q
(i)
S of the S-family of complete questions will follow the string s

(j)
R of infor-

mation that results from a yes answer to the question Q
(j)
R of the R-family

of complete questions is completely random, i.e., all possibilities are equally
likely.

pij Q1
S Q2

S pij Q1
R Q2

R pij Q1
R Q2

R

Q1
S 1 0 Q1

S 0.5 0.5 Q1
R 1 0

Q2
S 0 1 Q2

S 0.5 0.5 Q2
R 0 1

Table 0.2 The outcome of pij = p(Q
(i)
S , Q

(j)
S ), pij = p(Q

(i)
S , Q

(j)
R ), and pij = p(Q

(i)
R , Q

(j)
R )

for 1 ≤ i ≤ 2.

As pointed out above, the set W (S) consists not only of sets of complete

questions Q
(i)
b , Q

(i)
c , . . . , but for each set of complete questions Qc, W (S)

also contains the questions that correspond to non-singleton subsets of Qc.
Thus, for each family Qc of complete questions one needs to consider all the
questions in the Lattice generated by the subsets of Qc as illustrated in Figs.

0.1, 0.3, and 0.4. As above in Sec. 0.2.2, the notation Q
(j)
c ∨ Q(k)

c is used

to represent the question corresponding to the set {Q(j)
c } ∪ {Q(k)

c } in the
respective lattices. Again, it is important to note that there is the answer yes

to the question Q
(j)
c ∨ Q(k)

c if and only if either there is a yes answer to the

question Q
(j)
c or there is a yes answer to the question Q

(k)
c . The amount of

information that is associated with a yes answer to the question Q
(j)
c ∨Q(k)

c
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is less than the maximal amount of N bits of information that is associated
with a answer yes to the questions Q

(j)
c and Q

(k)
c when asked separately.

The questions Q
(j)
c and Q

(k)
c are complete questions. By contrast if j 6= k

then Q
(j)
c ∨ Q(k)

c is not a complete question. Since functions of the form
p : Qb × Qc → < are restricted to complete questions, expressions such as

p(Q
(j)
b ∨Q

(k)
b , Q

(i)
c ) are not defined. What is definable are conditional probabil-

ity functions of the form p : P(Qb)×Qc → <, where p({Q(j)
b , Q

(k)
b }, Q

(i)
c ) ≡

p(Q
(j)
b ∨ Q(k)

b , Q
(i)
c ) is interpreted as the probability that a yes answer to

Q
(j)
b ∨ Q(k)

b which is associated with less than N bits of information will

follow a yes answer to the question Q
(i)
c which is associated with N bits of

information. Postulates for p are:

Postulate 4 (Conditional probability (Trassinelli, 2018))

(a) p({Q(j)
b }, Q

(i)
c ) ≥ 0

(b) p({Q(j)
b | 1 ≤ j ≤ N}, Q

(i)
c ) ≡ p(∨N

j=1Q
(j)
b , Q

(i)
c ) = 1

(c) p(Q
(j)
b ∨Q

(k)
b , Q

(i)
c ) = p({Q(j)

b }, Q
(i)
c ) + p({Q(k)

b }, Q
(i)
c )

These properties of p imply as special cases the properties of pij = p(Q
(i)
b , Q

(j)
c )

as stated above (Trassinelli, 2018). Postulate 4 is a more precise statement of
Postulate 3 and thereby supersedes it. In what follows I will refer to Postulate
4 in place of Postulate 3.

0.3 The formalism of QM

Trassinelli (2018) and others have shown that Postulates 1, 2, and 4 are
sufficient to derive the formalism of quantum mechanics within the framework
of complex vector spaces (See Appendix .2). For the purpose of this paper it
will be sufficient to briefly sketch some relevant aspects of it. The point here is
to illustrate representational (and non-dynamic) aspects the formalism that
focus on the formalism’s consistency with Postulates 1 and 2 about the nature
of information. An understanding of the formalism at this level will facilitate
understanding of the probabilistic reading of indeterminacy in Postulate 4 as
well as its viability in the geographic context.
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0.3.1 Algebraic structure

The formalism of quantum mechanics which actually ‘implements’ structures
and functions with the properties postulated in Sec. 0.2 now arises as follows.2

Assume that there are systems O and S both of which have a maximal
information capacity of N bits with respect to one another. That is there are
families of complete questions that O can ask S and vice versa.

In Tab. 0.1 and Fig. 0.3 two complete sets of questions QS = {Q1
S , Q

2
S} and

QR = {Q1
R, Q

2
R} for acquiring 2 bits of information were presented. In the

standard Hilbert space formulation of QM (Dirac, 1930; John von Neumann,
1932) (see Appendix .2) sets of complete questions such as QS and QR give
rise to bases of a 2 dimensional complex vector space H (a Hilbert space).
The two complete questions in QS correspond to a system of base vectors
of H, in the sense that the question Q1

S corresponds to the base vector |Q1
S〉

and Q2
S corresponds to the base vector |Q2

S〉. The base of H that is formed
by the vectors corresponding to the members of QS is called the QS-base
of H. Similarly, the two complete questions in QR correspond to a different
system of base vectors of H – the QR-base – in the sense that the question
Q1

R corresponds to the base vector |Q1
R〉 and so on. This is illustrated in Fig.

0.5.
Every vector |Qi

a〉 ∈ H (a ∈ {S,R} and i ∈ {1, 2}) gives rise to the
‘line’ segment Qi

a ≈ {α |Qi
a〉 | α ∈ C} that emerges when multiplying the

vector |Qi
a〉 by a complex number α ∈ C. The ‘line’ segment Qi

a is a one-
dimensional subspace of H induced by the span of the vector |Qi

a〉. Jointly,
the vectors |Q1

a〉 and |Q2
a〉 form the basis of a two-dimensional subspace of H

by spanning a plane by means of vector addition and scalar multiplication.
The plane spanned by |Q1

a〉 and |Q2
a〉 is designated by Q1

a ∨Q2
a and specified

as Q1
a ∨ Q2

a ≈ {α |Q1
a〉 + β |Q2

a〉 | α, β ∈ C}. One is justified to use the
notation Q1

a ∨ Q2
a to designate a two-dimensional subspace of H because:

(i) the subspaces associated with complete questions of the form Qi
a and

Q1
a∨Q2

a in conjunction with the the subset relation ⊆ between the subspaces
of H form a lattice La (Fig. 0.5 (middle)); (ii) in this lattice the least upper
bound of the subspaces associated with the questions Q1

a and Q2
a is the plane

associated with the question Q1
a ∨ Qa

S via the span of the vectors |Q1
a〉 and

|Q2
a〉. Similarly, the question Q1

a ∧ Q2
a is associated with the greatest lower

bound of the associated subspace with respect to the subset relation of the
underlying lattice La.

The base vectors |Q1
R〉 and |Q2

R〉 share the origin with |Q1
S〉 and |Q2

S〉 but
are rotated by 45 degree (Fig. 0.5 (left)). Jointly, |Q1

R〉 and |Q2
R〉 span the

same subspace as |Q1
S〉 and |Q2

S〉 – the Hilbert space H as a whole. Since
both systems of base vectors have the same origin and span the same space,
H, they form a joint lattice structure LS⊕R in Fig. 0.5 (right). With the join
and meet operations ∨ and ∧ defined as above, it is easy to verify that the

2 Historically, the formalism was developed long before the insights into its interpretation.
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lattice L is non-distributive:

(Q1
R ∧Q1

S) ∨ (Q1
R ∧Q2

R) = ∅ 6= Q1
R ∧ (Q1

S ∨Q2
R) = Q1

R

In addition one can verify that the lattice LS⊕R is also orthomodular. As
pointed out above, orthomodular lattices are structures in which postulates
1 and 2 are satisfied.

For a more intuitive argument of the why Postulates 1 and 2 are satis-
fied are satisfied in a two dimensional Hilbert space with the bases induced
by the sets of complete questions QS and QR, consider Fig 0.5. By con-
struction, the amount of information provided by yes answers to any of the
questions Q1

R, Q
2
R, Q

1
S , Q

2
S is maximal. Understanding the two sets of com-

plete questions QS and QR as forming two bases of the same two dimensional
vector space expresses in a mathematical language that both sets of questions
yield the same amount information in virtue of describing the same vector
space in different bases. The amount of information that can be obtained
is constrained by the dimension of the Hilbert space. New information can
be gained by closing a different base, i.e., by switching to a different set of
complete questions and thus focusing on different aspects of the described
object.

The relation between the lattice in the right of Fig 0.5 and the lattice in
Fig. 0.4 can be established via embeddings that are described for example in
(Calude et al, 2014). In general, one can prove that although both lattices
are orthomodular, there does not exist an embedding that preserves all the
properties associated with the lattice arising from QM into lattices that arise
from classical logic and classical information theory (Kochen and Specker,
1967; Calude et al, 2014). Intuitively, in QM one can quantify indeterminacy.
In a (semi-)classical framework one can qualitatively distinguish determinate
from indeterminate situations as they arise from measurement/observation
interactions.

Q1
S
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Fig. 0.5 Two complete sets of questions QS and QR for 2 bits of information in a (pro-

jection of a) 2 dimensional Hilbert space (left) and the lattices LS (middle) and LS⊕R

(right) (adapted from (Calude et al, 2014) and (Hughes, 1981)).
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0.3.2 Indeterminacy as probability

Every vector in a vector space can be represented as a superposition of a
system of base vectors. That is, if |φ〉 is a vector of H that is described
in the QS-base, then there are complex numbers α, β ∈ C such that |φ〉 =
α |Q1

S〉 + β |Q2
S〉. The formalism of QM requires that the square modulus

| 〈φ|φ〉 | of the inner product 〈φ|φ〉 of the vector |φ〉 is equal to one (see
Appendix .2). For given system of base vectors, this requirement allows for
the distinction of two kinds of vectors in a Hilbert space: (a) vectors that,
when expressed in that base, are such that one of the coefficients α, β is equal
to one and the other coefficients are equal to zero; (b) vectors |φ〉 that, when
expressed in that base, are such that none of the coefficients is equal to one,
but jointly the square of the modulus of 〈φ|φ〉 is equal to one.

The case (a) covers all the situations in which an observing system can
obtain two bits of information about the observed system in the form of
a yes answer to the question associates with the base vector of the non-
zero coefficient. That is, case (a) covers all the situations where there is
determinate information. By contrast, case (b) covers all the situations in
which an observing system cannot obtain determinate information about the
observed system. Since the coefficients range over complex numbers, there is
a huge number of indeterminate situations that can be distinguished. This
is very different from the classical framework. Consider the orthomodular
lattice of Fig. 0.4. This lattice represents a classical understanding of the
indeterminacy that arises in systems with two bits of information that satisfy
Postulates 1 and 2. On a classical view of the sort that is presented in Fig. 0.4,
there are exactly three cases of indeterminacy that can be distinguished as
the nodes {>S

R}, {>S
R}⊥, and > in the depicted lattice. This illustrates that

QM as a formalism for indeterminacy is capable of quantifying indeterminacy
rather than only identifying indeterminate situations qualitatively.

In the formalism of QM indeterminacy is quantified probabilistically in
terms of the likelihood that a yes answer to a specific complete question is
obtained. In the base formed by vectors corresponding to the members of
QS (the QS-base), a vector |φ〉 = α |Q1

S〉 + β |Q2
S〉 represents a state of an

observed system S with respect to the observing system O. If S is in the state
|φ〉 with respect to O, then the probability that O receives a yes answer to

the question Qi
S is | 〈φ|Q(i)

S 〉 |. Here the expression | 〈φ|Q(i)
c 〉 | encodes in the

object language of QM the conditional probability p of Postulate 4.
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0.4 An information-theoretic view of geographic
information

The systematic investigation of the nature of geographic information and
geographic information processing from an information-theoretic perspective
was pioneered by Sinton (1978). According to Sinton, geographic information
has three components that are logically interrelated but need to be treated
independently: information of geographic qualities; information about the
spatial location and the temporal location of the geographic phenomena that
have those qualities.3 In addition, Sinton postulates that information about
the three components cannot be measured/observed at once. One component
has to be fixed, one component has to be controlled, and one component
can be measured/observed. In the language of Wheeler’s (1989) information-
theoretic view of measurement/observation processes, Sinton’s conception of
the nature of geographic information can be expressed as follows:

Postulate 5 (Sinton and Wheeler) (S1) For a string of bits of informa-
tion to count as geographic information it must be constituted by bits that
result from answers to yes/no questions that fall in three broad classes:
(i) yes/no questions about measurable/observable (geographic) qualities; (ii)
yes/no questions about spatial location in geographic space; and (iii) yes/no
question about temporal location.

(S2) For a string of bits of information in the sense of (S1) to count as
geographic information: Firstly, one type of yes/no questions which answers
determine the bit string needs to be fixed, that is, limited to the yes answer
to one question of this type. Secondly, one type of yes/no questions needs to
be controlled, that is, limited to yes answers to a fixed number of questions –
control questions – that yield information about some domain that is subject to
a fiat subdivision4. Thirdly, one type of yes/no questions needs to be measured,
that is, every yes answer to a control question is complemented by a yes
answer to a question from the class of questions that is neither fixed nor
controlled – a yes/no question in Wheeler’s standard understanding.

That is, in Wheeler’s (1989) information-theoretic language, Sinton’s paradigm
requires that: (i) there is one yes answer to k yes/no question, Q1

f , . . . , Q
k
f ,

pertaining to fixed information; (ii) there are n yes answers to n yes/no ques-
tions Q1

c . . . Q
n
c pertaining to controlled information; and (iii) there is one yes

answer to yes/no questions (Qm)11 . . . (Qm)hn for every bit of control informa-
tion pertaining to information obtained by measurement/observation, where
h is the number of yes/no questions from the class of questions that repre-
sent possible measurement/observation outcomes. With those k+n+ (n ∗h)

3 Since geographic phenomena are strictly non-relativistic, it is consistent with RQM to
treat spatial location and temporal location as independent.
4 A subdivision which boundaries are not aligned with physical discontinuities of the

domain that is subdivided (Smith, 2001; Smith and Varzi, 2000; Smith, 1995).
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yes/no questions there is associated an amount of k + n + (n ∗ h) bits of
information and there are 2k+n+(n∗h) combinatorially possible bit strings of
the form sketched in Eq. 0.2.

sS Q1
f . . . Qk

f Q1
c . . . Q

n
c (Qm)11 . . . (Qm)h1 (Qm)12 . . . (Qm)h2 . . . (Qm)hn

s1S 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 1
s2S 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sLS 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0

with L = k + n+ (n ∗ h)

(0.2)

As indicated in Eq. 0.2, there is a set, sS , of bit strings of length k + n +
(n∗h) which has 2k+n+(n∗h) members. The paradigm of fix/control/measure
reduces these combinatorial possibilities to the set SS of possibilities that are
consistent with the paradigm (Eq. 0.3).

SS =


siS ∈ sS

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σk
j=1s

i
S [j] = 1 & (one yes-bit of fixed

information for each siS)

(Σk+n+1
j=k+1 siS [j]) = n & (n yes-bits of control

information for each siS)

(
∧n−1

j=0 (Σlm
l=l1

siS [l] = 1)) = 1
(one yes-bit for measurement

for each yes-control-bit
for each siS)

l1 = k + n+ (j ∗ h) + 1;

lm = k + n+ (j ∗ h) + h


(0.3)

Example 1. Consider Fig. 0.6 and suppose that (a) the information that is
obtained by measurement/observation is information about about the quality
of elevation; (b) that the information about spatial location is controlled by
projecting a fiat (Smith, 2001; Smith and Varzi, 2000; Smith, 1995) raster-
shaped partition onto the ground as indicated in the image; (c) information
about temporal location is fixed by allowing for a single time stamp. That
is, a yes answer to one of the Q1

t , . . . , Q
10
t picks out a particular time stamp.

Yes answers to the yes/no questions Q1
c , . . . , Q

36
c pick out particular cells in

the grid structure. For every control region picked out by a control question
Qi

c there is a yes answer to one of the yes/no questions Q1
m, . . . , Q

110
m . By

imposing those constraints the paradigm of fixing time, controlling spatial
location, and measuring/observing qualities of control regions, reduces these
combinatorial possibilities to the set SS of possibilities that are consistent
with the paradigm (Eq. 0.3). The yes/no questions, the yes answers to which
give rise to the bit strings of information in SS are the members of the
set of complete questions QS . Consider the yes/no question Qimg

S ∈ QS as
depicted in Fig. 0.6. A yes answer to Qimg

S yields L bits of information. This
information is encoded in the string simg

S ∈ SS. The information encoded in
simg

S corresponds to the information encoded in the image in the top left of
Fig. 0.6. ut
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Q1
t Time is 11/20/2018?

time . . . . . .

Q10
t Time is 11/29/2018?

Q1
l Location is cell 1?

location . . . . . .

Q36
l Location is cell 36?

Q1
q Quality measure is 640?

quality . . . . . .

Q110
q Quality measure is 750?

sS\QS Q1
t . . . Q

10
t Q1

l . . . Q
36
l (Qq)11 . . . (Qq)1101 (Qq)12 . . . (Qq)1102 . . . (Qq)11036

s1S 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 1

s2S 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sLS 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0

where L = 1 + 36 + (36 ∗ 110)

SS =


siS ∈ sS

∣∣∣∣∣∣∣∣∣∣∣

(Σ10
j=1s

i
S [j]) = 1 = siS [1] & (fix time)

(Σ46+1
j=11 siS [j]) = 36 & (36 yes-bits of control information)

(
∧36−1

j=0 (Σkm
k=k1

siS [k] = 1)) = 1 (one measurement bit is 1 for each
control location)

k1 = 10 + 36 + (j ∗ 110) + 1
km = 10 + 36 + (j ∗ 110) + 110



Qimg

S = Q1
t ∧¬Q2

t ∧ . . .∧¬Q10
t ∧Q1

c ∧ . . .∧Q36
c ∧¬(Qq)11∧ . . .∧(Qq)61∧ . . .∧¬(Qq)1101 ∧

¬(Qq)12 ∧ . . . ∧ (Qq)112 ∧ . . . ∧ ¬(Qq)11036 .

Fig. 0.6 Sinton’s paradigm of geographic information where temporal location is fixed

(11/20/2018), spatial location is controlled by fiat, and a geographic quality is measured.

Qimg

S is the complete yes/no question the yes answer to which yields L bits of information
encoded in the image in the top left. (The image in the top left is from (Bolstad, 2005).)

0.5 The nature of geographic information

The success of quantum mechanics in physics reveals three important aspects
of information about the physical world (Rovelli, 1996; Rovelli and Vidotto,
2015): (i) information about the physical world is fundamentally relational
(according to RQM); (ii) information of the physical world is fundamentally
granular; and (iii) information about the physical world reflects the funda-
mentally indeterminate nature of certain aspects of the world. These proper-
ties of information manifest themselves logically in the Postulates 1, 2, and
4 as discussed above. If there is a quantum theory that captures at least cer-
tain classes of geographic phenomena, then, in analogy to (i), (ii), and (iii),
information of those phenomena is fundamentally relational, granular, and
affected by indeterminacy and, logically, subject to Postulates 1, 2, and 4.
In what follows the relational and granular nature of geographic information
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and the way geographic information is affected by indeterminacy is discussed
within Sinton/Wheeler framework of geographic information processing.

0.5.1 The relational nature of geographic information

The inherently relational nature of Sinton’s paradigm is revealed in the ex-
plicit focus on the aspect of control that is asserted by the observing system
and targeted towards the observed system in form of a fiat subdivision (Smith,
2001) of some aspect of the observed system (Postulate 5 (S2)). The asser-
tion of control on how certain bits of information are obtained in Sinton’s
framework corresponds to the idea of a granular partition (Smith and Bro-
gaard, 2002; Bittner and Smith, 2003; Bittner and Stell, 2003). The theory
of Granular partitions (TGP) (Smith and Brogaard, 2002) emphasizes the
bidirectional nature of the interrelationship between observing and observed
system in geographic contexts such as the one sketched in Fig. 0.6. That is,
control asserted by the observing system cannot be arbitrary. It has to ad-
here to certain features of the observed system. According to TGP, features
include structural aspects such as mereology (Leonard and Goodman, 1940;
Simons, 1987) as well as aspects of granularity and scale. In the context of
a quantum theory, aspects of granularity and scale are of particular impor-
tance.5 The ways in which the theory of granular partitions extends Sinton’s
paradigm can be seen as an investigation in the nature of the information
transfer via correlations between observed and observing systems.

0.5.2 The granular nature of geographic information

In Example 1 (pg. 17) there does not seem to be a limit to the amount of
information about elevation that can be had by an observer. More informa-
tion can be obtained by refining cells and asking yes/no questions about the
elevation in these refined cells.6 Similarly, more information can be obtained
by allowing for more precise elevation measurements.7 It follows:

5 The theory of granular partitions was originally linked to Griffiths’ (1984) consistent
history interpretation of quantum mechanics (Smith and Brogaard, 2002). However, none of
the assumptions in the formalism of TGP restrict it to the consistent history interpretation.
6 Of course the notion of elevation ceases to be meaningful if the refinement of cells reaches

the atomic scale. However this is so far outside of the realm of geography that it can be
ignored here.
7 According to RQM there are minimal units of length (Rovelli and Vidotto, 2015). This
can be ignored here.
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Proposition 1. When reading the qualities in Example 1 and Fig. 0.6 as
elevation, then Example 1 constitutes a counter example to Postulate 1 and
a supporting example for Postulate 2.

Consider, again, Fig. 0.6, but now suppose that the measured quality is
classificatority in nature such as the quality of land cover and land use types
(Andereson et al, 1976). In virtue of the classificatory nature, there is a
maximal number of land cover types that can be distinguished in a given
classification scheme. In addition, there is a limit to the degree to which the
raster cells can be subdivided while still being meaningfully associated with
land cover and/or land use (or other classificatory) qualities. This is because
there cannot be a land cover of type forrest in a region that is too small to
contain a sufficient number of trees. This is captured in Postulate 6.

Postulate 6 (Granularity) If the Sinton/Wheeler scheme is applied in
contexts where classificatory qualities Q1

m . . . Qh
m of geographic regions are

measured/observed, time is fixed and space is controlled via control cells ref-
erenced by yes answers to a control questions of the form Q1

l . . . Q
n
l , then there

is a minimal size of control cells – a finest level of resolution/granularity –
for which yes/no questions of the form:

Qk
S = ‘Does the cell referenced by a yes answer to the question Qi

l

have the quality Qj
m?’ (1 ≤ i ≤ n, 1 ≤ j ≤ h)

still have an answer. For cells of less than minimal size – below the finest
level of resolution/granularity – there is no answer to a question such as Qk

S.

Example 2. Suppose that in this example the questions Q1
q, . . . , Q

110
q of Fig.

0.6 are designed to obtain information about land cover and land use qualities.
In particular suppose that the symbol 645 designates the land cover type
’forrest’, the symbol 670 designates ’industrial area’, and so on. In the context
of Sinton’s scheme the yes/no questions

Q1
t , . . . , Q

10
t , Q

1
l , . . . Q

36
l , (Qq)11, . . . , (Qq)11036

play the same roles as specified in Example 1. Again, the answers to those
yes/no questions give rise to the set SS of bit strings that emerge from yes
answers to complete questions such as Qimg

S ∈ QS . ut

Proposition 2. On the classificatorial interpretation of Example 2 the com-
plete questions in QS satisfy Postulate 1, only if the control questions
Q1

l . . . Q
36
l acquire information about cells of maximal resolution.

Proof. Every question Qi
S ∈ QS is by construction complete (in the sense of

Sec. 0.2.1) and adheres to Sinton’s scheme. Therefore, a yes answer to any
of the complete questions in Qi

S ∈ QS yields the same amount of L bits of
information about land use and coverage about the target area that is picked
out by the control questions Q1

l . . . Q
36
l . More information about land use and
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land cover in the target area can be had only by further subdividing control
cells, but this would render the question Qi

S meaningless because it cannot
be answered for cells that are smaller than cells of maximal of resolution.
Thus, the amount of information of complete questions Qi

S associated with
control questions Q1

l . . . Q
36
l that acquire information about cells of maximal

resolution is maximal. Hence Postulate 1 is satisfied. ut

0.5.3 Unlimited amounts of limited information

On the classificatority interpretation of Fig. 0.6 in Example 2 the question
arises, if there are other sets of complete questions (such as QR in Tab. 0.1)
that can serve in support of Postulate 1 and Postulate 2. To address this
issue, consider the yes/no questions Q1

t , . . . , Q
k
t , Q

1
l , . . . , Q

n
l where the fixed

yes question that picks out the time stamp is Qi
t with 1 ≤ i ≤ k and, as above,

the control questions Q1
l , . . . Q

n
l acquire information about cells of maximal

resolution. Now suppose that there are yes/no questions (Qi/b)
1
j and (Qi/b)

2
j :

• (Qi/b)
1
j : ”Is the cell associated with a yes answer to the control question

Qj
l an interior part of a region of a homogeneous land cover type?”

• (Qi/b)
2
j : ”Does the cell associated with a yes answer to the control question

Qj
l contain a boundary between distinct land cover types?”

Suppose that the observing system has a maximal amount of information
about the observed system in form of the bit string siS which stems from a
yes answer to the complete question Qi

S associated with control cells at finest
level of resolution as in Example 2. By assumption, yes answers to the control
questions Q1

l , . . . Q
n
l pick out cells which have (mostly) fiat boundaries, i.e.,

boundaries that that do not correspond to discontinuities in the geographic
world (Smith, 2001; Smith and Varzi, 2000; Smith, 1995). This means that the
boundaries between control cells in general do not coincide with boundaries
between regions with distinct types of land uses. This is illustrated in Example
3 and Fig. 0.7.

Example 3. Consider the image of Fig. 0.7 which displays the cells 1, 2, 7, and
8 of Fig. 0.6. On the classificatority interpretation the numbers of the image
in Fig. 0.6 are interpreted as land cover types and the respective cells had the
classificatory values 645, 650, 664 and 666. As indicated in the image of Fig.
0.7 the classification of the cells in Fig. 0.6 is consistent with the land cover
types of the actual regions on the ground. However, the actual boundaries
that demarcate the regions on the ground lie skew to the boundaries of the
raster cells that are picked out by the control questions Q1

l , Q
2
l , Q

7
l and Q8

l .
The tables in Fig. 0.7 illustrate, in analogy to the tables in Fig. 0.6, how
the set Qi/b of complete questions and the strings of information Si/b that
emerge from yes answers to questions in Qi/b arise in a way that is consistent
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with Sinton’s paradigm. Qimg

i/b is the complete question corresponding to the

image in the top of Fig. 0.7. ut

cell 1 cell 2

cell 7 cell 8

650

666
664

645

Q1
t Time is 11/20/2018?

time . . . . . .

Q10
t Time is 11/29/2018?

Q1
l Location is cell 1?

location . . . . . .

Q36
l Location is cell 36?

quality Q1
q Cell is land-cover homogeneous ?

Q2
q Cell is land-cover inhomogeneous?

si/b Q1
t . . . Q

k
t Q

1
c . . . Q

36
c (Qi/b)11 (Qi/b)21 (Qi/b)12 (Qi/b)22 . . . (Qi/b)236

s1
i/b

1 . . . 1 1 . . . 1 1 1 1 1 . . . 1

s2
i/b

1 . . . 1 1 . . . 1 1 1 1 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s
Li/b

i/b
0 . . . 0 0 . . . 0 0 0 0 0 . . . 0

where Li/b = 10 + 36 + (36 ∗ 2)

Si/b =


sii/b ∈ si/b

∣∣∣∣∣∣∣∣∣∣∣∣∣

(Σ10
j=1s

i
i/b

[j]) = 1 = si
i/b

[1] & (fix time)

(Σ36+1
j=2 si

i/b
[j]) = 36 & (36 yes bits of control

information)

(Σ36−1
j=0 (Σkm

k si
i/b

[k] = 1) = 36) (one measurement bit is 1
for each control location)

k = 1 + 36 + (j ∗ 2) + 1

km = 1 + 36 + (j ∗ 2) + 2



Qimg

i/b
= Q1

t ∧¬Q2
t ∧ . . .∧¬Q10

t ∧Q1
c ∧¬Q2

c ∧¬Q7
c ∧¬Q8

c ∧¬(Qq)11 ∧ (Qq)21 ∧¬(Qq)12 ∧
(Qq)22 ∧ ¬(Qq)17 ∧ (Qq)27 ∧ (Qq)18 ∧ ¬(Qq)28.

Fig. 0.7 Sinton’s paradigm of geographic information where temporal location is fixed

(11/20/2018), spatial location is controlled by fiat, and the quality of (in)homogeneity of
land coverage is measured/observed. (The image in the top left corresponds to the four

top left cells (cells 1, 2, 7, 8) in the image of Fig. 0.6.) Qimg

i/b
is the complete question

corresponding to the image in the top left.

Proposition 3. The complete questions in Qi/b of Example 3 and Fig. 0.7
satisfy Postulate 1, only if the control questions Q1

l . . . Q
36
l acquire informa-

tion about cells of maximal resolution.

Proof. Consider complete questions of the form Qi
S ∈ QS of Fig. 0.6 and

complete questions of the form Qi
i/b ∈ Qi/b of Fig. 0.7. Since both, Qi

S and
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Qi
i/b contain the same control questions, it follows that if Qi

S yields a maximal

amount of (classificatory) information, which is determined by the maximal
resolution of the raster cells picked out by the control questions. Therefore,
the question Qi

i/b must be yield the maximum amount of information about

(in)homogeneity associated with the classification underlying QS and vice
versa. Thus, Proposition 3 is true, if Proposition 2 is true. ut

It now remains to investigate whether, jointly, the complete questions an-
alyzed in Examples 2 and 3, satisfy Postulate 2:

Proposition 4. Jointly, the sets of complete questions QS and Qi/b of Ex-
amples 2 and 3 satisfy Postulate 2, only if the control questions Q1

c . . . Q
n
c

acquire information about cells of maximal resolution.

Proof. Consider the complete questions Qi
S and Qj

i/b. Question Qi
S yields

10+36+(36∗110) bits of information and question Qj
i/b yields 10+36+(36∗2)

bits of information. Thus, if Qi
S and Qj

i/b are complete questions at extract

information on the finest level of granularity, then the maximal amount of
information that an observer can have about the observed phenomenon is
10 + 36 + (36 ∗ 110) bits. Suppose that the image in Fig. 0.6 is the graphical
representation of a yes answer to question Qi

S . A yes answer to Qi
S yields

10+36+(36∗110) bits and thereby exhausts the amount of information that
can be had. Now suppose that the observer asks question Qj

i/b. A yes answer

to this question yields (36∗2) bits of new information. This information is new
because, by assumption, the boundaries between the cells picked out by the
control questions are created by fiat and therefore may or may not coincide
with discontinuities in the observed phenomenas. Thus, a yes answer to Qi

S

does not contain information discontinuities at the finest level of granularity.
By contrast, a yes answer to Qj

i/b does yield information about homogeneity

and inhomogeneity and thus new information about discontinuities in the
observed phenomena at the finest level of granularity.

Since a yes answer to Qi
S yields the maximal amount of information an

observer can have about the observed phenomenon, the new information ob-
tained by a yes answer to Qj

i/b must overwrite old information, which there-

fore is lost. Asking Qi
S again and receiving a yes answer will yield genuinely

new information, i.e., information that was erased by the information that
was obtained by a yes answer to Qj

i/b. The questions Qi
S and Qj

i/b are ge-

ographic examples of what in quantum mechanics are called complimentary
questions or complimentary qualities. As in the example of Qi

S and Qj
i/b, ev-

ery question in a sequence of complementary questions, when answered with
yes, will yield new information. ut

Corollary 1. The complete questions in QS and Qi/b satisfy both, Postulate
1 and Postulate 2 only if the control questions Q1

c . . . Q
n
c acquire information

about cells of maximal resolution.
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Of course, the examples discussed in the past two sections are specific in-
stances of the famous cluster of problems that arise in the realm of the clas-
sification and delineation of geographic regions (Bailey, 1983; Omernik and
Griffith, 2014). The question Qi

S is an example of the formulation of a clas-
sification problem in the language of Wheeler’s (1989) information-theoretic
view of measurement/observation processes. By contrast, the question Qj

i/b

is an example of the formulation of a delineation problem in Wheeler’s (1989)
language. Thus, this is an information-theoretic argument in support of the
view that the classification and delineation of geographic regions are comple-
mentary measurement/observation processes at the geographic scale. Similar
points were made from non-information-theoretic perspectives in (Bittner,
2011, 2017).

0.6 Information density

The arguments of the previous section about the complementary nature of
complete questions, Qi

c, about classification and complete question, Qj
i/b,

about delineation, depended critically on the assumption that the control
questions (that are part of Qi

c ∈ Qc as well as in Qj
i/b ∈ Qi/b) refer to cells at

the finest level of granularity. Linking a maximal amount of information to a
minimal unit of space, as it is evident in Postulate 6 and Propositions 2 and
3, makes explicit that in the context of the processing of information about
the classification and delineation of geographic regions there is a maximal
information density. The notion of maximal information density then opens
the possibility that larger amounts of information can be had at coarser levels
of granularity.

0.6.1 Maximal information density

Consider Fig. 0.8 and suppose that in the context of the classification and
delineation of geographic phenomena the employment of Sinton’s paradigm
has led to fixed time, controlled space and the measurement/observation of
land cover types and land cover (in)homogeneity. Suppose further that (a)
the control results in a raster structure that has two cells and that each
cell is of the minimal size (i.e., of maximal resolution) associated with land
cover types (in the sense of Postulate 6); (b) the measurement/observation
of land cover types distinguishes two types: type A and type B; and (c) the
measurement/observation of land cover homogeneity distinguishes two types:
homogeneous and inhomogeneous. The information-theoretic representation
of what can be measured/observed within this example is encoded in eight
yes/no questions. The questions are labeled Q1,1

c , Q1,2
c , Q2,1

c , Q2,2
c , Q1,1

i/b, Q
1,2
i/b,
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Q2,1
i/b,Q

2,2
i/b and specified as conjunctions of yes/no questions that extract fixed,

controlled, and measured information as outlined in the middle of Fig. 0.8.
Due to the complementary nature of the classification qualities and de-

lineation qualities of minimal control cells, there are two sets of complete
questions:

Qc = {Q1
c , Q

2
c , Q

3
c , Q

4
c} Qi/b = {Q1

i/b, Q
2
i/b, Q

3
i/b, Q

4
i/b}

The amount of information that can be obtained by answering each of the four
questions in the two groups is four bits.8 That is, the maximum information
density is four bits per cell of minimal size. The 24 combinatorially possible
pattern of yes/no answers to these questions are listed in Tab. 0.8. Within
the constraints of Sinton’s paradigm only four pattern of yes/no answers are
possible.

Example 4. Consider Fig. 0.9 and suppose that the image in the middle repre-
sents a specific situation on the ground – the system S that is constituted by
two regions, one of land cover type A and one of land cover type B. Suppose
further, that the cells marked ‘cell 1’ and ‘cell 2’ are fiat subdivisions imposed
by the observer O on S which are of minimal size with respect to the mea-
sured/observed quality (land cover types and land cover (in)homogeneity). If
O can have only four bits of information at the finest level of granularity, then
the image in the middle of Fig. 0.9 is either characterized by a yes answer

to the question Q
(2)
c which yields the information s

(2)
c = [1001], or by a yes

answer to the question Q
(3)
i/b which yields the information s

(2)
i/b = [0110]. ut

Interpreted in the context of the limited amount of information that ob-
server O can have about S at finest level of granularity, the image in the
middle of Fig. 0.9 is an illusion. The information that can be had by O at

any given time at the finest level of granularity is either a string of bits s
(2)
c

obtained as a yes answer to the question Q
(2)
c or a string of bits s

(2)
i/b obtained

as a yes answer to the question Q
(2)
i/b, but not both.

The orthomodular lattice that arises from the two sets of complete ques-
tions Qc and Qi/b at the finest level of granularity is displayed in Fig. 0.10.
In analogy to Fig. 0.4 the lattice in Fig. 0.10 is an algebraic expression of the
fact that, due to the limited amount of possible information, the distinct sets
of complete questions Qc and Qi/b are incompatible in and asking questions
of the form Qi

c ∨Qi
i/b will fail to yield determinate information.

8 In the context of this example it is ignored that there are more bits of information

‘hidden’ in the Q
(i)
c and Q

(j)
i/b

.
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time Qt Time is 11/20/2018?

location Q1
l Location is cell 1?

Q2
l Location is cell 2?

quality Q1
i/b

Cell is land-cover homogeneous ?

Qi/b Q2
i/b

Cell is land-cover inhomogeneous?

quality Q1
q Cell is land-cover-type A?

Qq Q2
q Cell is land-cover-type B?

Q1,1
c ≡ Qt ∧Q1

l ∧Q
1
q , Q1,2

c ≡ Qt ∧Q1
l ∧Q

2
q , Q2,1

c ≡ Qt ∧Q2
l ∧Q

1
q , and Q2,2

c ≡ Qt ∧Q2
l ∧Q

2
q ;

Q1,1
i/b
≡ Qt∧Q1

l ∧Q
1
i/b

,Q1,2
i/b
≡ Qt∧Q1

l ∧Q
2
i/b

,Q2,1
i/b
≡ Qt∧Q2

l ∧Q
1
i/b

, andQ2,2
i/b
≡ Qt∧Q2

l ∧Q
2
i/b

.

s
(i)
c

Hc Q
(i)
c Q1,1

c Q1,2
c Q2,1

c Q2,2
c

− 1 1 1 1 −
− 1 1 1 0 −
− 1 1 0 1 −
− 1 1 0 0 −
− 1 0 1 1 −

|Q(1)
c 〉 Q

(1)
c 1 0 1 0 Q

(1)
i/b
|Q(1)

i/b
〉

|Q(2)
c 〉 Q

(2)
c 1 0 0 1 Q

(2)
i/b
|Q(3)

i/b
〉

− 1 0 0 0 −
− 0 1 1 1 −

|Q(3)
c 〉 Q

(3)
c 0 1 1 0 Q

(3)
i/b
|Q(2)

i/b
〉

|Q(4)
c 〉 Q

(4)
c 0 1 0 1 Q

(4)
i/b
|Q(4)

i/b
〉

− 0 1 0 0 −
− 0 0 1 1 −
− 0 0 1 0 −
− 0 0 0 1 −
− 0 0 0 0 −

Q1,1
i/b

Q1,2
i/b

Q2,1
i/b

Q2,2
i/b

Q
(i)
i/b
Hi/b

s
(i)
i/b

Fig. 0.8 Constructing a two sets, Qc and Qi/b of complete questions that each capture

four bits of information about the land cover type or four bits of information about the

land cover homogeneity of two minimal raster cells.

0.6.2 Information at coarse levels of granularity

To illustrate that the notion of maximal information density is consistent
with larger amounts of information at coarser levels of granularity consider
Example 5:

Example 5. Consider, again, Fig. 0.9 but now suppose that the cells labeled
‘cell 1’ and ‘cell 2’ are of a size that is much larger than the minimal size (say
10 times larger or so) with respect to the measured/observed quality. That
is, on this interpretation the figure represents a specific configuration S′ at a
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cell 1 cell 2

B
A

B
cell 1 cell 2

inhomogenous homogenous

cell 1 cell 2

A

Coarser level of granularity;
Classification and delineation seem compatible;
Eight bits of information can be obtained without 
         exceeding the maximal information density.

Finest level of granularity;
Classification and delineation are complementary;
Only four bits of information per minimal cell can 
        be obtained.

si
Q = [10010110]
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s(2)
c = [1001]
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s
(2)
i/b = [0110]
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B
cell 1 cell 2

inhomogenous homogenous

cell 1 cell 2

A

Fig. 0.9 Amount of information that can be obtained at non-finest level of granularity is 8
bits (top) and the amount of information that can be obtained at finest level of granularity

is 4 bits (bottom).

coarse level of granularity. At this coarser level of granularity the observing
system O can have an amount of (at least) eight bits of information about
the observed system S′ without exceeding the maximal information density of
four bits per cell at the finest level of granularity. The eight bits of information
specify: Cell 1 is inhomogeneous and of type A and cell 2 is homogeneous
and of type B. The string of eight bits of information that corresponds to the
image in the middle of Fig. 0.9 described at a coarser level of granularity is
siQ = [10010110] as indicated in the top of the figure. ut

In contrast to the non-distributive orthomodular lattice that arises from
the two sets of complete questionsQc andQi/b at the finest level of granularity
(Fig. 0.10), at coarser levels of granularity at which (at least) eight bits of

information can be obtained per cell, the indeterminate nodes {>i/b
c } and

{>i/b
c }⊥ of Fig 0.10 disappear and the lattice becomes a boolean algebra of

the form sketched in the right of Fig. 0.1. This represents at the algebraic level
that at the finest level of granularity the theory that describes the information
that an observer can have about the observed system is very non-classical,
i.e., logical conjunction and disjunction are non-distributive. At coarser levels
of granularity descriptions become more classical, i.e., logical conjunction and
disjunction are distributive.
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Fig. 0.10 An orthomodular lattice of the two sets of complete questions Qc and Qi/b

where the arrows indicate subset relations between subsets of Qc and Qi/b and unions
thereof. (Calude et al, 2014)

0.7 Sketch of a quantum theory

The discussion of the previous sections supports the hypothesis that a quan-
tum theory may be the proper theory of the information that arises in the
context of the classification and delineation of geographic phenomena at finest
level of granularity. This is because the analysis of the classification and de-
lineation of geographic phenomena from an information-theoretic perspective
provides examples that satisfy both, Postulate 1 and Postulate 2, which, ac-
cording to the relational interpretation of QM, in conjunction with Postulate
4, demand a quantum theory. At this point, however, it is not clear whether
in the the context of the classification and delineation of geographic phenom-
ena the indeterminacy that is entailed by Postulates 1 and 2, manifests itself
probabilistically. To test whether or not this is indeed the case one needs to
build a quantum theory and test its probabilistic predictions. It goes beyond
the scope of this paper to actually develop such a theory. Nevertheless it
will be useful to sketch a toy theory that illustrates how such a theory could
look like. The examples developed in Sec. 0.6 will continue to serve as an
illustration.

Analogous to the discussion in Sec. 0.3, the Hilbert space of the standard
formalism of QM can be constructed from the sets Qc and Qi/b of complete
questions. The four complete questions in Qc correspond to a system of base
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vectors – the Qc-base – of a four-dimensional Hilbert space, H. That is, the

question Q1
c corresponds to the base vector |Q(1)

c 〉, etc. Similarly, the four
complete questions in Qi/b correspond to a different system of base vectors
of H – the Qi/b-base. This is illustrated in Tab. 0.8.

As in the example in the left of Fig. 0.5, the systems of base vectors
corresponding to the sets of complete questions Qc and Qi/b are rotated
with respect to one another in the four-dimensional Hilbert space H. The
orthomodular lattice that is formed by the subspaces generated by the vectors
in this four dimensional Hilbert space is displayed in Fig. 0.11. In analogy to
the lattice in the right of Fig. 0.5 there are two complementary sets of atoms
in the lattice of Fig. 0.11.

Every vector in a vector space can be represented as a superposition of
a system of base vectors. That is, if |φ〉 is a vector of H that is described
in the Qc-base, then there are complex numbers α, β, γ, δ ∈ C such that

|φ〉 = α |Q(1)
c 〉+ β |Q(2)

c 〉+ γ |Q(3)
c 〉+ δ |Q(4)

c 〉. If the vector |φ〉 represents the
state of an observed system S with respect to an observing system O, then

the probability that O receives a yes answer to the question Q
(i)
c is | 〈φ|Q(i)

c 〉 |.
Base vectors are just vectors. Thus, one can express the base vectors of

the base associated with the questions in Qi/b (the Qi/b-base) in terms of
the base vectors associated with the questions in Qc (the Qc-base). The fact
that the complete questions in Qc are incompatible with or complementary
to the complete questions in Qi/b is represented in the formalism of QM as
follows: If a vector |φ〉 is determinate when expressed in the Qc-base (case (a)
in Sec. 0.3.2), then the vector |φ〉 is maximally indeterminate when expressed

in the Qi/b-base (case (b) in Sec. 0.3.2). In particular, if | 〈φ|Q(i)
c 〉 | = 1 for

some i ∈ 1 . . . 4, then | 〈φ|Q(i)
i/b〉 | = 1

4 for every i ∈ 1 . . . 4. That is, determinacy

expressed probabilistically as certainty and maximal indeterminacy expressed

probabilistically as complete randomness. Similarly, if | 〈φ|Q(i)
i/b〉 | = 1 for

some i ∈ 1 . . . 4, then | 〈φ|Q(i)
c 〉 | = 1

4 for every i ∈ 1 . . . 4. Some examples of
intermediate degrees of indeterminacy and their probabilistic representations
are displayed in Tab. 0.12.

0.8 Conclusion

So, is there a quantum geography? Or better: Are there geographic phenom-
ena that can be described best by a quantum theory? The answer to this
question is definitively not ’No’. In fact, there seem to be good reasons to
believe that the answer is ’Yes’. In support of this answer stand regional ge-
ographic phenomena with indeterminate boundaries that typically are iden-
tified by classification and delineation processes. This was illustrated above
in the context of the classification and delineation of geographic regions that
are characterized by their land use and land coverage.
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Fig. 0.11 The orthomodular structure of a four dimensional Hilbert spaceH with basesQc

and Qi/b where {|Q(1)
c 〉} stands for the subspace {αc |Q(1)
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Fig. 0.12 Examples of vectors in the base corresponding to the complete questions in Qc

and their probabilistic interpretation.

The argument of why a quantum theory may be a good tool to describe
those phenomena has three major premisses: First: There are three neces-
sary and sufficient conditions that call for a quantum theory as an adequate
description (Postulates 1 – 3); Second: The above class of phenomena sat-
isfy two of those conditions (Postulates 1 and 2). Third: A quantum theory
can be developed along the lines sketched above. This theory would produce
predictions that, if verified empirically, indicate that Postulate 3 is satisfied.
The focus of this paper was on first two premisses. The truth of the third
premise is yet to be determined.
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.1 Boolean algebra and orthomodular lattices

A Boolean algebra is a specific form of an orthomodular lattice, which in
turn is a special lattice – a partially ordered set (X,≤), with join and meet
operations (∨,∧), with unique maximal (>) and minimal elements (∅). The
join and meet operations ∨ and ∧ are defined in the standard way such that
∨ yields the least upper bound of its arguments in the underlying partially
ordered set and ∧ yields the greatest lower bound (Birkhoff, 1948; Grinbaum,
2005; Wikipedia contributors, 2018). In addition, a Boolean algebra has an
ortho-complementation, a function that maps each element a to an ortho-
complement a⊥ such that (Beltrametti et al, 1984; Wikipedia contributors,
2016): (i) a⊥∨a = 1 and a⊥∧a = 0; (ii) a⊥⊥ = a; (iii) if a ≤ b then b⊥ ≤ a⊥.
A Boolean algebra is a ortho-complemented lattice that is distributive, i.e.,
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), etc. is always true. By contrast, a orthomod-
ular lattice is a ortho-complemented lattice in which the weaker condition
if a ≤ c, then a ∨ (a⊥ ∧ c) = c is always true. Orthomodular lattices also
describe the mathematical structure of Hilbert spaces that are exploited in
quantum mechanics (Beltrametti et al, 1984; Hughes, 1981; Rovelli, 1996).

.2 Hilbert space

A Hilbert space H is a complex vector space with an inner product. In what
follows Dirac’s notation for vectors in Hilbert spaces (Dirac, 1930) is used.
The members of a Hilbert space H are written as ket vectors of the form
|φ〉 where φ is a name/label. As vector spaces Hilbert spaces are closed un-
der vector addition and scalar multiplication. That is if |φ〉 , |ψ〉 ∈ H then
α |φ〉 + β |ψ〉 ∈ H, where α and β are complex numbers that modify the
length of a vector via scalar multiplication and + is the vector addition. The
inner product 〈ψ|φ〉 of the vectors |ψ〉 , |φ〉 ∈ H (defined below) is a complex
number.

A base B = |Q1〉 , . . . , |Qn〉 of a n-dimensional Hilbert space H is a system
of vectors such that every member of H can be expressed as a vector sum of
the base vectors. A base is orthonormal if the inner product of distinct base
vectors is zero and all base vectors are of unit length, i.e., 〈Qi|Qj〉 = 1 if
i = j and 〈Qi|Qj〉 = 0 otherwise. If the vector |φ〉 = α1 |Q1〉+ . . .+ αn |Qn〉
then there exists a dual vector 〈φ| = α1 |Q1〉 + . . . + αn |Qn〉 where αi is
the complex conjugate of αi. If |φ〉 = α1 |Q1〉 + . . . + αn |Qn〉 and |ψ〉 =
β1 |Q1〉 + . . . + βn |Qn〉 then the inner product of |φ〉 and |ψ〉 designated by
〈ψ|φ〉 is the sum of the products of the components of 〈ψ| and |φ〉 computed
as

∑
i βiαi. In what follows | 〈φ|ψ〉 | stands for the squared modulus of the

scalar product 〈φ|ψ〉. The value of | 〈φ|ψ〉 | is a real number between zero and
one and is interpreted in Wheeler’s (1989) information theoretic framework
as the probability that a yes answer to the question encoded in |φ〉 is followed
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by a yes answer to the question encoded in |ψ〉. Details can be found in any
text book on quantum mechanics. The classic reference is (Dirac, 1930).


