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Abstract

A formal theory of vague distance predicates is presented which com-
bines a crisp region-based geometry with a theory of vague size predicates
in a supervaluation-based formal framework. In the object language of the
axiomatic theory, logical and semantic properties of vague distance pred-
icates that are context- and domain-independent are formalized. Con-
text and domain-dependent aspects are addressed in the meta-language
of the theory by incorporating context- and domain-specific restrictions
on the canonical interpretations. This allows to relate the ontological and
qualitative analysis in the object language to numeric values as they are
commonly used in scientific discourses.

Vagueness, distance predicates, mereo-geometry, formal ontology, applied on-
tology

1 Introduction

Vague geometric predicates such as close-to, near-to, far-away, etc. are com-
monly used not only in natural language discourses [44, 29], but also in spatial
sciences such as geography [46, 22] and in other scientific disciplines including
biology and medicine [43, 7].

In philosophy and linguistics logical theories have been developed to expli-
cate logical and semantic properties of vague predicates, e.g., [23, 35, 31, 49].
However, such logics are rarely used to develop axiomatic theories that specify
the logic and the semantics of specific vague predicates. In particular, there is
a lack of axiomatic theories which specify the semantics and the logic of vague
geometric predicates such as roughly-the-same-distance, close-to, near-to, far-
away, etc, as they are used in geography, biology, and the medical sciences to
refer to relations between spatially extended phenomenas.
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By contrast, in artificial intelligence several formal tools have been devel-
oped that facilitate reasoning about relations referred to by predicates such as
roughly-the-same-size-as, close-to, near-to, far-away, high, low, etc. [28, 16, 20].
Many of those proposals are based on order of magnitude reasoning (OMR)
[36, 33, 18, 19]. Unfortunately, many attempts to formalize geometric relations
in this way have two major shortcomings: Firstly, many are based on the as-
sumption that the spatial extension of regions can be ignored and that distance
relations between two regions can be modeled in terms of distance relations
between two points, e.g., [28, 16, 20]. Secondly, existing proposals do not ap-
propriately account for the feature of vagueness that affects the predicates that
are used to refer to such relations.

Ignoring the extension of spatial phenomena may be appropriate in cer-
tain areas of physics, but it is clearly inappropriate in geography, biology, and
medicine where size and shape are extremely important. While mathematics
provides a range of sophisticated tools for representing spatial regions as point
sets, such tools may be inappropriate for representing the geometry of geo-
graphic and biological phenomena (a) for ontological reasons [21, 32, 15, 41,
14, 13], as well as (b) for reasons of cognitive adequacy [42, 22]. Alternative
approaches to topology and geometry have been proposed that are based on
regions as representational primitives, e.g., [21, 32, 15, 37, 45, 26, 9, 39, 47, 48].
Unfortunately, with the exception of [47, 48], none of these approaches can
account sufficiently for the vagueness of geometric predicates such as close-to,
near-to, and far-away, etc. In contrast to the supervaluation based [23, 35] ap-
proach to formalizing vagueness used here (Section 2), the author of [47, 48]
proposes an approach to fuzzifying geometric relations by extending work on
fuzzy logic by [34].

The axiomatic theory that is presented in this paper attempts to overcome
such shortcomings by combining a version of region-based geometry [45, 9, 4]
with work from order of magnitude reasoning, especially [19], and work on se-
mantic theories of vagueness, especially [23, 35]. In the resulting mereo-geometry
one is able to formalize logical properties of vague predicates such as roughly-
the-same-size-as, negligible-with-respect-to, roughly-sphere-like-shaped, close-
to, near-to and far-away-from. In addition one is able to formalize context-
independent aspects of the vagueness affecting such predicates.

Context and domain-specific aspects of vagueness are addressed in the meta-
language of the axiomatic theory by choosing certain parametrized constraints in
the formal models. Several examples are given, which demonstrate that within
the proposed formalism, vague geometric predicates can be linked quite natu-
rally to numerical interpretations that are used frequently in scientific discourses
related to geography, biology, and medicine.

The remainder of the paper is structured as follows: In Section 2 the syntax
and the semantics of a first-order modal logic with identity which provides the
logical foundation for the axiomatic description of crisp and vague size and
distance predicates. In Sections 3 and 4 the axiomatization of a mereology with
crisp and vague size predicates of [8] is reviewed. A region-based geometry is
sketched in Section 5 in conjunction with a discussion of the ways in which
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it is linked to the underlying mereology with size predicates. Based on this
foundation the logic and the semantics of vague distance predicates is studied
in Sections 6 – 8.

2 Logical preliminaries

Vagueness here is understood as a semantic phenomenon and is modeled within
a framework that is based on supervaluation [23, 35]. To specify a semantics
for vague predicates in the object language of the mereo-geometry (VMG), a
first-order modal logic with identity is used. The syntax and semantics of the
language of VMG are defined in the standard ways based on [30].

The language of VMG includes variables and constant symbols (Var and
Const) as well as the primitive predicate symbols P , ∼ , ≈ , Sp ∈ Pred. In
addition, the modalities U and its dual S are included.1 Intuitively, Uα is
interpreted as α is ‘unequivocally’ true, i.e., true under all precisifications. Sα
is interpreted as α is true under some precisification.

The axiomatic theory is formed by axioms constraining the interpretations
of these symbols. Wherever possible, axioms and theorems are stated as non-
modal first order sentences. Leading universal quantifiers are generally omitted.
All theorems are computer-verified and their computational representation can
be accessed at http://www.buffalo.edu/~bittner3/Theories/VagueSizeDistance/. In
the computational representation modal sentences are translated into first order
sentences in the standard way [25, p516].

Canonical models of VMG, are Ω-structures, of the form

〈Ω,D,V,⊑, 󰀂󰀂, dist〉. (1)

The set Ω is a convex set of possible precisifications and a sub-interval of the real
numbers between 0 and 1. The members of D are the non-empty regular closed
subsets of ℜn [1] that have a finite Lebesgue measure [12] larger than zero. The
relation ⊑ is the subset relation restricted to members of D. 󰀂󰀂 is a function from
members of D to the positive real numbers such that 󰀂d󰀂 yields the Lebesgue
measure of the set d.2 The function dist yields the distance between members
of D, i.e., dist(d1, d2) is the greatest lower bound of the distance between any
member of d1 and any member of d2. The distance between members of d1 and
d2 is the distance function dist of the metric space (ℜn, dist).

V is the interpretation function. It maps the members of Const to members
of D. The interpretation of constants is the same at all precisification points.
If F ∈ Pred is a n-ary predicate, then V(F ) is a set of n+ 1-tuples of the form
(d1, . . . , dn,ω) with d1, . . . , dn ∈ D and ω ∈ Ω. Vµ is a function that maps terms
(variables and constants) to members of D and formulas to truth values in the

1The notations U and S are adopted from [2].
2The Lebesgue measure is a formalization of the intuitive notion of the length of d if d is

a regular subset of ℜ1. 󰀂d󰀂 is the area of d if d a regular subset of ℜ2 and 󰀂d󰀂 is the volume
of d if d a regular subset of ℜ3.

3



standard ways. For example,

Vµ(F t1 . . . tn,ω) = 1 if 〈Vµ(t1), . . . ,Vµ(tn),ω〉 ∈ V(F )
and 0 otherwise;

Vµ(Uα,ω) = 1 if Vµ(α, q) = 1 for all q ∈ Ω and 0 otherwise.
(2)

A well-formed formula α is true in a given Ω-structure, if and only if Vµ(α,ω) = 1
for all ω ∈ Ω and all variable assignments. (Variables range over all members of
D at all precisification points ω ∈ Ω.) The formula α is VMG-valid if α is true
in all Ω structures.

VMG includes the usual rules and axioms of first order logic with identity, a
rule of necessitation for U, and the S5-axiom schemata K, T , and 5 [30]. S is
defined in the usual way as the dual of U.

3 Mereology with size predicates

As the mereological basis the primitive binary predicate P is introduced in the
formal theory. Intuitively, ‘P xy’ is interpreted as ”the region x is part of region
y”. Formally, the parthood predicate P is at all precisification points, ω ∈ Ω,
interpreted as the relation ⊑ among the members of D:

V(P ) =df {〈d1, d2,ω〉 ∈ D ×D × Ω | d1 ⊑ d2} (3)

In terms of P the binary predicates of proper parthood (DPP) and overlap (DO)
as well as the ternary predicates of summation (D+) and difference (D−) are
introduced in the usual ways:

DO O xy ≡ (∃z)(P zx ∧ P zy)
DPP PP xy ≡ P xy ∧ ¬P yx
D+ +xyz ≡ (w)(Owz ↔ (O wx ∨ O wy))
D− − xyz ≡ (w)(O wz ↔ (∃w1)(P w1x ∧ ¬O w1y ∧ O w1w))

The standard axioms of an extensional mereology for regions in which sums of
finitely many sums exist [41, 13] are added:

A1 P xx
A2 P xy ∧ P yx → x = y
A3 P xy ∧ P yz → P xz

A4 ¬P xy → (∃z)(− xyz)
A5 (∃z)(+xyz)

The distinction between crisp and vague predicates is made explicit by axioms
that postulate or deny the existence of boundary cases. The n-ary predicate
F ∈ Pred is crisp if and only if for all x1 . . . xn either unequivocally ¬F x1 . . . xn

or unequivocally F x1 . . . xn. By contrast, the n-ary predicate F is vague if and
only if there are x1 . . . xn such that on some precisification F x1 . . . xn and on
some precisification ¬F x1 . . . xn. As abbreviations the sentence operators D
and I are introduced (DD, DI).

3

3The operator I corresponds to Fine’s indefiniteness operator [23] and the operator D
corresponds to Pinkal’s definiteness operator [35].
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DD Dα ≡ U¬α ∨ Uα
DI Iα ≡ Sα ∧ S¬α

A6 D(P xy)

Thus, Axiom (A6) requires that the predicate P is crisp.
In the formal theory the same-size predicate ∼ is introduced [8]. At all

precisification points the predicate ∼ is interpreted as the relation of having
the same Lebesgue measures:

V( ∼ ) =df {〈d1, d2,ω〉 ∈ D ×D × Ω | 󰀂d1󰀂 = 󰀂d2󰀂} (4)

In terms of ∼ one can define: the size of x is less than or equal to the size of
y if and only if there is a region z that is a part of y and has the same size as x
(D ≤ ); the size of x is less than the size of y if and only if the size of x is less
than or equal to the size of y and the size of y is not less than or equal to the
size of x (D < ).

D ≤ x ≤ y ≡ (∃z)(z ∼ x ∧ P zy) D < x < y ≡ x ≤ y ∧ ¬(y ≤ x)

The axioms (A7-A13) ensure that for every fixed precisification ω, V( ≤ ) is
a pre-order such that 〈d1, d2,ω〉 ∈ V( ∼ ) iff 〈d1, d2,ω〉, 〈d2, d1,ω〉 ∈ V( ≤ ).
Since for fixed precisifications V( ∼ ) is an equivalence relation (A7-A9), V( ≤ )
induces a partial order on the equivalence classes induced by V( ∼ ). (A11) then
ensures that this partial order is a total order. (A10) links ∼ to the underlying
mereology, i.e., if x is part of y and x and y have the same size then y is part of
x. Axiom (A13) requires that the predicate ∼ is crisp.

A7 x ∼ x
A8 x ∼ y → y ∼ x
A9 x ∼ y ∧ y ∼ z → x ∼ z
A10 P xy ∧ x ∼ y → P yx

A11 x ≤ y ∨ y ≤ x
A12 x ≤ y ∧ y ≤ x → x ∼ y
A13 D(x ∼ y)

The theory formed by the axioms and definitions discussed in this section is
called QSizeR.

4 Vague size predicates

The crisp mereology with size predicates, QSizeR, is extended by the relational
predicates ≈ , ≼ , ≺ , and ≪ [8]. The resulting theory is called VSizeR. In
terms of the primitive ≈ (roughly-the-same-size) one can define: Region x is
negligible in size with respect to region y if and only if there are regions z1 and
z2 such that (1) x and z1 have the same size, (2) z1 is a part of y, (3) z2 is the
difference of z1 in y and (4) z2 and y have roughly the same size (D ≪ ). The
vague ordering predicates ≼ and ≺ are defined in the obvious ways.

D ≪ x ≪ y ≡ (∃z1)(∃z2)(z1 ∼ x ∧ P z1y ∧ − yz1z2 ∧ z2 ≈ y)
D ≼ x ≼ y ≡ x ≤ y ∨ x ≈ y
D ≺ x ≺ y ≡ x ≼ y ∧ ¬(y ≼ x)
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In Ω-structures the predicates ≈ , ≪ , ≼ and ≺ are interpreted as follows:

V( ≈ ) = {〈d1, d2,ω〉 ∈ D ×D × Ω | 1/(1 + ω) ≤ 󰀂d1󰀂/󰀂d2󰀂 ≤ 1 + ω}
V( ≪ ) = {〈d1, d2,ω〉 ∈ D ×D × Ω | 󰀂d1󰀂/󰀂d2󰀂 < ω/(1 + ω)}
V( ≼ ) = {〈d1, d2,ω〉 ∈ D ×D × Ω | 󰀂d1󰀂/󰀂d2󰀂 ≤ 1 + ω}
V( ≺ ) = {〈d1, d2,ω〉 ∈ D ×D × Ω | 󰀂d1󰀂/󰀂d2󰀂 < 1/(1 + ω)}

(5)

V(x2 ⌧ x1) = 1

� = 0.3 � = 0.1

V(x1 � x2) = 1

V(x1 ⇡ x2) = 1

V(x2 � x1) = 1

V(x2 ⌧ x1) = 1

kV(x2)k kV(x2)k

kV(x1)k kV(x1)k

Figure 1: Interpretations of the formulas x1 ≈ x2, x1 ≼ x2, x1 ≺ x2, x1 ≪ x2

at the precisification points ω = 0.3 and ω = 0.1. [8]

Unlike ∼ , which has a crisp and unique interpretation (formally reflected
by the parameter-free equation in (4)), the interpretations of ≈ , ≼ , ≺ , and
≪ are vague and admit ranges of interpretations. In the formal models this
is reflected by the use of parameterized constraints. There are large classes of
constraints that potentially can serve as interpretations for the vague predicates
≈ , ≼ , ≺ , and ≪ . The constraints that are used here are displayed in
the middle of Figure 1. Of course, other choices are possible, however these
particular constraints have been proven useful in a wide range of applications
[33, 18]. At the bottom of Figure 1 the interpretations of the formulas x1 ≈ x2,
x1 ≼ x2, x1 ≺ x2, x1 ≪ x2 using the chosen class of constraints are displayed
for the precisification points ω = 0.3 and ω = 0.1.

The axioms for vague size predicates are collected in Table 1. ≈ is reflexive
and symmetric (A19, A20). Axioms (A17, A18) link ≈ and ≪ to the crisp
size predicates of QSizeR. The remaining axioms characterize the vagueness of
the predicates defined in terms of ≈ . For an extended discussion see [8]. The
contributions of the various axioms of VSizeR to the constraints on the logically
admissible range of the precisification parameters in Ω are collected in Table 1.
Jointly, the following constraints need to be satisfied:

Theorem 1 ([8]) The axioms (A14-A30) of VSizeR are true in Ω-structures,
〈Ω,D,V,⊆, 󰀂󰀂〉, where Ω ⊆ [ω↓,ω↑] ⊂ (0,− 1

2 +
1
2

√
5] ⊂ ℜ such that 2ω↓+ω↓

2 ≤
ω↑ and ω↓ and ω↑ are bounds on a convex set of possible precisifications.
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number axiom true in Ω-structures if

A14 x ≈ x 0 ≤ ω↓ ≤ ω↑ < 1
A15 x ≈ y → y ≈ x 0 ≤ ω↓ ≤ ω↑ < 1
A16 x ≈ y ∧ x ≤ z ∧ z ≤ y → (z ≈ x ∧ z ≈ y) 0 ≤ ω↓ ≤ ω↑ < 1
A17 x ≪ y ∧ y ≤ z → x ≪ z 0 ≤ ω↓ ≤ ω↑ < 1
A18 (∃y)(U(x ≪ y)) 0 < ω↓ < ω↑ < 1
A19 (∃y)(U(x ≈ y) ∧ ¬(x ∼ y)) 0 < ω↓ < ω↑ < 1
A20 (∃y)I(x ≪ y) 0 < ω↓ < ω↑ < 1
A21 (∃y)(I(x ≺ y) 0 < ω↓ < ω↑ < 1
A22 S(x ≪ y) → U(x ≺ y) 0 < ω↓ < ω↑ < 1

A23 U(x ≈ y) ∧ ¬(x ∼ y) →
(∃z)(U(z ≈ x) ∧ ¬U(z ≈ y)) 0 < ω↓ < ω↑ < 1

A24 U(x ≈ y) ∧ U(y ≈ z) → S(x ≈ z) 0 < 2ω↓ + ω↓
2 ≤ ω↑ ≤ 1

A25 (∃x)(U(x ≪ z) → (∃x)(∃y)(U(x ≈ y) ∧
U(x ≪ z) ∧ ¬U(y ≪ z)) 0 < ω↓ < ω↑ < 1

A26 (∃x)(∃y)(U(x ≈ y) ∧ U(z ≪ x) ∧ ¬U(z ≪ y)) 0 < ω↓ < ω↑ < 1
A27 U(x ≪ y) ∧ U(y ≈ z) → S(x ≪ z) 0 < − ω

ω−1
≤ ω↑ ≤ 1

A28 U(x ≈ y) ∧ U(y ≪ z) → S(x ≪ z) 0 < − ω
ω−1

≤ ω↑ ≤ 1

A29 x ≪ y ∧ y ≈ z → x ≺ z 0 < ω < − 1
2
+ 1

2

√
5

A30 x ≈ y ∧ y ≪ z → x ≺ z 0 < ω < − 1
2
+ 1

2

√
5

Table 1: The axioms of VSizeR are true in Ω-structures with the listed prop-
erties (Ω = [ω↓,ω↑]) where ω↓ and ω↑ are bounds on a convex set of possible
precisifications [8].

5 A crisp region-based geometry

The purpose of this section is to provide a self-contained axiomatic basis of a
simple mereo-geometry for the study of vague shape predicates such as roughly-
sphere-like-shaped and vague distance predicates such as close-to, near-to, far-
away, etc. The aim is not to fully develop a region-based geometry. For an ex-
tended discussion of how the theory fragment presented here relates to Bennett’s
version of Tarski’s mereo-geometry [3], see [6]. For an overview of alternative
region-based geometries see [10]. A simplified version of the mereo-geometry
presented here was used in [5] to formalize certain mereo-geometrical aspects of
biological structures.

5.1 Definitions

QSizeR is extended by the primitive predicate Sp. The formula ‘Sp x’ is inter-
preted as x is a sphere-shaped region or sphere for short. In Ω-structures Sp is
interpreted as:

V(Sp) =df {〈d,ω〉 ∈ Sp× Ω} (6)

In terms of Sp one can define (Fig. 2): x is maximal with respect to y in z if
and only if (1) x, y, and z are spheres, (2) x and y are non-overlapping parts of
z, and (3) every sphere u that has x as a part either is identical to x, overlaps
y, or is not a part of z (DMx) (Fig. 2(a)). x is a concentric proper part of y
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if and only if (1) x and y are spheres, (2) x is a proper part of y and (3) all
spheres that are maximal with respect to x in y have the same size (DCoPP)
(Fig. 2(b)); Sphere y is a smallest connecting sphere for regions x and z and
only if (1) x and z are disconnected, (2) y is connected to x and z, and (3) y is
smaller or equal in size with respect to all spheres that are connected to x and
z (DMCS). (Fig. 2(c)). Two regions x and y are connected if and only if there
is a sphere z that overlaps x and y and all spheres that are concentric proper
parts of z also overlap x and y (DC) (Fig. 2(d)). (A similar definition of C was
employed in [4].)

DMx Mx xyz ≡ Sp x ∧ Sp y ∧ Sp z ∧ P xz ∧ P yz ∧ ¬O xy ∧
(u)(Sp u ∧ P xu → (x = u ∨ O uy ∨ ¬P uz))

DCoPP CoPP xy ≡ Sp x ∧ Sp y ∧ PP xy ∧ (u)(v)(Mx uxy ∧ Mx vxy → u ∼ v)
DMCS MCS xyz ≡ Sp y ∧ C xy ∧ C yz ∧ ¬C xz ∧

(w)(Sp w ∧ C xw ∧ C wz → y ≤ w)
DC C xy ≡ (∃z)(Sp z ∧ O zx ∧ O zy ∧ (u)(CoPP uz → (O ux ∧ O uy))

z

y

a1

a2
z

y
z

yx
x y

(a) (b) (c) (d)

Figure 2: Top: Definitions using the sphere predicate. Bottom: Illustration of
the definitions for the case of spheres in ℜ2: (a) DMx: Mx a1yz ∧ Mx a2yz, (b)
DCoPP: CoPP yz, (c) DMCS: MCS xzy, and (d) DC : C xy.

In Ω-structures the connection predicate C holds between regions d1 and d2
if and only if the distance between them is zero:

V(C) = {〈d1, d2,ω〉 ∈ D ×D × Ω | dist(d1, d2) = 0}
= {〈d1, d2,ω〉 ∈ D ×D × Ω | d1 ∩ d2 = ∅} (7)

In the axiomatic theory an axiom is included requiring that the predicate Sp is
crisp (A26). One then can prove that C is crisp (T1).

A26 D(Sp x) T1 D(C xy)

It follows that the mereo-topological base of the presented mereo-geometry is
crisp.

5.2 Existential axioms

The following spheres are required to exist: Every region has a sphere as a
proper part (A27). If sphere x is a proper part of sphere y then there is a
sphere z that is maximal with respect to x in y (A28). If y is smaller in size
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to sphere x then there is a concentric proper part of x with the same size as y
(A29). If the spheres x and y have the same size then there are spheres z1 and
z2 such that z1 is a concentric proper part of z2 and x and y are maximal with
respect to z1 in z2 (A30). For all disconnected regions there exists a minimal
connecting sphere (A31).

A27 (∃z)(Sp z ∧ PP zx)
A28 Sp x ∧ Sp y ∧ PP xy → (∃z)(Mx zxy)
A29 Sp x ∧ y < x → (∃z)(CoPP zx ∧ z ∼ y)
A30 Sp x ∧ Sp y ∧ x ∼ y → (∃z1)(∃z2)(CoPP z1z2 ∧ Mx xz1z2 ∧ Mx yz1z2)
A31 ¬C xy → (∃z)(MCS xzy)

It follows from (A27) that all regions are mereological sums of spheres (T2).
Axioms (A28) and (A29) ensure that the definitions DCoPP and DC work as
intended. From (A27) and (A29) it follows that every sphere has a concentric
proper part (T3). Thus regions are infinitely sub-divisible. (A30) ensures that
on the sub-domain of spheres, the interpretation of ∼ is restricted to the
congruence relation between spheres.

T2 O wx ↔ (∃z)(Sp z ∧ P zx ∧ O wz) T3 Sp x → (∃y)(CoPP yx)

One can also prove: C is reflexive (T4); C symmetric (T5); if x is part of y,
and z is connected to x then y is connected to z (T6); all minimal connecting
spheres for two disconnected regions have the same size (T7).

T4 C xx
T5 C xy → C yx

T6 P xy ∧ C zx → C yz
T7 MCS xz1y ∧ MCS xz2y → z1 ∼ z2

5.3 Links to the underlying mereotopology

The converse of theorem (T6) is not provable and is added as an axiom: if
everything that connects to x also connects to y then x is a part of y (A32).
Moreover, CoPP is required to be transitive (A33).

A32 (z)(Czx → Czy) → P xy
A33 CoPP xy ∧ CoPP yz → CoPP xz

T8 P xy ↔ (z)(Czx → Czy)
T9 x = y ↔ (z)(Czx ↔ Czy)

From axioms (A2 and A32) and theorem (T4) it follows: x is a part of y if
and only if everything connected to x is also connected to y (T8); x and y
are identical if and only if everything is connected to x if and only if it is
connected to y (T9). Thus CoPP is a restricted proper parthood predicate
and the connectedness predicate C has the usual properties one expects in the
domain of spatial regions. (See also [37].)

The theory that extends QSizeR with the axioms and definitions presented
in this section is called RBG.
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6 Vague distance predicates

It is common to understand the distance between two extended regions x and
y as the greatest lower bound of the distances between any point in x and any
point in y. This, however, does not seem to be sufficient to capture the semantics
of predicates such as close-to, far-away, etc. For example, a (large) road-sized
region may be (on the scale of the road) close to a (small) pebble-sized region
in an adjacent ditch, but the pebble-sized region maybe not (on the scale of
the pebble) be close to the road-sized region. In this subsection vague distance
predicates between regions are introduced in a way that takes into account the
size of the regions. The formal basis of this section is formed jointly by RBG
and VSizeR. The theory which extends VSizeR and RBG by the definitions for
distance predicates is called VDistR.

6.1 Vague size-depended distance predicates

Region x is close to region y if and only if there is a sphere z such that z is
connected to both x and y and z is negligible in size with respect to x (DCl). x
is strictly close to y if and only if x is close to y but not connected to y (DSCl).
x is near to y if and only if there is a sphere z such that z is connected to x
and y and the size of z is less than or roughly equal to the size of x (DN ). x is
strictly near to y if and only if x is near to y but not close to y (DSN). x is away
from y if and only if x is less than and not roughly equal in size with respect to
all spheres w that are connected to x and y (DA). x is far away from y if and
only if x is negligible in size with respect to all spheres w that are connected to
x and y (DFA). Axiom (A31) ensures that there always is a sphere z such that
z is connected to x and y. x is moderately away from y if and only if x is away
from y but not far away from y (DMA).

4

DCl Cl xy ≡ (∃z)(Sp z ∧ C zx ∧ C zy ∧ z ≪ x)
DSCl SCl xy ≡ Cl xy ∧ ¬C xy
DN N xy ≡ (∃z)(Sp z ∧ C zx ∧ C zy ∧ z ≼ x)
DSN SN xy ≡ N xy ∧ ¬Cl xy
DA A xy ≡ (w)(Sp w ∧ C wx ∧ C wy → x ≺ w)
DFA FA xy ≡ (w)(Sp w ∧ C wx ∧ C wy → x ≪ w)
DMA MA xy ≡ A xy ∧ ¬FA xy

One can prove that all distance predicates are vague:

T10 (∃x)(∃y)I(Cl xy)
T11 (∃x)(∃y)I(N xy)

T12 (∃x)(∃y)I(A xy)
T13 (∃x)(∃y)I(FA xy)

4Consider the distance predicates {C, c,M, f, F} between points of [24] and [28]. Roughly,
for regions of the same size, SCl corresponds to C, SN corresponds to c, MA corresponds to
M , and FA corresponds to the disjunction of f and F . Note, however that the definitions
given here are for regions rather than for points and take the size of the regions into account.
The predicate SCl roughly corresponds to the predicate ‘near’ of [40].
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Let 󰀂dist(d1, d2)󰀂 be the Lebesgue measure of a n-ball with the diameter
dist(d1, d2). In Ω-structures the distance predicates Cl, N , SCl, SN, A, MA,
and FA are interpreted as follows:

V(Cl) = {〈d1, d2,ω〉 ∈ D ×D × Ω | d1 ∩ d2 ∕= ∅ or
󰀂dist(d1, d2)󰀂/󰀂d1󰀂 < ω/(1 + ω)}

V(SCl) = {〈d1, d2,ω〉 ∈ D ×D × Ω | d1 ∩ d2 = ∅ and
󰀂dist(d1, d2)󰀂/󰀂d1󰀂 < ω/(1 + ω)}

V(N) = {〈d1, d2,ω〉 ∈ D ×D × Ω | d1 ∩ d2 ∕= ∅ or
󰀂dist(d1, d2)󰀂/󰀂d1󰀂 ≤ 1 + ω}

V(SN) = {〈d1, d2,ω〉 ∈ D ×D × Ω |
ω/(1 + ω) ≤ 󰀂dist(d1, d2)󰀂/󰀂d1󰀂 ≤ 1 + ω}

V(A) = {〈d1, d2,ω〉 ∈ D ×D × Ω |
󰀂d1󰀂/󰀂dist(d1, d2)󰀂 < 1/(1 + ω)}

V(FA) = {〈d1, d2,ω〉 ∈ D ×D × Ω |
󰀂d1󰀂/󰀂dist(d1, d2)󰀂 < ω/(1 + ω)}

V(MA) = {〈d1, d2,ω〉 ∈ D ×D × Ω |
ω/(1 + ω) ≤ 󰀂d1󰀂/󰀂dist(d1, d2)󰀂 < 1/(1 + ω)}

(8)

C ab; Cl ab; N ab Cl ac; SCl ac; N ac SN ad; N ad; ¬N da A ae; A ea; ¬MA ae; FA ae

(a) (b) (c) (d)

dist(a,c) dist(a,d) dist(a,e)

a a a ab c d e

Figure 3: Examples of vague distance predicates between two-dimensional discs
in the plane. Assumptions: 󰀂a󰀂 = 1, ω = 0.2, dist(a, c) < 0.461, 0.461 ≤
dist(a, d) ≤ 1.24, dist(a, e) > 2.77. (All distances are understood in units such
that in the respective figure 󰀂a󰀂 = 1.)

Consider Figure 3 and assume that the discs that are displayed on the
left hand sides in subfigures (a)–(d) (they are all referred to as ‘a’) all have
a Lebesgue measure of 1, i.e., 󰀂a󰀂 = 1. The relation between the diameter and
the Lebesgue measure for 2-balls of ℜ2 can be expressed as 󰀂d󰀂 = π

4 d
2. Using

this relationship and the constraints in (8) one can compute what counts as
close, near, etc. for the a region a of unit size at specific precisification points.
This is visualized in Figure 4 for precisification points that fall in the range of
0.01 ≤ ω < − 1

2 + 1
2

√
5. Consider the precisification point ω = 0.2. In Figure

3(b) the regions a and c count as close if and only if the distance dist(a, c) is
smaller than 0.461. (Distance and diameter units are such that in the respective
figure 󰀂a󰀂 = 1.) The regions a and c count as near if and only if the distance
dist(a, c) is smaller than 1.24 units. In Figure 3(d) the regions a and e count as
far apart if and only if the distance dist(a, e) is larger than 2.77 units.

In Definitions DCl – DMA the first parameter serves as a reference region
which size determines what counts as near, close, far-away, etc. To some it may

11
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dist(a, x)

dist(a, x) =
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dist(a, x) =
2
p

�(1 + ⇥)

�

dist(a, x) =
2
p

�(1 + ⇥)⇥

�(1 + ⇥)

Figure 4: Interpretation of vague distance predicates for regions of normalized
sizes (󰀂a󰀂 = 1) at precisification points 0.01 ≤ ω < − 1

2 + 1
2

√
5.

be more intuitive to use the second parameter as the reference region. To those
the following definition of far-away may be more intuitive:

FA′ xy ≡ (w)(Sp w ∧ C wx ∧ C wy → y ≪ w)

In any case, it should be obvious that such changes can be made easily and
that they do not seriously affect the study of the logical properties of these
predicates.

6.2 Logical properties of vague distance predicates

One can prove that the predicates Cl, N , SCl, SN, A, MA, and FA form the
implication hierarchy depicted in the left part of Figure 5. In addition one can
prove that there exist sets of jointly exhaustive and pair-wise disjoint (JEPD)
predicates as depicted in the right part of Figure 5. In the remainder the letter
∆ is used to refer (in the meta language) to the set of jointly exhaustive and
pairwise disjoint predicates that form the bottom of the lattice in the right part
of Figure 5. One can also prove that Cl and N are reflexive and that SCl, SN,
A, MA, and FA are irreflexive.

6.3 Parthood and vague distances

One can prove a number of compositional theorems about the logical interrela-
tionships between parthood and the various vague distance predicates. Those
theorems show that there are some structural similarities between the vague
distance predicates close-to, near, etc. and the crisp connectedness predicate C
(in particular T6): One can prove that if x is a part of y and x is close to z then
y is close to z (T15a). Similarly one can prove that if x is a part of y and z is
close to x then z is close to y (T15b). Similar theorems for the interrelationships
of parthood and nearness and apartness can be proved (T16a-T17b).

12



⊥

C SCL SN MA FA

CL

N A

�

{C,SCL,SN,MA,FA}

{CL,SN,MA,FA} {C,SCL,SN,A}

{CL,SN,A}

{N,A}

Figure 5: Logical interrelationships of the vague distance predicates. Left: Im-
plication hierarchy of the vague distance predicates. Right: Sets of JEPD vague
distance predicates.

T15a P xy ∧ Cl xz → Cl yz
T16a P xy ∧ N xz → N yz
T17a P xy ∧ A yz → A xz

T15b P xy ∧ Cl zx → Cl zy
T16b P xy ∧ N zx → N zy
T17b P xy ∧ A zy → A zx

Besides those structural similarities there are also differences when comparing
the logical relationships between connectedness and parthood and the logical
relationships between vague distance predicates and parthood: There should
not be theorems or axioms for vague distance predicates that are structurally
similar to axiom (A32). Consider the formula F1 = ‘(z)(Nzx → Nzy) → P xy’.
If F1 was a theorem then the formula F2= ‘(z)(Nzx ↔ Nzy) ↔ x = y’ would
be an immediate consequence. That is, via F2 the crisp identity predicate would
become definable in terms of a vague predicate such as N .

6.4 Symmetry

None of the defined distance predicates is symmetric. As pointed out above,
a road-sized region may (on the scale of the road) be close to a pebble-sized
region in an adjacent ditch, even if the pebble-sized region is not (on the scale
of the pebble) close to the road-sized region.

To see how this asymmetry is represented in the underlying Ω-structures,
consider Figure 3(c). Under the assumptions listed in the caption of the figure,
(V(N ad,ω)=1) if and only if the distance between V(a) and V(d) is less than
1.24 units on a scale based on the size of the disc V(a) – the reference region. If
d is chosen as the reference region such that 󰀂V(d)󰀂 = 1, then V(N da,ω) = 1
only if the distance between V(d) and V(a) is smaller than 1.24 units on a scale
based on the size of V(d). Since V(d) is much smaller than V(a), 1.24 units on
a scale based on 󰀂V(d)󰀂 cover less distance than 1.24 units on a scale based on
󰀂V(a)󰀂. Therefore, if (V(N ad,ω)=1) then the distance between V(d) and V(a)
is larger than 1.24 units on a scale based on 󰀂V(d)󰀂. Thus (V(N da,ω) = 0).

By contrast, consider Figure 3(d). Since a and e are discs of the same size,
it follows that V(A ae,ω) = 1 if and only if V(A ea,ω) = 1. More generally,
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one can prove restricted forms of symmetry for the vague distance predicates.
The respective theorems of VDistR are collected in Table 2. As displayed in the
table, four cases are distinguished depending on which size predicate is used to
impose restrictions on the size of the regions between which a given distance
predicate is supposed to hold:

Firstly. For regions of exactly the same size one can prove that all distance
predicates are symmetric. (Row 1 in Table 2.) Secondly. One can prove that
if the size of x is less than or equal to the size of y then: if Cl xy then Cl yx.
Similarly for SCl, N , A, and FA. The predicates SN and MA are not symmetric
under those relaxed constraints. For SN and MA only results about coarser
predicates can be proved. Such coarser predicates are expressed as disjunctions
of predicates in ∆. (Row 2 in Table 2.)

Thirdly. If the vague size predicate ≼ is used to express the constraints
on the region size the one can prove only results about much coarser relations.
Again, in Table 2 such coarser predicates are expressed as disjunctions of pred-
icates in ∆. For example, if the size of x is less than or roughly equal to the
size of y then: if x is strictly close to y then either y is strictly close to x or y
is strictly near to x. (Rows 3 and 4 in Table 2.)

Fourthly. If the vague size predicate ≺ is used to express the constraints
on the region sizes then symmetry results for Cl, SCl, N , A, FA can be proved.
For SN and MA only results about coarser predicates that could be expressed
as disjunctions of predicates in ∆ can be proved. (Row 4 in Table 2.)

Cl xy SCl xy N xy SN xy A yx MA yx FA yx
x ∼ y Cl yx SCl yx N yx SN yx A xy MA xy FA xy
x ≤ y Cl yx SCl yx N yx N yx A xy A xy FA xy
x ≼ y N yx SCl yx N yx SCl xy A xy SN xy A xy

SN yx MA yx SN yx SN xy A xy
MA yx

x ≺ y Cl yx SCl yx N yx N yx A xy A xy FA xy

Table 2: Theorems about the restricted symmetry of vague distance predicates.
Sets of predicates are interpreted as disjunctions.

7 Logical interrelations between distance and shape
predicates

Additional restrictions on the shape of regions may be needed to characterize
distance predicates such as near, far, etc. Consider the ring-shaped region
depicted in Figure 6(d). When making a judgement about the distance relation
between a ring-shaped region such as d and a solid disc with the same Lebesgue
measure, the judger may associate different scales to each regions although both
are of the same size. (Intuitively, a ring-shaped region such as d may appear to
be ‘larger’ than a solid disc with the same Lebesgue measure.) Thus, it seems to
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be reasonable to restrict vague distance predicates to roughly-sphere-like-shaped
regions.

Region x is sphere-like-shaped if and only if there is a sphere y such that (a)
x and y are of the same size, (b) every region that is connected to y is close
to x, and (c) every region that is connected to x is close to y (DSl). Region x
is roughly sphere-like-shaped if and only if there is a sphere y such that (a) x
and y are of the same size, (b) every region that is connected to y is near to
x, and (c) every region that is connected to x is near to y (DRSl). Region x is
sphere-unlike if and only if x is not roughly sphere-like (DSul).

DSl Sl x ≡ (∃y)(Sp y ∧ y ∼ x ∧ (z)(C yz → Cl xz) ∧ (z)(C xz → Cl yz)
DRSl RSl x ≡ (∃y)(Sp y ∧ y ∼ x ∧ (z)(C yz → N xz) ∧ (z)(C xz → N yz)
DSul Sul x ≡ ¬RSl x

Let 󰀂dist(ps, pd)󰀂 be the Lebesgue measure of a n-ball with a diameter that
is identical to the distance between the points ps and pd (dist(ps, pd)). In Ω-
structures the shape predicates Sl and RSl are interpreted as follows:

V(Sl) = {〈d,ω〉 ∈ D × Ω | ∃s ∈ Sp : 〈d, s,ω〉 ∈ V( ∼ ) &
∀ps ∈ s : ∃pd ∈ d : 󰀂dist(ps, pd)󰀂/󰀂d󰀂 < ω/(1 + ω) &
∀pd ∈ d : ∃ps ∈ s : 󰀂dist(ps, pd)󰀂/󰀂d󰀂 < ω/(1 + ω)}

V(RSl) = {〈d,ω〉 ∈ D × Ω | ∃s ∈ Sp : 〈d, s,ω〉 ∈ V( ∼ ) &
∀ps ∈ s : ∃pd ∈ d : 󰀂dist(ps, pd)󰀂/󰀂d󰀂 ≤ (1 + ω) &
∀pd ∈ d : ∃ps ∈ s : 󰀂dist(ps, pd)󰀂/󰀂d󰀂 ≤ (1 + ω)}

(9)

2p
⇡

dmax

(a)

d1

d2

d3
d4

d5

d6

(b)

dmax

(c) (d)

dmax

dmax

a

b

c

d

Figure 6: Examples and counter examples of sphere-like shaped, roughly-sphere-
like shaped, and sphere-unlike shaped regions.

Let D be the regular closed subsets of ℜ2 and let a, b, c, d ∈ D be the regions
depicted respectively in Figures 6(a)–(d). Assume that 󰀂a󰀂 = 󰀂b󰀂 = 󰀂c󰀂 =
󰀂d󰀂 = 1 and assume a fixed choice of the precisification parameter ω. Consider
Figure 6(a). For the holed region a to count as sphere-like-shaped (respectively
roughly-sphere-like-shaped) on the precisification ω, there must be a sphere s
such that for every point of a there is some point of s such that the distance
between them does not exceed the value at position ω in the bold (dashed) graph
of Figure 7. Similarly vice versa. For example, for a to count as sphere-like-
shaped (respectively roughly-sphere-like-shaped) on the precification 0.01, the
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diameter of the hole (dmax) cannot be larger than 2 ∗ 0.112 units (respectively
2 ∗ 1.14 units). Clearly, the regions a and b will count as sphere-like-shaped
(roughly-sphere-like-shaped) for a wider range of precifications than the regions
c and d. Note also, that vague predicates such as sphere-like-shaped and roughly
sphere-like-shaped on most interpretations do not distinguish a ball of wool from
a solid 3-disc. That is, the rough overall shape of a whole on most interpretations
will not distinguish between solid wholes and wholes of some (local) shape that
are ‘folded’ into another (global) shape.

Sl(x) or Sp(x)

RSl(x) or Sl(x) or Sp(x)

Sul(x) 

dist(px, py) =
2
p
�(1 + ⇥)⇥

�(1 + ⇥)

dist(px, py) =
2
p
�(1 + ⇥)

�

dist(px, py)

Figure 7: Interpretation of vague size predicates for regions of normalized sizes
(󰀂x󰀂 = 1) at various precisification points (0.01 ≤ ω < − 1

2 + 1
2

√
5). dist(px, py)

is the smallest distance such that for every point of x there is some point of b
within this distance and vice versa.

It follows from the definitions DSl, DRSl, and DSul that if x is a sphere then
x is sphere-like-shaped (T65) and if x is sphere-like-shaped then x is roughly-
sphere-like-shaped (T66). Moreover, the predicates Sl, RSl, and Sul are all vague
(T67-T69).

T65 Sp x → Sl x
T66 Sl x → RSl x

T67 (∃x)I(Sl x)
T68 (∃x)I(RSl x)
T69 (∃x)I(Sul x)

Corresponding to the vague distance predicates defined in Section 6 shape-
restricted distance predicates are then defined in the obvious ways. For example:

DCl Cl xy ≡ RSl x ∧ RSl y ∧ Cl xy
DN N xy ≡ RSl x ∧ RSl y ∧ N xy

8 Composition of vague distance predicates

An important aspect of the logic of relational predicates is their logical compo-
sition. The composition of binary predicates provides the basis for automated
reasoning [17]. Automated reasoning of this kind can be used for data main-
tenance, data mining, and other tasks that are important to handle the large
amounts of data that are so common in many modern sciences [50, 11].
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The composition of distance predicates such as C, SCl, SN, MA, and FA in a
region based geometry roughly corresponds to the addition of vectors in analyt-
ical geometry [28, 16]. Thus, in addition to size and shape, for the composition
of distance predicates one has to take into account the relative arrangement
of the related regions. There are various ways of qualitatively describing the
relative arrangements of points (e.g., [27, 38]). Here a similar technique that is
based on comparing distances between regions will be used.

The resulting formal theory is called VMG or vague region-based geometry.

8.1 Comparing distances

The distance between x and y is smaller than or equal to the distance between x
and z if and only if: (i) x is connected to y or (ii) any minimal connecting sphere
of x and y are smaller than any minimal connecting sphere of x and z (DDist≤).
The predicates Dist= and Dist< are defined in the usual ways. Examples are
depicted in Figure 8.

DDist≤ Dist≤ xyz ≡ C xy ∨ (∃w1)(∃w2)(MCS xw1y ∧ MCS xw2z ∧ w1 ≤ w2)

DDist= Dist= xyz ≡ Dist≤ xyz ∧ Dist≤ xzy
DDist< Dist< xyz ≡ Dist≤ xyz ∧ ¬Dist= xyz

In Ω-structures Dist≤ xyz holds if and only if the greatest lower bound of
distances between points in x and points in y is less than or equal to the greatest
lower bound of distances between points in x and points in z:

V(Dist≤) = {〈d1, d2, d3,ω〉 ∈ D ×D ×D × Ω | dist(d1, d2) ≤ dist(d1, d3)} (10)

Unlike the distance predicates Cl, N , A, FA, the predicate Dist≤ is crisp (T23)
and independent of the size and the shapes of the related regions. Obviously,
vague versions of the predicates Dist≤, Dist=, and Dist< can be defined analo-
gously using the vague size predicate ≼ .

One can prove that predicates Dist≤, Dist=, and Dist< have the expected
logical properties: The distance of x to itself is less than or equal to the distance
to any other region (T24); If the first argument is fixed, then Dist≤ is transitive
(T29); For arbitrary triples of regions either Dist≤ xyz or Dist≤ xzy (T28); If
the first argument is fixed, then Dist= is reflexive (T25), symmetric (T26) and
transitive (T30); If the first argument is fixed, then Dist< is asymmetric (T27).

T23 D(Dist≤ xyz)
T24 Dist≤ xxy
T25 Dist= xxx

T26 Dist= xyz → Dist= xzy
T27 Dist< xyz → ¬Dist< xzy
T28 Dist≤ xyz ∨ Dist≤ xzy
T29 Dist≤ xyz ∧ Dist≤ xzw → Dist≤ xyw
T30 Dist= xyz ∧ Dist= xzw → Dist= xyw

8.2 Spatial arrangement of triples of regions

Using the predicate Dist≤ the spatial arrangement of triples of regions can be
classified in a systematic way and fifteen jointly exhaustive and pairwise disjoint
classes of spatial configurations can be identified.
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Figure 8: Fifteen realizable configuration of triples of discs in the plane with
truth value pattern in the order V(Dist≤ abc), V(Dist≤ acb), V(Dist≤ bac),
V(Dist≤ bca), V(Dist≤ cab), V(Dist≤ cba), and the corresponding classification
in terms of 3EQ, 2EQs, 2EQl, 0EQl, and 0EQr.
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V(Dist≤ V(Dist≤ V(Dist≤ V(Dist≤ V(Dist≤ V(Dist≤
abc) = acb) = bac) = bca) = cab) = cba) =

1 1 1 1 1 1 1
2 0 1 1 1 1 1
3 1 0 1 1 1 1
4 0 0 1 1 1 1
5 1 1 0 1 1 1
. . . . . . . . . . . . . . . . . . . . .
37 1 1 0 1 1 0
. . . . . . . . . . . . . . . . . . . . .
39 1 0 0 1 1 0
. . . . . . . . . . . . . . . . . . . . .
64 0 0 0 0 0 0

Table 3: Characterizing spatial arrangement using Dist≤.

Let a, b, and c be three regions which can be of arbitrary shape and size.
There are six permutations in which these three regions can occur exactly once
as parameters of Dist≤. (See the header of Table 3). For every permutation,
V(Dist≤) is either 1 or 0. This results in 26 = 64 combinatorially possible
pattern of truth assignments. Some of of those pattern are depicted in the body
of Table 3. Of those 64 combinatorially possible truth pattern only a few are
realizable in the models of VMG. For example, the pattern of truth assignments
in row (4) of Table 3 is not realizable. This is because, by theorem (T28) not
both, Dist≤ abc and Dist≤ acb can be false. Similarly, Dist≤ bac and Dist≤ bca
cannot be both false and neither can be Dist≤ cab and Dist≤ cba. There are
27 of the 64 combinatorially possible assignments of truth pattern that satisfy
Theorem (T28).

Consider the pattern of truth values in row (5) of Table 3. If Dist≤ abc
and Dist≤ acb both are true, then Dist= abc is true (by DDist=). Similarly, if
Dist≤ cab and Dist≤ cba both are true, then Dist= cab is true. In VMG one can
prove that if Dist= xyz and Dist= yzx are both are true, then Dist= zyx is true
(T31).

T31 Dist= xyz ∧ Dist= yzx → Dist= zxy

Therefore, if Dist≤ abc, Dist≤ acb, Dist≤ cab and Dist≤ cba are all true, then
neither Dist≤ bac nor Dist≤ bca can be false. Thus, the pattern of truth assign-
ments in row (5) of Table 3 is not realizable in models of VMG. Similarly the
pattern of truth assignments in rows (2) and (3) are not realizable. In general,
no row of Table 3 that has only a single ‘0’ is realizable in models of VMG. Of
the 27 assignments of truth pattern in Table 3 that satisfy Theorem (T28) only
20 satisfy Theorem (T31).

Consider the pattern truth valueS in rows (37) and (39) of Table 3. These
pattern do not satisfy Theorem (T32).

T32 Dist≤ xyz ∧ Dist≤ yzx → Dist≤ zyx
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In the case of row (37) theorem (T32) requires that if Dist= abc and Dist< bca
are both true, then Dist≤ cba cannot be false. Similarly for row (39). Of the
20 assignments of truth pattern that satisfy Theorems (T28 and T31) only 15
satisfy Theorem (T32). All these 15 pattern of truth values are realizable in
models of VMG. As a set these 15 pattern describe the possible spatial arrange-
ments of triples of regions in a jointly exhaustive and pairwise disjoint fashion.
Examples for discs in the plane are depicted in Figure 8.

Each of the 15 realizable configurations for triples of regions falls into one
of five coarser classes (D3EQ - D0EQr). Examples for discs in the plane are
depicted in Figure 8.

D3EQ 3EQ xyz ≡ Dist= xyz ∧ Dist= yzx
D2EQs 2EQs xyz ≡ Dist= xyz ∧ Dist< yzx
D2EQl 2EQl xyz ≡ Dist= xyz ∧ Dist< yxz
D0EQl 0EQl xyz ≡ Dist< xyz ∧ Dist< yzx ∧ Dist< zxy
D0EQr 0EQr xyz ≡ Dist< xyz ∧ Dist< yzx ∧ Dist< zyx

8.3 Composition tables

Let RC be a meta-variable such that V(RC xyz) = 1 for exactly one of the
15 possible classes of configurations formed by triples of regions x, y, and z
as depicted in Figure 8. Let SR1 and SR2 be meta-variables ranging over the
size predicates ∼ , < , and > . Let R and S range over predicates in ∆ =
{C,SCl,SN,MA,FA} (Figure 5) and let T be a disjunction of predicates in ∆.
In a composition table for ∆ the values of RC, SR1, and SR2 are fixed and all
formulas such that

V(RC xyz ∧ SR1 xy ∧ SR2 yz → (R xy ∧ S yz → T xz)) = 1
V(RC xyz ∧ SR1 xy ∧ SR2 yz ∧ R xy ∧ S yz) ∕= 0

(11)

are explicated for the various combinations of R and S.
Given that there are 15 possible values for RC and three possible values for

SR1 and SR2, there is a potentially large number of composition tables. Many
of them may be empty due to contradicting combinations of predicates excluded
in Equation 11. It is beyond the scope of this paper to go through all of these
tables. Here it will be sufficient to consider one class of examples:

Let the meta-variable RC in Equation (11) range over the predicates 3EQ,
2EQs, and 2EQl. Under this assumption, the resulting composition tables are
identical and independent of the choices of size predicates for SR1 and SR2.
This is summarized in Table 4. Other composition tables can be derived using
theorems such as:

T33 Dist≤ xyz ∧ FA xy → FA xz
T34 Dist≤ xyz ∧ Cl xz → Cl xy
T35 Dist≤ xyz ∧ N xz → N xy
T36 Dist≤ xyz ∧ A xy → A xz

T37 Dist≤ zyx ∧ Cl xz ∧ x ≤ y → Cl yz
T38 Dist≤ zyx ∧ x ≤ y ∧ FA yz → FA xz
T39 Dist≤ zyx ∧ N xz ∧ x ≤ y → N yz
T40 Dist≤ zyx ∧ x ≤ y ∧ A yz → A xz
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C yz SCl yz SN yz MA yz FA yz
C xy Cxz – – – –
SCl xy – SCl xz – – –
SN xy – – SN xz – –
MA xy – – – MA xz –
FA xy – – – – FA xz

Table 4: Composition table for the spatial arrangements such that
V(3EQ xyz) = 1, V(2EQs xyz) = 1, and V(2EQl xyz) = 1.

9 Conclusions

A formal theory of vague distance predicates was presented which combines a
fragment of a crisp region-based geometry, with order of magnitude reasoning
about size relations, and a supervaluation semantics of vague predicates. In this
axiomatic theory context-independent logical and semantic properties of vague
distance predicates were formalized.

Besides the study of context-independent logical and semantic properties of
vague distance predicates in the object language of the formal theory, context-
and domain-dependent aspects of such predicates were taken into account in
the meta-language of the formal theory by choosing certain constraints and
parameters that determine the canonical interpretations of the vague distance
predicates. This integrated approach is an example of how to link a formal-
ontological analysis to numerical interpretations that are used frequently in
scientific discourses related to geography, biology, and medicine.
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