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Abstract. This paper shows in a case study that for the development, the presentation, and the computer-assisted verification
of formal ontologies the usage of higher-order languages and associated proof assistant tools is highly beneficial. This case
study demonstrates that the expressive power of a higher order logic in conjunction with a well developed infrastructure for
theory development and presentation facilitate the development of formal ontologies in a way that is similar to the ways in
which modern object oriented programming languages and associated IDEs facilitate the development of complex software. In
particular ontology development in such an environment supports (a) the formal verification of the satisfaction of the axioms of
a formal ontology in a class of structures that constitute its intended interpretation; (b) the computational instantiation of specific
prototypical examples/models that guide the ontology development; and (c) the formal verification of proofs by demonstrating
that the claimed theorems are indeed derivable from the axioms of the theory. Parallels to software development can be drawn
for two reasons: Firstly, due to the non- or semi-decidability and the complexity of sufficiently expressive languages, the process
of theory development, like software development, is computer assisted rather than fully automated. Secondly, the use of a
higher order logic supports modularization, object orientation, model building and other features that that greatly simplify the
development of complex formal ontologies.
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1. Introduction

Ontology is the study of what can possibly exist [Lowe| (2002)) and [Smith| (2003). In formal ontology
the axioms of formal theories are used to constrain logical possibilities to what is possible metaphysically.
Unfortunately, developing formal theories is complex because it is difficult to determine all the conse-
quences of even small sets of non-trivial axioms. Moreover, it is very easy to render a set of axioms incon-
sistent. Inconsistent sets of axioms are useless for formal ontology because they do not have any models
and realizations at all.

The difficulties of the development of formal ontologies are well understood and have lead to the emer-
gence of languages such as OWL (W3C OWL Working Group), 2012) with associated computational tools
(Knublauch et al., |2004; Horrocks|, {1998}, Sirin et al.| [2007}; Haarslev and Moller, [2003)) that (a) automat-
ically ensure the consistency of sets of axioms and that (b) automatically derive the consequences of a
given sets of axioms. It is also well understood that the expressive power of OWL-like languages is rather
restricted and too limited for expressing relational aspects of formal ontology as well as aspects that go
beyond what can be formulated as a classification problem (Bittner and Donnelly, |2007)). Moreover, it
is widely believed that the language of first order predicate logic is sufficiently powerful for formalizing
formal ontologies (Smith| 2003)). This may be true. The aim of this paper is it, however, to make the case
that for the development, the presentation, and the computer-assisted verification of formal ontologies the
usage of higher-order languages and associated tools is highly beneficial.

The usage of higher-order languages is beneficial because even in first order logic non-trivial theorem
proving is only semi-decidable and highly complex (Lemon and Pratt, 1997} |Loui, |1996; Renz and Nebel,
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1999). Therefore, full proof automatization cannot be a goal and one has to settle for computational proof
assistants that facilitate the semi-automated development of formal theories. In the realm of computer as-
sisted theorem proofing the additional expressive power of higher order logics facilitate the development
of an infrastructure that is highly beneficial for the development and the presentation of formal ontolo-
gies in ways that are similar to the ways in which object orientation is beneficial to software development
(Bateman et al., [2007; Kammiiller et al., [1999; Mossakowski et al., [2007). This paper illustrates these
advantages by describing the development and the computational realization of a formal ontology that
was originally presented semi-formally by [Bittner| (2018]). The reasons for developing a computational
realization of this formal ontology were threefold: (A) There was a need to formally verify the consis-
tency of the formal theory, (B) There was a need to formally verify whether or not specific mathematical
representations of physical systems are models of the formal theory, and (C) There was a need to formally
verify that the theorems of the formal theory are derivable from a set of axioms that underwent multiple
changes in the course of the development of the formal theory. Points (A) and (B) are important because
many currently existing ontologies have a significant number of axioms the consistency of which needs
to be verified and the models of which need to be explored. The ontology that is used here as an example
has only 26 axioms. But already for a set of axioms of this size it is far from obvious whether or not the
resulting theory is consistent. Moreover, even if the theory is is consistent, it is far from obvious whether
or not the intended models are among the actual models of the formal theory. Point (C) is important be-
cause ontology development often is an iterative process and each iteration may see changes in the axioms
of the formal ontology. In what follows an ontology will be called formalized if and only if there exists a
computational realization of that ontology within which points (A) — (C) are computationally verified.
For the development and the computational realization of the formal ontology presented semi-formally
by [Bittner| (2018)), the HOL-based framework Isabelle/HOL/Isar (Paulson and Nipkow, 2017; |Paulson)
1994; Nipkow, |2003) is used. HOL is a framework of higher order logic which combines predicate logic
(Copil, [1979) with lambda calculus (Church, [1941)) in a way that is based on Church’s Theory of types
(Churchl [1940). Isabelle/Isar (Nipkowl 2003) is a language for writing formal theories within the logic
HOL and which enables the ’programing’ of structured and human-readable proofs. In some ways, writ-
ing a proof in Isabelle/Isar is like writing a function in an interpreted programming language. In addition
the Isabelle/HOL/Isar framework provides a formal infrastructure — 1ocales (Kammiiller et al., 1999
Ballarin, [2004) — which allow to incorporate features of object-orientation in the development of formal
theories. More technically 1ocales in Isabelle/HOL are generalizations of axiomatic type classes (Jones
and Jones|, (1997} [Wenzel, 2005) that originally were introduced as part of the functional language Haskell
(Thompson, [1999). Similar to axiomatic type classes, 1ocales in Isabelle/HOL provide a formal infras-
tructure for (a) modular theory development by maintaining hierarchical links between theories (Tab. [2Jon
pe- and (b) the establishment of formal links between theories and the structures that are models of
such theories. In what follows 1ocales are used heavily to achieve the goals (A) — (C) set out above.
From a more methodological perspective, the computational realization of a formal ontology in Is-
abelle/HOL/Isar facilitates the explicit separation of three fundamental levels of ontology development: (I)
the level of axiomatization; (II) the level of model instantiation; and (III) the level of theory presentation.

The level of theory presentation: Roughly, the level of theory presentation corresponds to the way a for-
mal ontology is usually presented semi-formally in a scientific publication. The formal ontology consid-
ered in this case study was originally presented under the title "Formal ontology of space, time and phys-
ical entities in modern classical mechanics" (Bittner, [2018]). The aim of this ontology was to distinguish
logical possibilities from metaphysical possibilities from various kinds of physical possibilities in the con-
text of a formal theory that has two major primitives: the parthood relation among regions of spacetime
and the relation of instantiation of universals by physical entities at regions of spacetime.

For the semi-formal presentation of this formal ontology a modal predicate logic was used. The modal
operators provide means to talk about physical possibility/necessity as well as means to talk about aspects
of the underlying spacetime structures that have different descriptions in different frames of reference.
Using a modal language facilitates conceptual clarity while maintaining formal rigor. The choice of a
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modal language greatly simplifies the presentation by focussing on conceptual and logical issues and by
hiding the specifics of the underlying interpretation. In contrast to the semi-formal presentation of the
formal theory by Bittner| (2018), in the computational realization discussed below the axioms of Bittner
(2018) are stated ’semantically’ (at the level of axiomatization) and are then ’lifted’ to the modal language
using an encoding of modal logic into Isabelle/HOL (or any other HOL framework) that was developed
originally by Benzmiiller| (2015 and Benzmiiller and Woltzenlogel Paleo| (2015)).

The level of axiomatization: At the level of axiomatization the axioms of [Bittner| (2018)) are expressed
in a non-modal language with explicit reference to the structures in which they are interpreted. The latter
include the sets that determine the domains of quantification, the accessibility relations, as well as the
relations that serve as the interpretation of the primitives of the formal theory. In essence, in the compu-
tational representation the axiomatization is realized in a non-modal second-order language at a level that
corresponds to the level of interpretation in the presentation of the formal theory of Bittner| (2018)). Se-
mantically, this constitutes a deep embedding of this formal theory into Isabelle/HOL. Similar techniques
have been used for example in the work by [Foster et al.| (2015)).

The level of model instantiation: The 1ocale constructs of the Isabelle/HOL system provide the infras-
tructure for instantiating abstract model-theoretic structures associated with a set of axioms by specific
models and for creating proof obligations that, when fulfilled, ensure that the specific model satisfies all
the axioms that are associated with the abstract model-theoretic structures. Roughly, if a model finder
verifies that a set of axioms is consistent then it confirms that the class of structure associated with the
set of axioms is not empty. The instantiation of a specific model — if selected appropriately — verifies that
the class of intended models is not empty. The infrastructure provided by Isabelle/HOL and its 1ocales
thereby provides formal means to verify the consistency of a set of axioms as well as means to verify that
the intended models are among the actual models of a formal theory. While in the semi-formal presenta-
tion one has to talk about an intended interpretation, in the computational realization one can talk about
enforced interpretations.

The remainder of this paper is structured as follows. Since the formal ontology presented by |Bit-
tner| (2018) serves as the running example of a theory which semi-formal presentation is to be comple-
mented by a rigorous computational realization, this example ontology needs to be explained at least
briefly. In this presentation the theory is taken ’as is’ and no attempts are made to justify any of the
choices, commitments and presuppositions that underly the formal development. For a discussion of
those aspects please consult the original paper. To maintain a reasonable degree of self-containment,
the differential geometry of spacetime that provides the framework in which the formal models are
specified is briefly summarized in the appendix (pg. [33). After the brief discussion of the background
that motivated the development of the example theory, the levels (I)-(III) of its computational real-
ization are discussed in detail. The fully formalized and computationally verified formal ontology can
be found at: http://www.buffalo.edu/~bittner3/Theories/OntologyCM/ and http:
//www.buffalo.edu/~bittner3/Theories/OntologyCM/sources/.

2. Formalizing physical and metaphysical possibilities

Fundamental to ontologies of dynamical phenomena is it to formally distinguish the following classes
of sequences of changes and corresponding processes: (i) changes and processes that are logically and
combinatorially possible; (ii) changes and processes that are metaphysically possible; (iii) changes and
processes that are physically possible. For example, instantaneous changes are logically and metaphys-
ically possible for immaterial entities (e.g., fiat boundaries (Smith and Varzi, 2000)) but physically im-
possible for material entities. To formally distinguish logical and metaphysical possibilities from physical
possibilities in the ontology of [Bittner| (2018)) a modal logic of parthood, instantiation and location was
proposed. In this formal ontology the modal operators are used to express what, according to modern
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classical mechanics, is true on some physical possibility and to distinguish it from what is true, again,
according to modern classical mechanics, on all physical possibilities.

Bittner| (2018]) characterizes physical possibilities along two ‘dimensions’: physically possible world-
lines and physically possible slicings of spacetime into hyperplanes of simultaneity. Physically possible
worldlines are regions of spacetime that can be occupied by physically possible processes and along which
physically possible continuants can evolve by realizing physically possible sequences of states. Physical
constrains on possible worldlines also restrict the ways in which complex systems can arise from the
possibilities of simple systems and thereby affect the mereological structure of physically possible entities.

The second ‘dimension’ of characterizing physical possibilities by Bittner (2018) is concerned with
possible frames of reference and the slicings of spacetime into hyperplanes of simultaneity those frames
impose. As pointed out in the theory of Special Relativity (Einstein, [1951), it is meaningless to speak
of space and time without reference to a specific slicing of spacetime into hyperplanes of simultaneity.
Moreover, only within a given slicing of spacetime it makes sense to relate physically possible world-
lines to constraints on the causal structure of the physical world. Similarly, only within a given slicing of
spacetime it is meaningful to speak about metaphysical (e.g., mereological, topological, etc.) constraints
on continuant entities and the changes they can possibly undergo. Thus, it is ontologically relevant to dis-
tinguish what is true on merely some slicings of spacetime from what is true under all possible slicings of
spacetime.

At the formal level the two ‘dimensions’ of physical possibilities find their expression in a two-
dimensional modal logic. The class of structures in which this modal language is interpreted (XCS-
structures) is discussed in the next subsection. A brief overview of the differential geometry that is used
to describe physically possible worldlines and the slicing of spacetime into hyperplanes of simultaneity in
ICS-structures is given in the appendix. Tab. [T| summarizes some important notions discussed there. For
more details see the original presentation of Bittner] (2018)). The Syntax and the semantics of the modal
language are introduced in Sec. [2.3]

2.1. KS-structures

In the ontology presented by |Bittner| (2018) what is physically possible according to the constraints
imposed by classical mechanics is encoded in set-theoretic structures that give rise to ICS-structures of the
form

KS(m, L) =qr (Dsr, D, K, V, U, T, TS, InstST, AtE). (1)

The parameters m and L respectively specify the number of atomic particles and the Lagrangian field that
constrains the physically possible changes a world with m atomic particles can undergo. Both parameters
are determined empirically (Appendix [C)).

The sets Dsy and D, of KS(m, L) are respectively the domains of regions of spacetime (sub-manifolds
of the spacetime manifold) that can possibly exist and the domain of entities that can possibly exist. C is
a modal frame structure on the set of physical possibilities. V is the interpretation function. The sets LI,
M, TS, InstST, AtE of KS(m, L) serve as the interpretations of the axiomatic primitives of the formal
theory in the context of the physical possibilities in K. In the remainder of this subsection the focus is
on I, Dgr and Dg. The interpretation function V is discussed when the syntax and the semantics of the
formal language are introduced in Sec. The sets LI, 1, TS, InstST and AtE are introduced as the
computational representation of the formal ontology is developed.

Regions of spacetime and physical possibilities: 'The members of Dsy are the regions of spacetime (sub-
manifolds of the spacetime manifold in the sense of [A.T)). In particular Dgr includes spacetime itself — a
manifold of topology ST = (R x M), i.e., ST € Dsr. Dgr also includes the set the members of I" —
the set of geometrically possible worldlines. Those are curves through spacetime along which processes
that involve systems that are constituted of up to m particles and a Lagrangian field £ can possibly evolve
according to the laws of classical mechanics. (See also[A.2] [B.1])
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symbolic expression  description Appendix
M Manifold A1
M; C M, M is a submanifold of Mo ﬂ
LIS Join (union) of a non-empty set S of manifolds such that the result is a manifold. A]
s Meet (intersection) of a non-empty set set S of manifolds such that the result is A]
a manifold.
T-M Tangent space on manifold M at point z € M A
TM Tangent bundle on M. T'M is the disjoint union of the tangent spaces 1, M for Al
alz € M
y:R—=->M parametric curve on M A2
yC M v =ar {7(7) € M | 7 € R} is the curve v C M represented by the parametric A2
curve y(7) with 7 € R
(ST,9) Spacetime manifold of topology (R x M) and geometry (metric field) g
Gz Metric field: g, : T ST x T,ST — Ratxz € ST, defines the length |¢] of a
vector £ € T, ST via €2 = g4 (£,€)
(T,971) Abstract time slice with geometry g7. If ST has the topology R x M then T B.1
has the dimension of M
T -slicing o A T-=slicing o of (8T, g) isasmoothmap o : ® x T — (R x M) B}
oe(T) Concrete timeslice (time instant, hyperplane of simultaneity) of spacetime ac- B.1|
cording to the 7-slicing 0. Le., 0¢(T) = {(t,0¢(x)) | * € T}. 04 is a isomor-
phism from 7 to o+(7)
o(T) A particular slicing of spacetime ST into hyperplanes of simultaneity B.|
I The set of geometrically possible worldlines B.|
b The set of T -slicings of a given underlying spacetime B.1|
E= L) ¢ is the tangent on «y at point = € ~y A2
H:M—®R H is a scalar field on M C
X:M—>TM X is a vector field on M such that X (z) € T, M forallz € M C
Yxz:R—> M integral curve through = € M with respect to the vector field X : M — T'M. C|
Le., if v(7) = y then X (y) is the tangenton y aty € M
L:TST - R The Lagrangian field: a scalar field on the tangent bundle of the spacetime man- C|
ifold. Determines physically possible worldlines.
- The set of physically possible worldlines as determined by L. C|
Table 1

Summary the Appendix (pg.[33): Basic notions of differential geometry (Arnold| [1997; Butterfield, 2007} Bittner, 2018))

3 is a set of T -slicings o of spacetime. A T -slicing of spacetime is a smooth mapping o : & x T —
(R x M) such that for every instant ¢ € R of time, oy maps the points of an abstract n-dimensional
Euclidean space, 7, to the points of an n-dimensional slice o1(7) C ST of the n + 1-dimensional
spacetime manifold ST (see also[B.1). For all slicings o € X, the set of all time slices ot(7) is a subset of
Dsr. Spatial regions are members of Dgr that emerge from the intersection of worldlines and time slices.
That is, if v € T and y N oy(T) # O then v N oy(T) € Dsr. A subset of the geometrically possible
worldlines in I is physically possible, i.e., I'“ C I'. That is, I'* is a set of physically possible worldlines
along which worlds/systems with m particles can evolve according to the Lagrangian L. (See[C|)

The product T'* x 3 is the set of all physical possibilities. In conjunction with two accessibility relations
R and R* the set of physical possibilities forms a frame structure XX = (' x X). The accessibility
relations R!" and R of the resulting frame structure are axiomatized as:

RY C{{{m,0), (72,0)) | (71,0), (y2,0) € K} and RY is reflexive, symmetric, and transitive;

R* C{{{y,01), {(7,02)) | {7,01), (7,02) € K} and R* is reflexive, symmetric, and transitive. 2)

That is, both, (I'“, R') and (X, R*) are structures with an equivalence relation. In addition the two ac-
cessibility relations are compositionally related as indicated in (Fig. [T] (right)). For a justification of those
choices see the original presentation of [Bittner| (2018)).

Example 1. Consider the left image of Fig. [I] It displays a three-dimensional spacetime with two spa-
tial dimensions and one temporal dimension. There are the geometrically possible (‘straight’) worldlines
{71,72,73,74} C T'. Suppose that other curvy but smooth and monotonically increasing worldlines are
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R=
Y43 V271 TP YV2m 72 <’Y27Ul> — <72302>
), (T) o1, (T)
(T 77 R* RF &
, Ufl(T)
Utl(T) = fyl =
1 R 9 1 1 R 1 2
o — O <7 O > — <'Y 0 >
T
Fx Fr Fo X Fr

Fig. 1. T-slicings ¢’ and o of a spacetime with worldlines v1 — 4 (left); Two accessibility relations in distinct frames and two
accessibility relations in a two dimensional product frame (right) (adapted from the work of |Gabbay| (2003, pg. 125))

also geometrically possible. In the image there are two slicings o and ¢’ of spacetime, i.e., . = {0, 0’}.
The abstract time slice is 7 = (R?, g) and g is the Euclidean metric of 2. Suppose that the world is such
that it has one particle (m = 1) which, in addition is such that it cannot change its spatial location, i.e.,
the Lagrangian field £ ‘holds’ the particle in place as time passes. In such a world are then four physi-
cally possible worldlines, i.e., I'“ = {71,72,73,v4}. The physical possibilities are the members of the
set {71,72,73,7v4} x {o,0’}. In this world the slicing o corresponds to the particle’s rest frame and the
slicing o’ corresponds to a frame of reference that is in motion relative to the particle. This gives rise to
the product frame IC(FE, Y)) in which the relations RY and R” hold: Y1 RF%, Y1 RF’}/Q, ngF%, Y1 RU~s,
...,0R¥0, cR*d’, etc. O

The domain of entities:  On the enforced interpretation Dg, is the domain of possible entities (particulars
and universals) in a world with m atoms. While the number and kinds of atomic particles that exist are
fixed, whether and which complex continuants are formed by the given atomic entities is a contingent
matter. Whatever complex entities can exist, however, must obey the laws of mereology in a way that is
consistent with the mereology of the underlying spacetime. The domain Dp, of possible entities and the
domain Dsy of regions of spacetime are linked via the relation of instantiation InstST C Dp x D X
Dsr x K. More details will be discussed as the computational representation of the formal ontology is
developed.

2.2. A simplified model

For illustrative purposes and to check the consistency of the formal theory it will be useful to use a
simple and finite set-theoretic model to illustrate some important aspects of the class of KS-structures.
Due to its simplistic nature this model falls short of capturing many of the topological, geometric and
differential structures that govern the underlying physics. More sophisticated models could be built by
implementing Def. [T|of appendix and basing it on manifold theory and the theory of differential forms
(Artken et al., 2005). An important advantage of using a tool with the expressive power of Isabelle/HOL
is that, at least in principle, it is possible to formalize models of this kind.

The toy model has a two-dimensional *spacetime’. This spacetime is discrete and has six distinct spatio-
temporal locations as indicated in Fig. a), ie., ST = {coo,c10, o1, 11, Co2, 12} as indicated by the
labeling in the figure. In this spacetime the domain of spacetime regions is the set of non-empty subsets
of ST, ie., Dsr = {r C ST | r # 0}. As discussed above (Fig.[l), slicings of spacetime are mappings
o' from an abstract timeslice 7 of dimension n — 1 into into an n dimensional spacetime S7. In this toy
model the abstract time slice is 7 = ({0, %1}, g). The geometry g of 7 is mostly ignored here. In the
model there are two slicings of spacetime . = {0, o'}. The slicing 0 is o0 (x;) = cio, 0Y(2:) = ci1,
08(1‘2) = C;2 fori € {0, 1} (Fig.b)) and the slicing Ul 18 O’é (1’Z) = C10, U%(xo) = C00» O’% (1‘1) = C11,
oi(z0) = cor, 03(z1) = c12, 03(x;) = coo for i € {0,1} (Fig. 2fc)). (Clearly, unlike ¢°, 0% is not an
isomorphism that preserves the geometry g. This is an artifact of the finite nature of S7 in this model.)
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0 o 1 1 0(2)  5(2) 7(2) 70(2)  5(2) 1(2
T2 (J?o) O3 (1'1) 03 (T) ) (xl) 72 | w6(2) 7s(2) 77(2)
c_02 c_12 c_02 c_12 c_02 c_12 c_02 c_12 c_02 c_12
0 0 1 1 o(1) (1) 1(1 Yo(1) (1) (1
o1(zo) | o7 (z1) a5 (o) | oy (1)
(1) )| (1) y2(1)
c_01 c_11 c_ 01 c_11 c_01 c_11 c_01 c_11 c_01 c_11
(0) 75(0)  71(0 7(0) 75(0)  71(0)
0 0 1 ol T 7o 0
ag(wo) | og(z1) a1 (7o) o(T) %6(0) | 42(0)  75(0) ~42(0)
c_00 c_10 c_00 c_10 c_00 c_10 c_00 c_10 c_00 c_10

Fig. 2. A simple toy model of spacetime in conjunction with examples for physically possible worldlines and timeslices. Color
coding: (b) o0 (T) is blue, o (7)) is magenta and o9 (7) is red; (c) 0§ (T) is blue, o1 (7) is magenta, o3 (T) is red, o3 (T) is
black; worldlines in (d) and/or (e) 7o is blue, 1 is brown, 72 is green, 74 is orange, s is purple, ¢ is red, 7 is black.

The worldlines that are kinematically possible with respect to the slicing o are visualized in Fig. d).
The worldlines that are kinematically possible with respect to the slicings ¢° and ! are visualized in Fig.
[2[e) and listed in Eq. 3] There are fewer worldlines in Fig [2[e) because a worldline cannot have more
than one ‘point’ of intersection with a time slice. This is because instantaneous changes are physically
impossible.

The parameter of the +; is understood to correspond to the (coordinate) time (Def. [2] of [B.1)) according
to the slicing 0¥ of ST ,i.e., 7 € 0...2. (The aim here is to approximate worldlines that are possible in a
spacetime that is consistent with the special theory of Relativity — See also[B.2])

Y0(T) = cor, 75(0) = €10, 75(1) = c11,75(2) = coz, 3)

1(1) = cir, 77(0) = c10,77(1) = co1,77(2) = coz-
If one demands, in accordance with classical mechanics, that distinct particles cannot occupy the same
location in spacetime then worldlines of distinct particles cannot intersect. In this example it is assumed
that there exist two atomic particles that occupy locations along the kinematically possible worldlines in
this spacetime. The worldlines 7 and ~; are the only kinematically possible particle worldlines that do
not intersect. The only kinematically possible complex worldline in this example is 73 = (J{70,71}- (The
underlying physical environment that is encoded in the Lagrangian field £ would be such that neither of
the two atomic particles can change its spatial location.) On these assumptions, K = I'“ x ¥, the set of
physical possibilities, is K = {12} x {0, o1}.

In what follows the two atomic particles are called Aty and At;. Respectively Aty and At; evolve along
the worldlines 7y and ~y;. In addition it is assumed that there exists a complex object Compl,, that is
constituted by the atoms Aty and At;. The worldline of Compl, is ~2. Within the realm of physical
possibilities in X an ontology that commits to the existence of continuant particulars, occurrent particulars
as well as to universals which are instantiated by such particular entities (e.g., BFO (Smith,|2016), DOLCE
(Gangemi et al., |2003)), etc.) then is committed to acknowledging the existence of at least the following
entities: the continuants Atg, At;, and Compl; the occurrents Occy, Occy, and Occ,, (the respective lives
of the above continuants); and at least two universals (UCy and UQg) which are respectively instantiated
by the continuants and occurrents. On the given assumptions the set of physically possible entities is:
Dr = {Aty, At;, Compl,, Occy, Occy, Occsy, UGy, UOy }.

This example is constructed to minimize the number of physical possibilities without being trivial. This
simplicity of the example model greatly reduces the complexity of the (mostly brute force and case-based)
proofs that establish that the axioms of the formal ontology are satisfied in this toy model. In general,
within the framework of highly expressive languages, the more skilled the developer of the computational
realization of an ontology, the more realistic and sophisticated the models that are realized can be. In the
conclusions of this paper I will argue for the need of skilled proof engineers.
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2.3. Semi-formal specification of the modal language

In this section the syntax and the semantics of the formal language that is used to express the ontology of
Bittner| (2018]) is introduced. This language includes three disjoint sets of variable symbols: Varsr, VARsr,
and Varg. Varsy contains variables denoted by letters u, v, w, possibly with subscripts (uy, ve, etc.).
VARgy contains variables denoted by capital letters A, B, etc. Varg contains variables x, y, z, possibly
with subscripts. Var is the union Varsy U VARsr U Varg. The sets Dsr, P(Dsr) and Dy of Sec. are
respectively the domains for the variables in Vargy, VARgy, and Varg.

Pred is a set of predicate symbols. If F' is an n-ary predicate symbol in Pred and ti,...,t,
are variables in Var then F' t;...t, is a well-formed formula. Complex, non-modal formulas are
formed inductively in the usual ways, i.e., if a and § are well-formed formulas, then so are
—a,a A B,aV B,a — B, (x)a, (Fz)a (Gabbay, [2003; Hughes and Cresswell, 2004). All quantification
is restricted to a single sort of variables. If not marked explicitly, restrictions on quantification are under-
stood by conventions on variable usage. Finally, the modalities OF, (0%, 0T and (> are included in the
formal language, i.e., if « is a well-formed formula, then so are D'« and O« with i € {I', £}

A model of such a multi-dimensional sorted modal language is a structure (Dsr, Dg, KC, V). Dsr and
Dp, are as described above and form the non-empty domains of quantification. K is a non-empty set of
possible worlds, which, as discussed above, has the internal structure of a product of two sets I'* and X.
KC gives rise to the product frame of the two-dimensional modal logic (Gabbayl, [2003) presented here. V
is the interpretation function: if F' € Pred is an n-ary predicate then V(F') is a set of n + 1-tuples of the
form (dy,...,d,, k) withdy,...,d, € Dand k € K, where D = P(Dsr) U Dsy U Dp. In all possible
worlds k € K the variables respectively range over all the members of Dsr, P(Dsr) and Dg. A variable
assignment 4 is a function such that (i) for every variable u € Varsy, u(u) € Dsr, (ii) for every variable
x € Varg, p(x) € Dg, and (iii) for every variable A € VARgr, u(A) € P(Dsr).

Every well-formed formula has a truth value which is defined as follows:

0 Vu(Fti...ty,k)=1if (u(t1),...,u(tn), x) € V(F) and 0 otherwise;

1 Vu(—o, k) =1if V, (e, k) = 0 and 0 otherwise;

2 Vy(anp,k)=1ifV,(a,k) =1and V,(5, k) = 1 and 0 otherwise;

3 Vy(a—B,k)=1ifV,(a,k) =00rV,(8,x) = 1and 0 otherwise;

4 V,(OY, k) =1if V,(a,x") = 1 forall k" € K such that R" (k, x’) and 0 otherwise,

where R is the accessibility relation on K for ar; 4)
5 Vu(O%a, k) =1if V,(a, k') = 1 forall & € K such that R*(k, k') and 0 otherwise,
where R is the accessibility relation on K for [(1%;
6 V,((t)a,rx) =1ifV,(a, k) = 1 for every t-alternative p of 1 and 0 otherwise,
where a t-alternative p of p is a variable assignment that assigns the same domain
members to all variables except for ¢.

A well-formed formula « is true in (Dsz, Dg, IC, V), i.e. V(o) = 1, if and only if V (o, k) = 1 for all
k € K and all assignments p. Formula « is valid if « is true in all models. To simplify the presentation,
the explicit distinction between V and V,, will be omitted. Variables in the object language are written in
italics and for corresponding domain members the Sans Serif font is used.

The formal theory includes the rules and axioms of a first order modal predicate logic with identity
(Hughes and Cresswell, 2004) as well as the S5-axiom schemata K, T, and 5 for i € {T', ¥}. 0% is
defined in the usual way as the dual of (' for i € {T', £} (D). The Barcan formula and its converse are
true in all models (BCq:).

Dy Ola=-0O-a Ko Oa— B) = (Ola — OB)
Ty o —« BCri (2)0'a < O'(z)a
5mi Olar — O MSH OF'T*a « O*0Fa
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Both modal operators are independent and the order of their application is immaterial (1/.Sg). All axioms
of the formal theory below are true in all possible worlds have an implicit leading L] operator. In addi-
tion, leading universal quantifiers are omitted. Axioms BCq: and M S ensure that the order of leading
universal quantifiers and leading [] operators is immaterial.

3. Computational realization of the formal language

The computational realization of the formal ontology starts with the computational realization of the
semi-formal specification of the syntax and the semantics of the language of Sec. in conjunction
with the computational realization of the KS-structures of Sec. As mentioned above, HOL combines
predicate logic with typed lambda calculus which results in a typed second order language. The formal
roots in typed lambda calculus makes a typed functional language — in this case ML (Milner et al., [1990)
— a natural choice for the implementation of a framework such as Isabelle/HOL. From the underlying ML
system Isabelle/HOL inherits the basic syntax, the strong typing system, and the capability to evaluate
functions. On top of the ML system, Isabelle/HOL then provides a derivability relation (==>) between
objects of type (list of) formula (Nipkow et al., 2002). This in turn is the foundation for a number of
object logics (Paulson, [1995) — among them the logic HOL. Within HOL then the datatype (*a set) is
declared which stands for "set of type ’ 2" where ’ a is a type variable which can be instantiated by specific
datatypes (like bool or int). Within this framework then from existing sets new sets can be constructed
via restricted (typed) set comprehension, Cartesian products, etc. In what follows the typewriter font
is used for expressions of the Isabelle/HOL/Isar framework.

3.1. Representing product frames

Consider Fig. |3| The depicted Isabelle/HOL/Isar code illustrates the declaration of the computational
representation of a product frame X = (I'“ x X) of the form described in Fig. [1] (right) and Eq. 2| In
lines 1-5 a record type (’a RS_frame) is declared which instances are ordered quadtuples of the form
(r_carrier, aR, s_carrier, as). In this declaration r_carrier stands for a variable of the type "set of
sets with members of type (’a)", declared by the expression r_carrier :: (‘a set) set. Respectively,
aR stands for a variable of the type "function of type ((a set) X ("a set) — bool)" — the computational
representation of a binary relation with arguments of type (" a set). The types of s_carrier and as are
declared in analogy to the types of r_carrier and ar. The expression (infixl "R;" 50) declares that
the binary relation aRr is abbreviated as r and the arguments are written in infix notation. The number
50 specifies the strength of the binding to minimize the number of parenthesises that are needed and
thereby to facilitate readability. The subscript | specifies that the relation r has an argument which is the
record structure itself. This argument is written as a subscript can be omitted in many situations. (This is
somewhat similar to the this or self pointers in languages such as C™" or Python.) Similarly to ar and r,,
as has the infix notation s;.

Locales in Isabelle/HOL/Isar provide an infrastructure that supports the assignment of sets of axioms to
types of structures. (This is similar to axiomatic type classes in HASKELL (Jones, |1993; Wenzel, 2005)).)
Consider the lines 6 — 19 of Fig. 3| Line 6 starts the declaration of the locale s5_Rs_frame. In line 7 the
name L is assigned to an arbitrary but fixed quadtuple of type (‘a RS_frame). As part of the record and
locale declaration the Isabelle/HOL/Isar system defines a number of functions. For example, the system
introduces declarations which ensure that the expression (r_carrier L) is interpreted as a function call
which returns the content of the first slot of the quadtuple 1. — a set of type (’a set) set. Similarly, the
expression Ry, is a function call that returns the content of the second slot of L — a binary relation on a set
of type ("a set) set.Finally, (s_carrier 1) and sy, respectively provide access to the third and fourth
slot of L.

The record structure L is a computational representation of a XS-structure with a product frame K =
(T4 x X). The set (r_carrier L) represents the set I'“ and ry, represents the accessibility relation R"
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1 record "a RS_frame =

2 r_carrier :: "("a set) set"

3 aR :: "'a set => "a set => bool" (infixl "Ri" 50)

4 s_carrier :: "('a set) set"

5 as :: "'a set => "a set => bool" (infixl "Si" 50)

[ locale S5_RS_frame =

7 fixes L (structure)

8 assumes

9 RCarrier: "r_carrier L # (" and

10 R_ref [intro, simpl: "x € r_carrier L ==> x R, x" and

11 R_sym [intro]: "[|x € r_carrier L; y € r_carrier L; x Ry yl] ==> y Ry x" and

12 R_trans [trans]:

13 "[|x € r_carrier L; y € r_carrier L; z € r_carrier L; x Ry, y; vy Ry, z|] ==> x Rp, z"
14 assumes

15 SCarrier: "s_carrier L # (" and

16 S_ref [intro, simp]: "u € s_carrier L ==> u Sy, u" and

17 S_sym [intro]l: "[| u € s_carrier L; v € s_carrier L; u S v |] ==> v S, u" and

18 S_trans [trans]:

19 "[|] u € s_carrier L; v € s_carrier L; s € s_carrier L; u St v; v S, s|] ==> u Sy, s"

20 datatype "a RS = RSC "’a set" "'a set"
21 primrec r_RS :: ""a RS => ’'a set" where "r_RS (RSC r s)

22 primrec s_RS :: "'a RS => ’'a set" where "s_RS (RSC r s)

|
-

|
0

Fig. 3. Declaration of product frames.

on I'?; similarly, the set (s_carrier L) represents the set ¥ and sy, represents the accessibility relation
R* on ¥. As discussed in Sec. the product frames K are S5 frames. That is, I'* and ¥ — represented
respectively by (r_carrier 1) and (s_carrier L) — are required to be non-empty and the accessibility
relations R' and R* — represented respectively by ry, and st, — are subject to the constraints of reflexivity,
symmetry, and transitivity. These constraints are expressed as axioms of the locale s5_Rs_frame in lines
9-109.

While in the somewhat declarative style of the semi-formal presentation worlds/possibilities are pre-
sented as sets of tuples of the form I' x ¥, in the more operational computational representation record
types are used to store tuples of sets of the form (Fﬁ, Y)). The set theoretic product is generated from
(4, %) when formulas are evaluated in specific wolds (v, o) € T'* x X. In line 20 of Fig. the datatype
("a Rrs) is declared to hold ordered pairs of the form (y,0) € I' x 3. The functions r_rs and s_rs of
lines 21 and 22 provide access respectively to the first and second components of ordered pairs of type
("a RS).

3.2. The propositional segment of the modal language

Fig. 4| displays parts of the formal declaration of the propositional section of the modal language of
Sec.[2.3]and Eq. 4] The code is adopted with modifications from Benzmiiller; (2015) and Benzmiiller and
Woltzenlogel Paleo| (2015). Unlike Benzmiiller et al. who use type declarations for worlds and domains
of quantification here record structures and locales are used. This choice allows for more flexibility in the
specification of the semantics of the formal language and the models of the axiomatic theory.

In the first line of this code fragment propositional formulas are declared as functions of type (‘a, ’b)
RS_predicate. Functions of this type are mappings that take a product frame (represented by a variable of
type (‘a Rs_frame) and a particular world (represented by a variable of type (*a Rs)) to a boolean truth



T. Bittner / On the computational realization of Formal Ontologies 11

1 type_synonym (’a, ’'b) RS_predicate = "(’a, ’'b) RS_frame_scheme => 'a RS => bool"

2

3 abbreviation mneg:: "(’a, ’'b) RS_predicate => ('a, ’'b) RS_predicate" ("—_"[52]153)
4 where "-P = (AL w. = (P L w))"

5 abbreviation mand :: "(’a, ’'b) RS_predicate => (’'a, ’'b) RS_predicate =>

6 ("a, 'b) RS_predicate" (infixr"A" 51)

7 where "P A Q = AL w. (PL (w)) A (QL (w)"

8 abbreviation mboxR :: "(’a, ’'b) RS_predicate => (’'a, ’'b) RS_predicate" ("DR")

9 where "OR p L w = Vy. v € r_carrier L A (r_RS w) Ry, v— (P L (RSC v (s_RS w)))"
10 abbreviation mboxR :: "(’a, ’'b) RS_predicate => (’a, ’'b) RS_predicate" ("DS")

11 where "I:]S PLw&= Vo. c€ s_carrier L A (s_RS w) S;, o — (P L (RSC (r_RS w) o))"
12 abbreviation mdiaR :: "(’a, ’'b) RS_predicate => ('a, ’'b) RS_predicate" ("<>R")

13 where "<>R PLw= ny. v € r_carrier L A (r_RS w) R, v A (P L (RSC v (s_RS w)))"
14 abbreviation mdiaS :: "(’a, ’'b) RS_predicate => ('a, ’'b) RS_predicate" ("<>S")

15 where "<>S PLw&=3do. o€ s_carrier L A (s_RS w) S;;, o AN (P L (RSC (r_RS w) o ))"
16 abbreviation mbox :: "(’a, ’'b) RS_predicate => (’'a, ’'b) RS_predicate" ("J") where
17 "Op = OXOS(p))"

Fig. 4. The interpretation of modal propositional formulas in “a RS_frame product frames. (adopted from the work by
Benzmiiller| (2015) and |Benzmiiller and Woltzenlogel Paleo| (2015)) (See S5_2D_base.thy)

ValueE] The logical operators of negation, conjunction and implication of the modal language specified in
Eq.[d]are implemented in Isabelle/HOL as definitorial expressions of the form

abbreviation/definition name :: type declaration where "defines = definition". &)

In the body of the definitions, the product frames K of the KS-structure represented by the record struc-
ture L and worlds (designated by w) are distributed to sub-formulas which are connected by the respective
non-modal logical operators of the underlying logic HOL. As illustrations the definitions of the nega-
tion and the conjunction of the modal language are displayed in lines 3 — 7 of Fig. i Syntactically, the
modal (world-dependent) versions of logical connectives (the defines of Eq. [3]) are symbolized using bold
typeface. In Isabelle/HOL expressions labeled as abbreviation are definitions that are automatically ex-
panded by the system in the search for the proof of a theorem. By contrast definitorial expressions follow-
ing the keyword definition need to be expanded explicitly in the course of a proof.

Modal operators are declared for both components of the product frames KC of the KS-structure repre-
sented by the record structure .. The modal operators (I} and oF are evaluated in the standard ways with
respect to the worlds in (r_carrier L) and the associated accessibility relation ry,. Similarly, the modal
operators [1° and ¢° are evaluated in the standard ways with respect to the worlds in (s_carrier 1) and
the accessibility relation sy, (lines 8 — 15 of Fig. [d). Consider lines 8 and 9. It may be good practice to not
only to rely on the type checking in the call of the modal operator, but to explicitly constrain the worlds in
the call of the modal operator to the members of the respective carrier sets as indicated in the lines 8’ and
9’ below:

8’ abbreviation mboxR :: "(’a, ’'Db) RS_predicate => ('a, ’'b) RS_predicate" ("DR")
9’ where "DR PLw= (r_RS w) € r_carrier L A (s_RS w) € s_carrier L A
Vy. v € r_carrier L A (r_RS w) R, v— (P L (RSC v (s_RS w)))"

Similarly for the other modal operators of lines 8 — 15 of Fig. ]

'In the process of interpreting the declaration of a record of type (’a RS_frame) Isabelle/HOL automatically creates a
number of derived types including the type (“a, ’b) RS_frame_scheme. The latter is the type of the actual data structure
that is used to implement the record. This is the type that occurs in function declarations that are evaluated by the type system of
the underlying ML language. See the work by Nipkow et al.|(2002) for details.
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1 record ('a, ’'b) two_sort_RS_frame = "’'a RS_frame" +

2 carrier :: "’'a set"

3 e_carrier :: "'b set"

4

5 locale two_sort_S5_RS_frame = S5_RS_frame +

6 assumes

7 carrier: "carrier L # (" and

8 carrierE: "e_carrier L #:@" and

9 Rcarrierl: "r € r_carrier L ==> r C carrier L" and
10 Scarrierl: "s € s_carrier L ==> r C carrier L"

Fig. 5. Domains of quantification. (See S5_2D_base.thy)

3.3. Quantification

As pointed out in Sec. there are two domains of interpretations in JCS-structures: Dgr the domain
of regions of spacetime and Dg the domain of physically possible entities. In the context of X S-structures
the domain of regions is special in the sense that the worldlines and the slicings of spacetime that constitute
the carrier sets of the frame structures are regions of spacetime, i.e., members of Dsr. This is encoded in
the computational representation as depicted in Fig.[5]

The record type " a Rs_frame for S-structures is extended by two additional slots: one slot for the set
carrier of type (’a set) and a second slot for the set e_carrier of type (‘b set) (lines 2 — 3 of Fig.
[). The type variable ’ a of the *a Rs_frame structures of Fig. [3]is a place holder for the sort of regions
while the type variable ' b is a place holder for the sort of entities. The resulting record type is denoted
("a, ’'b) two_sort_RS_frame.

The locale two_sort_s5_Rs_ frame 18 declared to inherit all axioms of the locale s5_RS_frame. In ad-
dition four axioms are included. Two axioms ensure that both (carrier L) and (e_carrier L) are non-
empty. Two additional axioms require that the sets (r_carrier L) and (s_carrier L) are both subsets
of (carrier 1).The axioms labeled respectively: carrier, carrierE, Rcarrierl and scarrierl (lines
5 — 10 of Fig.[5). Axioms Rcarrierl and scarrierl illustrate the simplicity of postulating constraints
among subsets of a given type. This is an important advantage of using locales and records over the built-in
infrastructure for type declarations in Isabelle/HOL as it is used by Benzmiiller et al.

Consider Fig. [ which displays the declarations of the quantifiers of the modal language of Eq. ]
Again, the code is adopted with modifications from the work by Benzmiiller| (2015) and |Benzmiiller and
Woltzenlogel Paleo|(2015). In the figure the declaration of quantifiers that range over members and subsets
of the set carrier are listed explicitly. The declaration of quantifiers that range over members and subsets
of the set e_carrier are similar and are omitted here except for the declarations in lines 29 -31.

In the first line of the code fragment open formulas in which free variables can range over the types
"a, "a set, ‘b, and 'b set are declared as functions of type (“a, ’b, ’c) two_sort_RS_predicate.
Functions of this type implement mappings that take a product frame with two domains of quantification
(represented by a variable of type (’a, ’'b) two_sort_RS_frame and a particular world (represented by
a variable of type (‘a RsS)) to a boolean truth value. The type system of Isabelle/HOL is able to infer
that record variables of type (“a, ’b) RS_predicate can be obtained from record variables of type (’ a,
'b, ’'c) two_sort_RS_predicate by disregarding the two slots that are added in the declaration of (’ a,
'b, ’'c) two_sort_RS_predicate. The type system thereby ensures that the declarations of negation,
conjunction, disjunction, implication and logical equivalence of Fig. ] extend to formulas of type (’a,
"b, ’'c) two_sort_RS_predicate.

Universal and existential quantifiers for variables of type ’ a and ‘b are declared as depicted in lines 3
— 14 of Fig. [6] The declaration of every quantifier has two components. One component is semantic and
the other is syntactic in nature. The syntactic component of the declaration of a quantifier provides means
for Isabelle/HOL to express the binding of a variable within the scope of a quantifier as a typing problem
using A-expressions (e.g., lines 6 — 8). (For details see the work by [Wenzel| (2017)).) At the semantic level



T. Bittner / On the computational realization of Formal Ontologies 13

1 type_synonym ("a, ’'b, ’'c) two_sort_RS_predicate =

2 "("a, '"b, 'c) two_sort_RS_frame_scheme => "a RS => bool"

3 abbreviation a_mforall :: "('a => ('a, 'b, ’'c) two_sort_RS_predicate) =>

4 ("a, "b, ’'c) two_sort_RS_predicate" where

5 "a_mforall P = A L w. Vx.x € carrier L - (P x) L w"

6 abbreviation a_mforallB :: "('a => ('a, 'b, ’'c) two_sort_RS_predicate) =>
7 ("a, "b, ’'c) two_sort_RS_predicate" (binder "Va"I[8]9) where

8 "Wax.P(x) = a_mforall P"

9 abbreviation b_mexists :: "('b => ('a, 'b, ’'c) two_sort_RS_predicate) =>

10 ("a, "b, ’'c) two_sort_RS_predicate" where

11 "b_mexists P = A L w. dx.x € e_carrier L A (P x) L w"

12 abbreviation b_mexistsB :: "('b => ('a, 'b, ’'c) two_sort_RS_predicate) =>
13 ("a, '"b, ’"c) two_sort_RS_predicate" (binder "Hb" [8]9) where

14 "ﬂbx.P(x) = b_mexists P"

Fig. 6. The interpretation of formulas of modal predicate logic in (’a RS_frame) product frames with type-restricted
quantification (adopted from the work by [Benzmiilleri (2015) and Benzmiiller and Woltzenlogel Paleo| (2015)). (See
S5_2D_base.thy.)

(universal) quantification is restricted not only to variables of a given type but to the members of sets that
are part of the structures that provide the domain of interpretation. This allows for a natural correspondence
between the semi-formal definition of the semantics in Eq.[4|and the formal treatment in the computational
representation. For example in line 5 the universal quantifier (V) is restricted not only to variables of
type ‘ a but to the members of the set (carrier L) (of type ’a set). The variable 1 is a place holder for
a structure of type (“a, ’b) two_sort_RS_frame. When instantiated as intended, the set (carrier L)
will have regions of spacetime as members. Similarly for the quantifiers 35, Vy,, 3y, (lines 9 — 14), Va, etc.
HlSS_ZD_base.thy.

3.4. Valid formulas

In Isabelle/HOL one can then define the notion of validity. A formula p of type (‘a, ’'b)
two_sort_RS_predicate is valid in a structure L of type (“a, ’b) two_sort_RS_frame, signified as |
P |1, if and only if p is true for all members of (r_carrier L and all members of (s_carrier 1) (lines
1-3 of Fig.[7). On the enforced interpretation in ICS-structures the members of (r_carrier L) represent
dynamically possible worldlines in I'* and the members of (s_carrier L) represent kinematically pos-
sible slicings ¥ of spacetime. A common textbook notation that is equivalent to |P|y, is (=1, P). Since »
is arbitrary but fixed one also writes (|P| and |= P).

Within this framework Isabelle/HOL is able to prove the usual theorems about the logical interrela-
tions between [J and ¢ (e.g., line 4 of Fig. [7), the validity of the S5 axioms (e.g., T in lines 6), as well
as the Barcan formula (line 7). In addition one can prove that the order of the quantifiers (JF and [J° is
immaterial (line 5). In contrast to the semi-formal presentation of the theory, in the computational rep-
resentation all of these properties have to be proved for all types of variables and the associated typed
quantifiers V5, Vi, Va, 34, . . . as well as for all types of modal operators including (0%, (3%, [J, 0%, . . .. For
example, line 4 displays a lemma for V5 and [J%, while line 5 displays a lemma for Vy,, (O} and (J°.
All the properties of modal formulas with unary predicates immediately generalize to formulas with n-
ary predicates as shown for the Barcan formula in line 7. The term (P x) in line 6 is of type ("a, ’b)
two_sort_RS_predicate and so is the term (P x y) in line 7. Of course, the term p in line 6 is of type
'a => (‘a, 'b) two_sort_RS_predicate while the term p in line 7is of type 'a => 7a => ("a, ’'b)

two_sort_RS_predicate.
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1 abbreviation mvalid :: "(’a, "b, ’'c) two_sort_RS_frame_scheme =>
("a, 'b, 'c) two_sort_RS_predicate => bool" ("[_|{"[7]8) where
"| P |y, = V4. YVo. Y€ r_carrier L A 0 € s_carrier L = (P L (RSC 7 o))"

lemma (in two_sort_S5_RS_frame) "|Vaz. (OR(Pz))<>(-oR(=Pz))|" by blast
5 lemma (in two_sort_S5_RS_frame) "|Vjz. (O° (OR(P2)))«(@OR(@° (P2)))|" by force

6 lemma (in two_sort_S5_RS_frame) "|Vaz. O(Pz)—(Pz)|" using R_ref S_ref by auto
7 lemma (in two_sort_S5_RS_frame) "|(Vaz.Vpy. O(Pzy))<(O(Vaz.Vpy. (Pzy)))]" by fast

Fig. 7. Validity of formulas of type (’a, ’'b) two_sort_RS_predicate in structures of type (’a, ’b)
two_sort_RS_frame. (adopted from the work by Benzmiiller (Benzmiiller, 2015} Benzmiiller and Woltzenlogel Paleo|
2015)) (See S5_2D_base.thy)

Theorems and lemmata in Isabelle/HOL/Isar are to be read as follows: the keywords lemma/theorem
are synonymous; the statement enclosed by the quotation marks is the actual statement that is proved; in
parenthesis in front of the statement is the locale in the context of which (type declarations, definitions,
and axioms associated with the locale) the statement was proved; following the statement enclosed by
the keywords using and by are names of axioms and theorems that are used in the proof; and finally
following the keyword by the (built in) proof method (auto, fast, etc.) that was used in the proof is listed.
If no axioms and definitions are listed in the using section of a lemma/theorem then the proof was found
using axioms and theorems in Isabelle/HOL, simplification rules of the lambda calculus, and by expanding
definitonal expressions labeled as abbreviations.

This concludes the setup of the formal language for the axiomatic theory. The computational realization
is the formalized theory in s5_2D_base.thy. In what follows the ontology will be developed hierarchi-
cally. At each level of the theory hierarchy three formal components are introduced in a way that mirrors
the methodology in this section: (1) at every level new axiomatic primitives are introduced by extending
the record structures that represent the CS-structures; (2) axioms characterizing the new primitive are
collected in corresponding locales; (3) at the level of the modal language of the formal ontology every
formula is typed. The type of a formula is determined by the class of structures in which it is interpreted
and correspondingly, the set of axioms that are associated with these structures. The hierarchical devel-
opment of the ontology and the correspondence of the three components of the theory at every level are
summarized in Table [2]on page

The automatically generated presentation of the fully formalized and computationally verified formal
ontology can be found at: http: //www.buffalo.edu/~bittner3/Theories/OntologyCM/L

4. A mereology of space-time and its computational realization

There are a number of formalizations of mereological theories (Simons), |1987; |Varzi, 2003}; Tarski and
Givant, 1999; |(Champollion and Krifka, [2015)). The logical relations between the various systems are
mostly understood. What is relevant to this paper is that the aim of a computational realization may affect
the choice of a given system within a ’space’ of logically equivalent systems.

For example, Bittner| (2018) employs a system of mereology that emphasizes an algebraic (lattice-
theoretic) view of mereology over a more standard (order-theoretic) view (Champollion and Krifkal 2015)).
The algebraic view of mereology is attractive in the context of this paper because the formal environ-
ment of Isabelle/HOL already provides a fully formalized computational realization of lattice theory in
HOL/Algebra/Lattice.thy (Ballarin, 2017). Within the context of an algebraic view of mereology then
a system by [Kritka (1998)) was selected in the semi-formal presentation of Bittner| (2018)). This system is
based on the primitives of mereological union and mereological intersection. It facilitates a simple and
compact presentation of mereological notions in a first order language in the context of a paper where
mereology is not the focus of the attention.
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The semi-formal presentation of the mereology used by [Bittner (2018)) is briefly reviewed in subsec-
tion [4.1.1] The computational realization of the mereology then has of three components: (1) The mere-
ological axioms are expressed in a lattice-theoretic framework using a non-modal second order language
and explicit reference to KS-structures by means of the record structures and associated locales of Is-
abelle/HOL/Isar; (2) A formalized proof is provided in which it is verified that these axioms are satis-
fied in the computational realization of the example model; (3) The mereological axioms are lifted to the
(mostly) first order modal level of the formal presentation. At this level the axioms and definitions of the
semi-formal presentation of subsection d.1.T]are recovered as theorems.

4.1. Mereology in a lattice-theoretic framework

On the algebraic view of mereology is natural to reuse the fully formalized computational realization of
lattice theory in HOL/Algebra/Lattice.thy (Ballarin, 2017). In the highly expressive framework of HOL
it is also natural to declare lattice structures in a way that mirrors the ways in which lattices are introduced
in mathematics. Unlike lattices in HOL/Algebra/Lattice.thy, however, mereological structures lack a
minimal element. For this reason a modified version of HOL/Algebra/Lattice.thy is used here.

4.1.1. The semi-formal presentation of mereology

To capture the mereological structure of spacetime regions in the semi-formal presentation of Bittner
(2018)) the primitive binary operation L : Dsyr X Dsy — Dsr is introduced in the (first-order) object lan-
guage of the formal theory. On the intended interpretation in JCS-structures L is the mereological union
of regions U; and Us. More precisely, LI is interpreted as an operation that yields the least upper bound
|| : P(Dsr) — Dsr of the set {uy, Uz} with respect to the ordering imposed on Dgr by C (Champollion
and Krifkal [2015). The second primitive of the semi-formal presentation of the formal theory of Bittner
(2018) is the ternary functional relation . On the intended interpretation in XCS-structures I is the mere-
ological intersection that holds between regions U, U2 and us if and only if the greatest lower bound
M: PDST) — (DsrUD) of the set {uy, Us} exists and ug = []{u1, U2} (Eq.[6) (Champollion and Krifka,
2015)F

V(W) =U=g {(U1,U2,u3,k) € Dsy X Dsr x Dsy x K | uz = | |{u1,uz2}}

= 6
V(M) =M=g {(u1,U2,U3,K) € Dsy X Dsy x Dsy x K | ug =[ |{u1,u2}} ©)

The binary predicate of parthood, P uv, is defined to hold if and only if the union of w and v is identical
to v (Dp). The predicate ST holds of a region which has all regions as parts (Dsy). Proper parthood (PP),
overlap (O), and summation are defined in the standard ways in Do and Dy, (Simons|, [1987).

Dp Puw=uldv=v
DppPPuv=Puv Av#u
Do O uv = (Fw)(P wu A P wo)

On the enforced interpretation in S-structures (Eq. [I)) the parthood predicate P holds of the relation C
on Dgr; the predicate ST holds of the maximal element ST of Dgsr; the overlap predicate is true if two
regions share a member of Dgr; and the Sum predicate holds of least upper bounds of some non-empty
subsets of Dgr as indicated in Eq. .

Dgr STu = (v)P vu
Dgym Sum A = (Yw)(0 zw <> (32)(z € AN O zw))

V(P) = {(U1,U2,K) € Dgr x Dsy x K | uy C us}
V(ST) = {<ST, :‘<6> € DST x I ’ ST = UDST} (7)
V(0) {{u,v,k) € Dst x Dsr x K | 3W € Dgr: W Z U AW C v}

V(Sum) z {<U,A,K>€DSTXP(DST) X’C|A7£®/\U:|_|A}

Axioms are introduced requiring that LI is idempotent, associative, commutative (A1 — A3) and that there
exists a spacetime region which has all regions as parts (A4). Furthermore an axiom of separation (Cham-

This presentation traces over the difficulties that arise in the context of a mereology of regions which are represented by
manifolds rather than by topologically regular sets. See also@and (Butterfield! [2007; |Arnold, [ 1997).
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pollion and Krifka, 2015) is required to hold (AS5). Introducing 1 as a relational primitive implicitly ac-
knowledges that mereological intersections do not always exist. An axiom is introduced requiring that an
intersection of two overlapping regions always exists (A6).

Aluldu=mu A5 PP uv — (Fw) (=0 uw A v = u U w)
A2u U (vUw) = (uUv)Uw A6 O uv — (Fw) (M uvw)
A3ulv=vUu ATulUv=w — OulUov =w)

A4 (3u)(ST u) A8 Muvw — O(M uvw)

As specified in Eq. [6] the mereological unions and intersections are the same at all possible worlds. This
explicates at the level of the interpretation of the formal theory that the mereological structure of spacetime
is absolute in the sense that it is the same on all physical possibilities and slicings. In the object language
this is mirrored in axioms A7 and AS.

4.1.2. Computational realization in Isabelle/HOL/Isar

The computational realization of the mereology of the previous section in Isabelle/HOL/Isar can be
found in the file P1attice.thy (Which is adopted from HOL/Algebra/Lattice.thy). AXiomatic prim-
itives of the computational realization are introduced in two steps: (i) by extending record structures of
type (‘a, ’b) two_sort_Rs_frame and (ii) by extending the locale two_sort_s5_rs_frame of Fig.[5| A
record type Rs is an extension of record type R if Ry includes all the ’slots’ of R; and R» has at least one
’slot’ that is not included in R;. Similarly, a locale Ly extends the locale L; if Ly includes all the axioms
of L; and adds further axioms. This is summarized for all the primitives and axioms of the formalized
ontology in Table 2| on page

Following the standard lattice theory in HOL/Latt ice.thy there is a single primitive predicate for partial
orderings. The declarations that introduce this primitive in the computational realization are depicted in
Fig. @ First the record type (“a, ’b) porder_two_sort_RS_frame is declared that includes a slot for
the function 1e :: "7a => “a => bool" as depicted in line 2 of the figure. To emphasize that 1e is
the computational representation of parthood relation in KXS-structures the symbol C is used to refer to
le in the declarations that follow. The locale s5_Rs_2S_partial_order states the axioms of reflexivity,
antisymmetry, and transitivity for C and mirrors the declarations of HOL/Algebra/Lattice.thy.

1 record ("a, ’'b) porder_two_sort_RS_frame = "(’a, ’'b) two_sort_RS_frame" +
2 le :: "'a => "a => bool" (infixl "LC;" 50)

3 locale S5_RS_2S_partial_order = two_sort_S5_RS_frame L for L (structure) +
4 assumes

5 le_refl [intro, simp]l: "x € carrier L ==> x L x" and

6 le_antisym [intro]:

7 "Il x Evy; v E x; x € carrier L; y € carrier L |] ==> x = y" and

8 le_trans [trans]:

9 "Il x Evy; v E z; x € carrier L; y € carrier L; z € carrier L |] ==> x L z"
10 definition lless :: "[_, "a, "a] => bool" (infixl "Ci" 50) where

11 "x C1, vy = x C1, v A x # y"

12 definition overlap :: "[_, "a, ’"a] => bool" (infixl ".01" 70) where

13 "x .01, y = (3 z. z € carrier L A z C1, x A z C, y)"

Fig. 8. Partial orderings. Adopted from the work by |Ballarin|(2017). (See Plattice.thy)

In contrast to the semi-formal presentation of the theory in Sec. d.1.1] in the higher-order language of
the computational representation the predicate LI is defined rather than introduced as a primitive. The
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definition of L in line 7 of Fig. 0] expresses the usual lattice theoretic understanding of this operation in
terms of least upper bounds. The necessary declarations are displayed in lines 1 — 6. These definitions
explicitly formalize what is expressed semi-formally in the specification of the intended interpretation
V(U) in Eq. [6] In writing the axioms Al — A3 for LI as equations one implicitly assumes that binary
mereological unions always exist. In the computational representation it is explicitly postulated that least
upper bounds of arbitrary non-empty subsets (of (carrier 1), i.e., Dsr) always exist (lines 9 — 10 of
Fig.[9). In the mereological context this amounts to postulating the existence of mereological unions for
arbitrary non-empty subsets of Dgr.

1 definition Upper :: "[_, ’"a set] => "a set" where

2 "Upper L A = {u. (ALL x. x € A N carrier L -> x Ly, u)} N carrier L"

3 definition least :: "[_, 'a, 'a set] => bool" where

4 "least L 1 A = A C carrier LA 1 € A AN (ALL x : A. 1 L7, x)"

5 definition sup :: "[_, ’'a set] => ’a" ("|_|1_" [90] 90) where

6 "LJ;A = (SOME x. least L x (Upper L A))"

7 definition join :: "[_, "a, "al]l => ’"a" (infixl "Ui" 65) where "x Uy y = |_|L{x, y}"
8

9 locale complete_upper_semilattice = S5_RS_2S_partial_order L for L (structure) +
10 assumes sup_exists:

11 "[] A #:@; A C carrier L |] ==> EX s. least L s (Upper L A)"

Fig. 9. Formalized axioms for complete upper semi-lattices. Adopted from the work by Ballarin|(2017) (See Plattice.thy)

While in the semi-formal presentation in Sec. f.1.1] the predicate 1 is a primitive, the corresponding
predicate is_meet of the HOL-based computational representation is introduced by definition. The defini-
tion of is_meet in lines 3 and 4 of Fig.[I0]mirrors the usual lattice-theoretic definitions in terms of greatest
lower bounds (see definition of greatest and Lower in Plattice.thy). As in the case of the operation L
above these declarations explicitly formalize what is expressed semi-formally in the specification of the
intended interpretation V() in Eq. @ The absence of a minimal element in mereology means that not
every set of domain members has a greatest lower bound. To single out pairs of domain members that
(when jointly considered as a set of cardinality two) do have a greatest lower bound the relation of overlap
is used in the usual ways as specified in the declaration of the locale partial_ lower_semilattice in
lines 7 — 8 of Fig.[I0] This corresponds to A6 in the semi-formal presentation.

definition is_inf :: "[_, "a set,’a] => bool" where
"is_inf L A a = greatest L a (Lower L A)"

definition is_meet :: "[_, 'a, ’'a, ’'a] => bool" where

Sw N

"is_ meet L x y z = is_inf L {x, y} z"

locale partial_lower_semilattice = S5_RS_2S_partial_order L for L (structure) +
assumes inf_of_two_exists:

"[| x € carrier L; y € carrier L; x .0, y |] ==>

o J o Ol

EX s. greatest L s (Lower L {x, ypH"

Fig. 10. Formalized axioms for partial lower semi-lattice. Adopted from the work by Ballarin| (2017). (See Plattice.thy)

The axioms that form a general extensional mereology (Simons, [1987) are collected in the locale
s5_rs_2s_ceM (Fig. @ which inherits all the axioms and definitions of the locales complete_upper_semilattice
and partial_lower_semilattice via the locale partial_lattice and adds two further axioms. The
axiom noBot ensures that the set carrier L (i.e., Dgr) does not have a minimal element. This require-
ment is implicit in the semi-formal presentation. Corresponding to axiom A5 the remainder principle rRP
is included.
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1 locale partial_lattice = complete_upper_semilattice L +

2 partial_ lower_semilattice L for L (structure)

3 locale S5_RS_2S_GEM = partial_lattice L for L (structure) +

4 assumes noBot: " (greatest L 1 (Lower L (carrier L))) ==> 1 Q carrier L" and
5 RP: "[| x € carrier L; y € carrier L; x [C yl|] ==>

6 (dz € (carrier L). —(z .0 x) A (z U x = y))"

Fig. 11. Formalized axioms for the mereology of spacetime. (See Plattice.thy)

4.2. Validity in the example model

Isabelle/HOL provides computational tools for generating models for sets of formulas (e.g., nitpick
(Blanchette, [2017))). For the development of an axiomatic theory this is helpful to avoid inconsistent sets of
axioms, i.e., sets of axioms that do not have models at all. From the point of formal ontology development
this is not sufficient. The whole point of developing a formal ontology is it to create axiomatic systems that
constrain sets of models to a subset of infended models. Unfortunately, this is rather difficult and without
formal languages with significant expressive power often impossible.

However, there is a ’space’ of intermediate possibilities between the two extrema merely of demon-
strating the consistency of an axiomatic theory on one hand and demonstrating that the theory exactly
constrains a certain class of models on the other hand. This intermediate ’space’ is of interest from the
perspective of developing formal ontologies. Often, when developing a formal ontology one has a set of
prototypical examples in mind that guide the development of the formal theory. For example, in the spec-
ification document of Basic Formal Ontology (Smith, |2016) the authors provide prototypical examples as
parts of the Elucidations that complement the semi-formal definitions and axioms. When considered as
formal models these examples must satisfy all the axioms of the corresponding formal ontology. In the
context of the formal ontology considered in this paper the example of Sec. [2.2] plays this role.

In the remainder of this subsection first the formal specification of the example of Sec. 2.2 will be illus-
trated and then the proof that demonstrates that this model satisfies the mereological axioms is discussed.

4.2.1. The computational realization of the example model (Mereology)

There is a difficulty when specifying a formal model for verifying the consistency of a set of axioms:
the model itself cannot be specified means of axioms. This is because the axioms specifying the model
may be inconsistent or they may fail to sufficiently specify that model and thus fail to serve the purpose
of verifying the original set of axioms. As a solution to this problem Isabelle/HOL offers a definitional
approach to the specification of formal models (Nipkow et al.,2002). Within this definitional approach one
assumes that the axiomatization of HOL in Isabelle/HOL is consistent and can be extended by means of
a restricted class of definitions and declarations in ways that cannot lead to inconsistencies. In the formal
specification of the example model of Sec. 2.2 only the kinds of definitions and declarations are used that
fall within the definitional approach.

Consider Fig.[12] Lines 1 — 10 depict the declarations that constitute the computational representation
of the mereology associated with the spacetime consisting of six atomic regions as depicted in the left
of Fig. [2l Lines 10 — 20 depict the declarations that represent the slicings of spacetime in the middle of
Fig. 2] The accessibility relation among slicings of spacetime is declared in lines 21-22. Declarations
of the dynamically possible worldlines in conjunction with the declaration of the associated accessibility
relation are depicted in lines 23 — 28. In lines 29-32 a record structure ST_frame of type " (Reg, Reg)
porder_two_sort_RS_frame" is declared which slots are ’filled’ with the respective sets and relations of
the example model as declared in the figure.

In addition one can verify intuitions about the enforced model by proving simple lemmata. Many exam-
ples can be found in the file ST_model_base.thy. Of course many of those lemmata are trivial in the con-
text of the simple example model but they illustrate how easy it is to prove properties of the set-theoretic
structures that serve as models of the axiomatic theory.
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1 datatype Xcoord = ZeroX | OneX

2 datatype Tcoord = ZeroT | OneT | TwoT

3 datatype CoordT = CoordC Xcoord Tcoord

4 abbreviation c_00 :: "CoordT" where "c_00 = CoordC ZeroX ZeroT"

5

6 abbreviation c_12 :: "CoordT" where "c_12 = CoordC OneX TwoT"

7 type_synonym Reg = "CoordT set"

8 abbreviation top_of_m_set :: "Reg" where

9 "top_of_m_set = {c_00,c_01,c_02,c_10,c_11,c_12}"

10 abbreviation m_set :: "Reg set" where "m_set = { x. x C top_of m set A x #0 }"
11 abbreviation tsO :: "Reg" where "ts0 = {c_00,c_10}"

12 abbreviation tsl :: "Reg" where "tsl = {c_01,c_11}"

13 abbreviation ts2 :: "Reg" where "ts02= {c_02,c_12}"

14 abbreviation ts0_M :: "Reg" where "tsO_M = {c_10}"

15 abbreviation tsl_M :: "Reg" where "tsl M = {c_OO,c_ll}"

16 abbreviation ts2_M :: "Reg" where "ts02_M = {c_01,c_12}"

17 abbreviation ts3_M :: "Reg" where "ts03_M = {c_22}"

18 abbreviation ts_set_M_0 :: "Reg set" where "ts_set_M 0 E{tsO,tsl,tsZ}"

19 abbreviation ts_set_ M 1 :: "Reg set" where "ts_set_ M 1 ={ts0_M,tsl_M,ts2_M,ts3_M}"
20 abbreviation ts_set_M :: " (Reg set) set" where "ts_set_M E{ts_set_M_O,ts_set_M_l}"
21 abbreviation ar_TS_M:: "Reg set => Reg set => bool" where

22 "ar TS M =X r s. r € ts_set_ M A s € ts_set_M"

23 abbreviation wlA_0 :: "Reg" where "wlA_0 ={c_00,c_01,c_02}"

24 abbreviation wlA_1 :: "Reg" where "wlA_ 1 ={c_10,c_11,c_12}"

25 abbreviation wlCpmpl_ 0 :: "Reg set" where "wlCompl 0 ={wlA_0,wlA_1}"

26 abbreviation wl_Phys_Possible :: " (Reg set) set" where "wl_Phys_Possible E{wlCompl_O}"
27 abbreviation ar_WL:: "Reg set => Reg set => bool" where

28 "ar WL =X r s. r € wl_Phys_Possible A s € wl_Phys_Possible"

29 abbreviation ST_frame :: " (Reg, Reg) porder_two_sort_RS_frame" where

30 "ST_frame = (Jr_carrier = wl_Phys_Possible, aR = ar_WL,

31 s_carrier = ts_set_M, aS = ar_TS_M,

32 carrier = m_set, e_carrier = m_set, le = op C |)"

Fig. 12. Space and regions of spacetime, timeslices, and dynamically possible worldlines of the example model.
(ST_model_base.thy)

4.2.2. Using records and locales for linking axioms and models

The structure sT_frame is an enforced model of the computational realization of the spacetime mereol-
ogy which axioms are collected in the locales s5_RS_25_GEM, partial_lattice, complete_upper_semi-
lattice, partial_lower_semilattice, S5_RS_2S_partial_order, two_sort_S5_RS_frame, and
s5_Rs_frame. The top level of the formalized proof that shows that sT_frame (abbreviated in the proof as
21) indeed has all the required properties is displayed in Fig. [I3] When processing the declaration of the
locale s5_rs_2s_cemM the underlying proof assistant generates a number of proof obligations in form of the
rule s5_Rs_2S_GEM. intro that, when fulfilled for a given structure (ST_frame in this case) constitute a
proof that the structure at hand satisfies all the axioms that are associated with the respective locale (Lines
5 — 15 of Fig. [I3). The layout of the proof in addition illustrates that the proof assistant also ensures that
all the axioms of the parent locales are satisfied: line 3 shows that all the axioms associated with the locale
partial_lattice are satisfied as a consequence of the theorem m_set_is_partial lattice_ M and the
rules of inference that are available to theorem prover auto. The complete proof can be found in the file
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ST_model_proof_MereologyOnly.thy.

theorem (in S5_RS_2S_GEM) "S5_RS_2S _GEM (ST_frame)" (is "S5_RS_2S_GEM ?L")
proof (rule S5_RS_2S_GEM.intro)

show "partial_lattice ?L" using m_set_is_partial_ lattice_M by auto

show "S5_RS_2S_GEM_axioms ?L"
proof

1
2
3
4 next
5
6
7 show "carrier ?L # (" by auto
8

next
9 show "Al. greatest ?L 1 (Lower ?L (carrier ?L)) ==> 1 ¢ carrier ?L"
10 using greatest_lower_not_in_carrier_M by blast
11 next
12 show "Ax y. x € carrier ?L ==> y € carrier ?L ==> x [, y ==>
13 Jdz€carrier ?L. = z .021, x A z |]p1, x = y"
14 using remainder_principle_M by blast
15 ged
16 ged

Fig. 13. The record structure ST_f rame satisfies the axioms of the locale S5_RS_2S_GEM. A is an alternative way of express-
ing universal quantification. (See ST_model_proof_MereologyOnly.thy)

4.3. Lifting to the modal level

In order to present the formalized theory in the more concise and conceptually clearer form that is
employed in the semi-formal presentation of Sec. f.1.1] the rather complex and hard to read axioms,
definitions, and theorems from the level of axiomatization are lifted to the modal language of Sec.[3] In the
modal language all explicit references to semantic features such as the record structures that provide the
enforced interpretation are hidden. This information, although transparent to the user, remains available to
the system (and can be used in the proofs). Explicit typing of formulas (discussed below) in conjunction
with formal features such as currying and the rules of a-, 8-, and ~- reduction of the underlying lambda
calculus (part of the rules of inference in HOL) allow the system to route implicit arguments through
the proofs in a way that is transparent to the user (for details see the work by |[Benzmiiller| (2015) and
Benzmiiller and Woltzenlogel Paleo| (2015))). An illustration of how the modal formula " |O(Vax. P_M x
x) | stated in the context of the locale s5_rs_2s_GeM is 'understood’ by the system, is displayed in Fig.

1 theorem (in S5_RS_2S_GEM) "|O(Vax. P_M x x)|"

2 theorem "Vv 0. Y€ r_carrier L A 0 € s_carrier L —

3 (V. ¥/ € r_carrier L A r_RS (RSC v o) R v —

4 (Vo'. o' € s_carrier L A s_RS (RSC 4/ (s_RS (RSC 7 0))) S o —
5 (Vx.x € carrier L —

6 P_Mx x L (RSC (r_RS (RSC o' (s_RS (RSC v o)))) a'))))"

Fig. 14. Lines 2 — 6 illustrate how Isabelle/HOL expands the theorem stated in line 1.

As an illustration of the typing of formulas consider lines 1 and 2 of Fig. [I5] Every atomic formula in
the lifted mereology is a function of type (“a, ’b, ’c) M porder_predicate which has two arguments:
(1) a record structure of type (‘a, ‘b, ’‘c) porder_two_sort_RS_frame which holds the domain of
interpretation including the domains of the variables, the interpretation of the axiomatic primitives, pos-
sible worlds, was well as accessibility relations; and (2) the current world of type (’a Rrs). Like every
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closed atomic formula in a two-valued logic expressions of type (“a, ’'b, ’c) M porder_predicate
are functions that evaluate to the boolean values of true or false.

For example, the predicate p_mis a functionof type “a => a => (‘a, 'b, ’'c) M_porder_predicate
(line 3 of Fig. [I3)). Therefore, the expression (P_M x y) is a function that, when presented with an ar-
gument of type (‘a, ’b, ’c) porder_two_sort_RS_frame and an argument of type (‘a RS) yields a
boolean truth value, the computation of which is specified in line 4 — 5. The body of the definition of
every predicate links this predicate to its enforced interpretation. In line 4 the predicate p_w is linked to the
predicate Cr,. While the typing system ensures that all arguments are of the correct type, every definition
ensures that every argument is a member of the correct carrier set: in lines 4 — 5 it is verified that x,y €
carrier L. Complex expressions such as Vax. P_M x x, O(Vax. P_M x x) are functions of type (’a,
'b, ’'c) M_porder_predicate => (’a, 'b, ‘c) M_porder_predicate and are evaluated as specified
in the computational realization of the formal language in Sec. 3] Similarly for the predicate _m (lines 6
— 8 of Fig.[I3)) and all the other predicates in the semi-formal presentation of the theory.

Using the definitions of the predicates of the modal language one can prove: (i) all the axioms stated
in the semi-formal presentation are theorems in the formalized modal presentation. Those theorems state
that the respective formulas are valid the class of underlying structures in the sense defined in lines 1 — 3
of Fig.[]] For example, the lemmata in lines 11 and 12 of Fig. [T are formalized versions of axioms Al
and A7 of Sec. [4.1.1] (ii) One can prove formalized versions of the theorems listed in the semi-formal
development of the formal theory. For example, the lemmata inlines 15 and 16 of the figure are formalized
versions of theorems T1 and T3 of Bittner (2018)). (iii) Finally, one has to prove that all the definitions in
the semi-formal presentation are provable as logical equivalences in the formalized theory. Lines 13 and
14 of Fig. [I5]prove definition Dp as a logical equivalence.

As specified in the definition of J_m, mereological unions are the same at all possible worlds. This is
reflected by the theorem in line 12 of Fig. [I3] Similar patterns hold for all purely mereological predicates
HlPLattice_lifted_theory.thy.

1 type_synonym (’a, ’'b, ’'c) M_porder_predicate =

2 "("a, "b, ’'c) porder_two_sort_RS_frame_scheme => 'a RS => bool"

3 definition P_.M :: "'a => "a => ('a, 'b, ’'c) M_porder_predicate" where

4 "P MxyLw=zxULC; vy Ax € carrier L Ay € carrier L A

5 (r_RS w € r_carrier L) A (s_RS w € s_carrier L))"

6 definition J_M :: "'a => "a => ('a, '"b, 'c) M_porder_predicate" where

7 "IMxyzLw=2z=xUp vy Azx € carrier L Ay € carrier L, A z € carrier L A
8 (r_ RS w € r_carrier L) A (s_RS w € s_carrier L)"

9 context S5_RS_2S_GEM

10 Dbegin

11 lemma "|O(Vax. J_M x x x)]|" unfolding J_M def using join_idemp by simp

12 lemma "|OVax y z. I Mx vy z — (O(JMxy z)))|" unfolding J_M _def by simp
13 lemma "|O(Vaxl x2. (P_M x1 x2) 4+ (J_M x1 x2 x2))|" unfolding P_M def J_M def
14 using le_iff_ join by auto

15 lemma "|O(Vax. P_M x x)]|" unfolding P_M def using le_refl by simp

16 lemma "|O(Vax y z. PMx y AP My z — P_Mx z)|" unfolding P_M def

17 using le_trans by auto

18 end

Fig. 15. The excerpts from the lifted mereology of PLattice_lifted_theory.thy
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5. Timeslice mereology

Mirroring the methodology of Sec. [] the formalization of the primitive of a time slice in the context
of the mereology developed above is discussed. As above the computational realization of the timeslice
mereology of [Bittner| (2018)) is presented in four steps: (1) the semi-formal presentation of the theory
is reviewed; (2) the axioms are expressed in a non-modal second order language with explicit reference
to KCS-structures using the record structures and associated locales of Isabelle/HOL/Isar; (3) A proof is
provided that these axioms are satisfied in the computational realization of the example model; (4) The
axioms and definitions of the second order language are lifted to the first order modal level of the formal
presentation.

5.1. Semi-formal presentation

In the semi-formal presentation of the theory by |Bittner|(2018]) a third primitive is added to the axiomatic
theory: the unary predicate 7S. On the enforced interpretation in IS-structures (Eq. [I)), 7S holds of time
slices o¢(7") induced by the T -slicing o:

V(TS) = TS =df {<U, <’7,0>> € Dsr x K ‘ deR:u= O‘t(T)} )

In terms of the primitive time slice predicate spatial and soatio-temporal regions are defined: Spatial
regions are regions that are parts of some time slice (Dgg). Spatio-temporal regions are regions that overlap
two distinct time slices (Dgrg). Two regions are simultaneous if and only if they are parts of the same
time-slice (Dgpyp).

DSR SRu = (EH)(TS tAP Ut)
Dgrg STRu = (Htl)(atz)(TS ti ANTS t9 A O uty A O utg A —=O t1t2)
Dgiy SIMU uv = (3w)(TS w A P uw A P vw)

On the intended interpretation SR w means: Spatial regions u are parts of spacetime which, on a given
T -slicing o are sub-regions of some time slice induced by ¢. On the slicing o the region u is not extended
at all in time. By contrast, on a given slicing, spatio-temporal regions extend across time slices. This
interpretation reflects at the level of the formal models that which regions of S7 count as spatial regions
depends on the underlying slicing o.

V(SR) = {(u,{y,0)) € Dsr x K| Fi e R:uC oy(T)}

V(STR) = {{u, (v,0)) € Dsr x L |[UC v A )
Ji,jeR:iAjAuno(T)#0Auno;(T) # 0}

V(SIMU) = {<U,V7 <")/,O'>> € Dst X Dst x K ‘ teR:ulC O't(T) AV LE O't(T)}

The following mereological axioms for 7§ are added: distinct time slices do not overlap (A9); there are at
least two non-overlapping time slices (A10); every region overlaps some time-slice (A11). If ST has the
global or local structure of a Minkowski spacetime then there are many slicings, i.e., #> > 1. In such
spacetimes the axiom A holds requiring that simultaneity is not absolute.

A9 TSuNTSvAOuwv wu=v A1l (3u)(TS u A O uv)
A10 (Fu) (F) (TS u A TS v A =0 uw) Apyr SIMU uv A u # v — OZ=SIMU uv

In Minkowski spacetimes some regions of spacetime are spatial regions on some slicings but not on others.
Similarly for some spatio-temporal regions.
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5.2. Computational realization

In analogy to the introduction of the primitive partial ordering predicate T in the lattice theoretic
formalization of mereology in Sec. 4] the primitive timeslice predicate of the timeslice mereology
is introduced in the computational realization (i) by introducing record structures of type (‘a, ’b)
TS_porder_two_sort_RS_frame as extensions of records of type (“a, ’b) porder_two_sort_RS_frame
and (ii) by introducing the locale TS_mereology as an extension of the locale s5_Rs_2S_GEM (see
TS_mereology. thy).

The first axiom of the locale Ts_mereology (lines 5-6 of Fig.[I6) mirrors the constrains of the enforced
interpretation of the predicate 7S in Eq.[8] The representation of timeslices in the computational realization
(lines 5-6 of Fig. [16]| and elsewhere) is somewhat simplified compared to the semi-formal presentation.
In the latter slicings of spacetime are mappings of the form o : 8 x T — R x M (Fig. [} Def. 1] of
[B.1)). By contrast, in the computational representation slicings of spacetime are included explicitly as sets
of the form (s_carrier L). In the semi-formal presentation the set (s_carrier L) could be written as
{{ue M |3t € R: (t,u) = oe(T)} | o € X}. Representing slicings as mappings is important when
certain structure-preserving aspects of the mappings are used to distinguish different kinds of spacetime
geometries (Sec. Sec.B.2) and the work by Bittner| (2018)). The focus in this paper is only on a single
spacetime geometry (a simplified version of Minkowski spacetime). For this reason the mapping structure
can be neglected.

The remaining axioms of the locale are respectively semantic expressions of axioms A9 — All
of the semi-formal theory. As an example of the computational representation of the axioms in
TSs_mereology.thy the computational representation of axiom A9 is depicted in lines 8 — 9 of Fig.[16] The
definitions of the predicates for spatial and spatio-temporal regions as well as the predicate of simultaneity
mirror the respective specifications of the intended interpretation in the semi-formal presentation of the
theory. In particular, lines 10 — 12 correspond to the first definition in Eq. [0} The original definitions of
SR, STR, and SIMU in the object language of the semi-formal presentation will be recovered as theorems
in the version of the formalized theory that is lifted to the modal level of theory presentation (Sec. [5.4).

In the context of the locale Ts_mereology one can prove that on every slicing of spacetime the least
upper bound of the set of all timeslices on that slicing is identical to spacetime itself (lines 13 — 15 of Fig.
[I6] Lines 13 — 14 contain the statement of the theorem and line 15 states that in the proof the (previously
proved) lemmata set_of_Ts_imp_ST and ST_impl_Set_of_Ts as well as the built-in proof method blast
are used.

The locale Ts_mereology is extended in TS_mereology.thy by the locale M_Ts_mereology. The latter
extends the former by adding an axiom that stipulates that simultaneity is relative (lines 16 — 20 of Fig.
@]). In the context of the locale M_Ts_mereology the axiom Aj,; of the semi-formal presentation will
become provable at the modal level of the computational realization (Sec. [5.4).

5.3. Validity in the example model

The verification of the consistency of the axioms collected in the locales Ts_mereology and
M_TS_mereology and the verification their satisfaction in the example model is achieved in two steps: (1)
extend the computational realization of the example model to include a structure that can serve as the
interpretation for the primitive timeslice predicate; (2) verify that this model satisfies the axioms collected
in the locales TS_mereology and M_TS_mereology.

Firstly, the computational realization of the example of Sec.[2.2]is extended by declaring a unary pred-
icate isTs_M that holds of the time slices of a given slicing of spacetime (lines 1 — 2 of Fig.[I7). To link
the model to the axioms that are collected in the relevant locales a record with the name sT_frame_M is
declared (lines 3 — 5).

The proof in which it is demonstrated that the structure sT_frame_M satisfies all the axioms collected
in the locales Ts_mereology and M_TS_mereology is realized by an exhaustive analysis of all possible
cases. The resulting proof is rather lengthy and tedious and its computational realization is the theorem
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record ('a, ’'b) TS_porder_two_sort_RS_frame = "(’a, ’'b) porder_two_sort_RS_frame" +
2 ts :: "'a => '"a RS => bool" ("TS1")
3 locale TS_mereology = S5_RS_2S_GEM L for L (structure) +
4 assumes
5 "[l1 € r_carrier L; j € s_carrier L; u € carrier L|] ==>
6 (TS, u (RSC 1 J) = (u € J))"
7 assumes
8 "[l1 € r_carrier L; j € s_carrier L; u € carrier L; v € carrier L;
9 TSy, u (RSC i j); TSy v (RSC i j); u .01 vl] ==> u = v" and
10 definition SR :: "_ => ’a => "a RS => bool" ("SR;") where
11 "SRy, x w = (Jt. t € carrier L A TS, t w A x Cg, t) A x € carrier L A
12 r RS w € r_carrier L, A s_RS w € s_carrier L"
13 lemma (in TS_mereology) "[|x € carrier L; i € r_carrier L; j € s_carrier L |] ==>
14 (x = |Up{y € carrier L. TSy, y (RSC i j)}) 4 (STp, x (RSC i j))"
15 using Set_of_ TS_imp_ST ST _impl_Set_of TS by blast

16 locale M_TS_mereology = TS_mereology L for L (structure) +

17 assumes

18 "[|SIMUL, x v (RSC 1 j); x € carrier L; y € carrier L; x # y;
19 i € r_carrier L; J € s_carrier L|] ==>
20 (333. jj € s_carrier L A j Sy, jj A —(SIMUL, x y (RSC 1 j3)))"

Fig. 16. Locale for time slice mereology (TS_mereology.thy).

m_set_is_Inst_TS_mereologyin ST_model_proof.thy. It is important to acknowledge at this point that
despite the tedious nature of the proof it would be rather difficult to execute a proof of this form without
the computer keeping track of all the cases that must be verified.

1 abbreviation isTS_M :: "Reg => Reg RS => bool" where

2 "isTS Mt w =%t € s_. RS w A ((s_RS w = ts_set_M 0) V (s_RS w = ts_set_M 1))"

3 abbreviation ST_frame_M where

4 "ST_frame_M = (| r_carrier = wl_Phys_Possible, aR = ar_WL, s_carrier = ts_set_M,
5 aS = ar_TS_M, carrier = m_set, e_carrier = m_set, le = op C, ts = isTS_M |)"

Fig. 17. Time slices and spatial regions (ST_model_base.thy)

5.4. Lifting to the modal level

Creating a modal presentation of the non-modal timeslice mereology included in the locale mM_Ts_
Mereology and the associated record structures of type (’a, ’‘b) TS_porder_two_sort_RS_frame is
similar to creating a modal presentation of the mereology in Sec..3]

Every closed modal formula in the lifted timeslice mereology is of type (‘a, 'b, ‘c) TS_mereology_
predicate which has two implicit arguments: (1) a record structure of type (‘a, ‘b, ‘c) TS_porder_
two_sort_RS_frame which, as above, holds the domains of the variables, the interpretation of the ax-
iomatic primitives, etc. and (2) the current world of type (*a Rrs) (lines 1 — 2 of Fig.[I8). The timeslice
predicate Ts_M of the modal language then is defined in terms of the timeslice primitive Tst, as depicted in
lines 3 — 5 of the figure. Modal versions of predicates holding of spatial regions, spatio-temporal regions,



T. Bittner / On the computational realization of Formal Ontologies 25

and pairs of simultaneous regions are defined analogously in terms of their non-modal counterparts (see
S5_2D_lifted_theory.thy).

In the context of the locale Ts_mereology one can then formally prove the all the definitions, axioms,
and theorems that are stated in the semi-formal presentation of Sec. as theorems (lines 6 — 11 of Fig
and s5_2D_1ifted_theory.thy). In the context of the locale M_Ts_mereology axiom Ay is provable
(lines 12 — 13 where 1d_a_mM is a modal wrapper of the identity relation).

1 type_synonym (’a, ‘b, ’'c) TS_mereology_predicate =

2 "("a, 'b, ’'c) TS_porder_two_sort_RS_frame_scheme => "a RS => bool"
3 definition TS_M :: "'a => ('a, ’'b, ’'c) TS_mereology_predicate" where

4 "TS_.M x L w = (TS, x w) AN x € carrier L A (r_RS w) € (r_carrier L) A
5 (s_RS w) € s_carrier L"

6 context TS_mereology begin

7 lemma "|O(Vax. SR.M x ¢ (Jat. TS_.M t A P_Mx t))]|"

8 unfolding SR_M def TS_M def P_M_def SR _def by auto

lemma "|O(Vax. Jay. TSMy A O My x)]|"
10 unfolding TS_M _def O_M _def using TS_and_OR by fastforce

11  end
12 lemma (in M_TS_mereology) "|O(Vax y. SIMUM x y A = (Id_a M x y) — <>S(—|(SIMU_M x y))) "
13 unfolding SIMU_M_def Id_a_M def using diaS_non_SIMU by (metis r_RS.simps s_RS.simps)

Fig. 18. Excerpts from the lifted timeslice mereology (from S5_2D_1lifted_theory.thy).

6. Instantiation, location, and categorization

Mirroring the methodology of Sec.[]and Sec. [5] the introduction and axiomatization of the primitives
of instantiation and atomhood are discussed starting with a review of the semi-formal presentation of
Bittner| (2018). As above, the computational realization is presented in three steps: (1) the axioms are
expressed in a non-modal second order language with explicit reference to KS-structures using the record
structures and associated locales of Isabelle/HOL; (2) A proof is provided that the axioms are satisfied in
the computational realization of the example model; (3) The axioms and definitions are lifted to the first
order modal level of the formal presentation.

6.1. Semi-formal presentation

A primitive ternary relation Inst between two entities and a region is introduced in the object language
of the formal theory. Inst xyu is interpreted as y is instantiated by x at region u (or, equivalently, x
instantiates y at region u or x is an instance of y at region u). On the intended interpretation: V(Inst) =4
InstST C Dp x D x Dsr x K where the set InstST is part of the underlying KS structure (Eq. [T). The
following axioms (some are adopted from the work by Bittner and Donnelly| (2006)) are included in the
formal theory to constrain InstST: if x instantiates y at w then it is not physically possible that some z
is an instance of x at some region v (A12); every entity instantiates or is instantiated on some physical
possibility (A13); every entity is instantiated or instantiates at spatial regions or at spatio-temporal regions
(A14); if z instantiates at a spatial region then on all slicings: = instantiates at spatial regions (A15); if
is instantiated at a spatio-temporal region then on all slicings: z is instantiated at spatio-temporal regions
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(A16); if x instantiates y at a spatio-temporal region u then x is uniquely located (A17); if x instantiates
at two simultaneous spatial regions v and v then u and v are identical (A18).

A15 Inst zyu A SR v — 0% (2)(v)(Inst xzv — SR v)

A16 Inst yzu A STR u — 0% (2)(v)(Inst zzv — STR v)

A17 Inst xyu A Inst tzv NASTRuANSTRY = u=v

A18 Inst xyu A Inst zzv ASRuASR v ASIMU uv — u = v

A12 Inst xyu — —O(32)(Fv) (Inst zzv)
A13 O(Jy)(Fu)(Inst zyu V Inst yzu)
Al4 Inst xyu — (SR u V STR u)

In terms of the instantiation primitive one can define: Entity x is located at region u if and only if there
exists an entity y such that x instantiates y at v or x is instantiated by y at u (Dp); Entity x exists at
timeslice ¢ iff there is a region at which x is located and that overlaps ¢ (Dg). An entity is persistent iff it
is not confined to a single time-slice (Dp,). Entity x is a particular if and only if x is a persistent entity
that instantiates at some region (Dp,,,). Entity x is a universal if and only if x is a persistent entity that
is instantiated at some region (Dy,;). Persistent entities are distinguished into continuants and occurrents.
Entity x is a continuant iff x is persistent and x is located at some spatial region (Dc¢,,,,) . By contrast, x
is a occurrent iff x is located at some spatio-temporal region (Docc).

Dpyye Part x = Pe x A (Fy)(Fu) (Inst zyu)
Dyni Uni x = Pe x A (Fy)(Fu) (Inst yxu)

Dcont Cont © = Pe x A\ (3u)(L zu A SR u)
Doee Occ x = (Fu)(L xu A STR u)

Dy, L zu = (3y)(Inst xyu V Inst yxu)
Dg Ext=TSt A (3u)(L zu A O ut)
Dp, Pe x = (Fu)(Fv)(L xu A L xv A =SIMU uv)

Intuitively, L xu means: spatio-temporal entity x is exactly located at region u. L.e., x takes up the whole
region u but does not extend beyond u. On the intended interpretation:

V(L) = {<X, u, H> € D x Dsyr x K |

dy € Dg : (X,y,u,k) € InstST V (y, X, u, k) € InstST}
V(E) = {{(xt,(7,0)) €D xDgxK|IreR:t=0,(T) A

Ju € Dsr: (x,u, (v,0)) € V(L) Aunt # 0}
V(Pe) = {(X,{(v,0)) € DgxK|3:u,veEDsr:

(XU, k) € V(L) A (x,V, k) € V(L) A (X, U,V, k) & V(SIMU)} (10)

V(Part) = {(X,k) € V(Pe) |3y € Dg:3u € Dsr: (X,Y,U, k) € InstST}
V(Uni) = {(X,k) €V (Pe) |3y € Dg:3u € Dsr: (y,X,U,k) € InstST}
V(Cont) = {(X,k) € V(Pe)|3u € Dsr: (X,u,r) € V(L) A(u,k) € V(SR)}
V(Occ) = {(X,k) € V(Pe) |3u € Dsr: (X,u,k) € V(L) A (u,k) € V(STR) }

Finally, an axiom is included that ensures that every persistent entity has a worldline (A19). Region u
is the worldline of entity x if and only if u a spatio-temporal region that is the mereological sum of all
locations at which x is located (Dwioy);

Dwiof WLOf xu = STR u A w Sum {v | L zv} A19 Pe x — (Fu)(WLOf zu)
On the intended interpretation WLOf is:
V(WLOf) = {{X,u,{(v,0)) € Dg X Dsr x K | (u, (v,0)) € V(STR) A

U=LI{v € Dsr | (x,V, (1,0)) € V(L)} AuC ~} (1

On this interpretation all entities instantiate at or along the physically possible worldlines.

The mereological structure of the subdomain of continuants is characterized by the ternary parthood
relation P, which, holds between a time slice ¢ and two continuant particulars x and y that are instantiated
respectively at regions w1 and wuo such that u; is a part of ug and ug is part of the time slice ¢ (Dp,). By
contrast, the mereological structure of the subdomain of occurrents is characterized by the binary parthood
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relation P, defined as: z is part of y if and only if the location of z is part of the location of y and the
location of x is a spatio-temporal region (Dp,)).

Dp, P. xyt = Cont x N\ Conty NTSt N
(Fu1)(Fuz)(321)(322)(Inst xzyuy A Inst yzoug A P ujus A P uat)
Dp, P, xy = (Fu1)(Jug)(321)(322) (Inst xzyuy A Inst yzoug A P ujug A STR uy)

On the intended interpretation P, and P, mean:

V(PC) = {<X1,X2,t, I<L> € D X D X Dsr x K | <t, K> S V(TS) AN
Y,¥o € Dp:Fu,us € Dsr:ug Cuy T A
(X1,Y1,U1, k) € InstST A (Xa,Y5, Uz, k) € INStST}
V(Po) = {<X1,X2,/€>GDEXDEX]C|Hyl,YQEDE:E]UhUQEDST:
(X1,¥1,U1, k) € InStST A (Xa,Y5,U2, k) € INSIST A Uy C Uy,
(ui, k) € V(STR) A (ug, k) € V(STR)}

In Minkowski spacetime the parthood relation among continuants (P.) is logically linked to the underly-
ing slicing of spacetime. This is an immediate consequence of axiom (Ajs). Only continuants that exist
simultaneously at a time can be parts at that time.

(12)

The final primitive of the formal theory is the unary predicate Az, which, on the intended interpretation
in ICS-structures, holds of atomic entities (V(At.) = AtE C Dg x K) such that the following axioms hold
(in accordance with the conception of atoms in classical mechanics): There exist finitely many atomic
entities (A20). If x is an atomic entity then « is an atomic entity on all physical possibilities (A21); Atomic
entities are instantiated at all physical possibilities (A22); Atomic entities are instantiated at parts of time
slices (A23). For every atomic entity x there is some slicing such that x is always instantiated at proper
parts of time slices (A24)E] Every atomic entity is instantiated at some non-simultaneous regions on all
slicings of spacetime (A25). Distinct atomic entities do not instantiate at regions where one region is part
of the other (A26).

A22 At. © — O(3y) (Ju)Inst xyu

A23 Ate x A Inst zyu — (Ft) (TSt A P ut)

A24 At © — OF()(TS t — (3u)(3y)(Inst zyu A PP ut))

A25 At, x — 0% (Jy)(32) (3u) (Iv) (Inst zyu A Inst zzv A =SIMU uv)
A26 At 1 N Atezo A Inst xiyrur A Inst zoyous A P uijus — 11 = 29

A20 finite {x | At, x}
A21 At, x — CAt. ©

These axioms ensure that atoms cannot fail to be atoms and to instantiate on every physical possibility.
6.2. Computational realization of the axiomatic system

The first step of the computational realization is the extension of records of type (‘a, ’'b)
TS_porder_two_sort_RS_frame to include the enforced interpretations of the two new primitive pred-
icates Inst and At in the computational representation of XS-structures. This results in the declaration
of records of type (‘a, ’'b) AtE_Inst_TS_porder_two_sort_RS_frame With theslots inst :: "'pb =>
b => 'a => "a RS => bool"andate :: "'b => “a RS => bool" which, respectively serve as inter-
pretations of the axiomatic primitives Inst and Af.. This is displayed in lines 1 — 4 of Fig.

The axioms A12 — A19 of the semi-formal presentation are collected in the locale Inst_TS_mereology.
In particular the computational representation of axiom A1l is displayed in lines 6 — 8 of Fig. Sim-
ilarly, the axioms A20 — A26 are collected in the locale AtE_Tnst_TS_mereology. As an illustration the
computational representation of axiom A20 is displayed in the figure. In both locales the axioms are stated

3In non-finite spacetimes this can be demanded for all slicings.
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1 record ('a, ’'b) AtE_Inst_TS_porder_two_sort_RS_frame =

2 "("a, "b) TS_porder_two_sort_RS_frame" +

3 inst :: "'b => 'b => 'a => "a RS => bool" ("Insti")

4 ate :: "'b => "a RS => bool" ("AtEl")

5 locale Inst_TS_mereology = TS_mereology L for L (structure) +

6 assumes "[| (Insty x y u (RSC i 3j)); 1 Ry ii; J Sy Jj; x € e_carrier L; y € e_carrier L;
7 yy € e_carrier L; u € carrier L; uu € carrier L; i € r_carrier L; ii € r_carrier L;

8 j € s_carrier L; jj € s_carrier L|] ==> = (Insty yy x uu (RSC ii jj))"

9 locale AtE_Inst_TS_mereology = Inst_TS_mereology L for L (structure) +
10 assumes
11 "[|AtE, x (RSC i j); 1 Ry ii; J Sy Jjj; x € e_carrier L; i € r_carrier L;

12 j € s_carrier L; ii € r_carrier L; jj € s_carrier L|] ==> (AtEr x (RSC ii jj))"

13 type_synonym ('a, ’'b, ’'c) AtE_Inst_TS_mereology_predicate =

14 "("a, 'b, 'c) AtE_Inst_TS_porder_two_sort_RS_frame_scheme => "a RS => bool"

15 definition Inst_M :: "'b => 'b => "a => ('a, 'b, ’'c) AtE_Inst_TS_mereology_predicate"
16 where "Inst_ M x vy u L w = Inst;, x vy uw A X € e_carrier L Ay € e_carrier L A

17 u € carrier L A (r_RS w) € (r_carrier L) A (s_RS w) € s_carrier L"

18 lemma (in AtE_Inst_TS_mereology)

19 "|O(MWpx v yy. Vau uu. Inst_M x y u = (~(o(Inst_M yy x uu))))]" unfolding

20 Inst_M _def by (metis (no_types, lifting) Inst_box_assym_P r_ RS.simps s_RS.simps)
21 definition AtE_M :: "'b => ("a, ’'b, ’'c) AtE_Inst_TS_mereology_predicate" where

22 "AtE_M x L w = AtEr, x w A X € e_carrier L A (r_RS w € r_carrier L) A

23 (s_RS w € s_carrier L))"

24 lemma (in AtE_Inst_TS_mereology) "|O(Vy x. AtE_M x — O(AtE_M x))|"

25 unfolding AtE_M_def using AtE_imp_box_AtE by auto

Fig. 19. The locales Inst_TS_mereolog and AtE_Inst_TS_mereology and their presentation in the modal language.
(See Inst_TS_mereolog.thy,AtE_Inst_TS_mereology.thy,and S5_2D_lifted_theory.thy.)

at the semantic level using a second order language. The modal counterparts of these axioms that corre-
spond to the modal formulas in the semi-formal presentation are recovered as theorems as illustrated in
lines 13 — 25 of Fig.[I9] Again, this mirrors the methodology discussed in Sec. | and Sec. 3

6.3. Validity in the example model

The verification of the consistency of the axioms collected in the locales Inst_TS_mereology and
AtE_Inst_TS_mereology and the verificationof their satisfaction in the example model is achieved in two
steps: (1) extend the computational realization of the example model to include the new domain of entities
the structures that serve as the interpretations for the primitive instantiation and Atomicity predicates; (2)
verify that this model satisfies the axioms collected in the respective locales.

A computational realization of the example model which includes the new domain of entities
(thePossibleEntities) as well as the functions isTInst_M and isAtE_M that respectively serve as the
interpretations for the primitive predicates Inst and Atk is displayed in Fig.[20] This figure provides an il-
lustration of how in Isabelle/HOL many features of functional languages (like lists, maps, filters, etc.) can
be used for the construction of models. The computational representation of the example model as a KS-
structure is declared as the record AtE_Inst_ST_frame_Min lines 25 — 29 of Fig. @ Lines 30 — 33 display
the head of the theorem in which proof it is demonstrated that the example model represented as the record
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AtE_Inst_ST_frame_M satisfies all the axioms that are collected in the locale AtE_Inst_TS_mereology
and its parent locales. The proof as a whole is in the file ST_model_proof.thy.

7. Conclusion

The aim of this paper was to demonstrate that for the development, the presentation, and the computer-
assisted verification of formal ontologies the usage of higher-order languages and associated proof assis-
tant tools are highly beneficial. For this purpose the computational realization of a semi-formal ontology
that was developed elsewhere (Bittner, [2018]) was employed as a case study. As formal tool for the com-
putational realization the Isabelle/HOL/Isar framework was used. It was shown that the expressive power
of the higher order logic in conjunction with a well developed infrastructure for theory and proof develop-
ment facilitate (a) the formal verification of the satisfaction of the axioms of a formal ontology in a class
of structures that includes the intended interpretation of the ontology and (b) the formal verification that
all the theorems of the formal ontology are derivable from the axioms of the theory.

Consider Table 2] which gives an overview of the structure of the "code’ produced in the course of this
case study. The logic is hierarchical and has three corresponding tiers: (i) the tier of structures that can be
instantiated by specific models; (ii) the tier of axiomatization constraining classes of structures; and (iii)
the tier of typed formulas that facilitate the concise presentation of the ontology. The table also illustrates
that this methodology supports the separation and integration of the three levels of ontology development
— (D) axiomatization; (II) model instantiation; and (III) theory presentation.

The advantages of using a framework such as Isabelle/HOL/Isar for the development of formal on-
tologies mirror the advantages of using modern object-orientated programming languages and associ-
ated integrated environments for software development. Locales in Isabelle/HOL like object orienta-
tion provide means for encapsulation and modularization. Developing formal ontologies in the language
Isar is very similar to software development in an interpretative environment. There is a body of "code’
constituting the ontology. This body of ’code’ may be distributed over various documents which de-
pendencies are maintained by the system in the same way a compiler/interpreter maintains code de-
pendencies. Like a compiler/interpreter Isabelle/HOL/Isar enforces the syntactic well-formedness and
well-typedness of expressions. It keeps track of proof obligations. In summary, using a tool like Is-
abelle/HOL/Isar for ontology development feels very much feels like doing software development in
an object-oriented environment — only at a higher level of abstraction. The automatically generated
presentation of the fully formalized and computationally verified formal ontology can be found at:
http://www.buffalo.edu/~bittner3/Theories/OntologyCM/.

There is a downside to the use of tools such as Isabelle/HOL/Isar. The efficient use of those tools pre-
supposes ontologists that are highly trained and specialized in computer-assisted theorem proving (Foster
et al.,|2015)). That is, in the same sense in which professional software development requires highly trained
and specialized programmers, professional ontology development requires highly trained and specialized
engineers for computer assisted theorem proving — proof engineers.

To illustrate the need for proof engineers, consider the example model of Sec. Clearly, this models
is overly simplistic and merely intended to illustrate two points: Firstly, how to specify a structure that
can serve as an enforced model of a formal ontology and, secondly, how to use this structure in proofs
that demonstrate that the axioms of the formal theory are satisfied in those structures. In contrast to the
simplistic nature of the model, proofs that are collected in the file ST_model_proof.thy are rather
lengthy, unstructured and overly complicated. They clearly do not meet the standards of an efficient and
well-engineered proof. In the context of an academic paper, which aim it is to propose and to illustrate a
methodology, this is not a problem. In fact, it is a good example that illustrates the need for well-trained
proof engineers for crafting computer-verified proofs.

To illustrate this point a bit more, suppose the development and computational verification of an ontol-
ogy like the one discussed in this paper in a professional (i.e., non-academic) environment. In a profes-
sional setting the lowest bar for an acceptable model for such an ontology may be a computational realiza-
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1 datatype tId = Co | Oc | UC | UO
datatype eId = ZeroE | OneE | TwoE

3 datatype entityType = Entity tId eId "eId set"

4 abbreviation At_0 :: entityType where "At_0 = (Entity Co ZeroE {})"

5 abbreviation Compl 0 :: entityType where "Compl 0 = (Entity Co TwoE {ZeroE,OneE})"
6 abbreviation Oc_0 :: entityType where "Oc_0 = (Entity Oc ZeroE {})"

7 abbreviation UC_0 :: entityType where "UC_O = (Entity UC ZeroE {ZeroE,OneE,TwoE})"
8 abbreviation thePossibleEntities :: "entityType set" where

"thePossibleEntities = {At_0,At_1,Compl_0,0c_0,0c_1,0c_2,U00_0,UC_0}

10 datatype instRec = InstRec entityType entityType Reg "Reg set" "Reg set"

11 abbreviation instDB_M :: "instRec list" where

12 "instDB_M = [InstRec Compl_0 UC_0 tsO wlCompl_ 0 ts_set_M O,

13 InstRec Compl_O0 UC_O tsl wlCompl_ 0 ts_set_M_ O,

14 ey

15 InstRec At_0 UC_0O A_00 wlCompl_0O ts_set_M_O0,

16 ey

17 InstRec Compl_O0 UC_O ts3_M wlCompl_ 0 ts_set_M 11"

18 definition isInst_M :: "entityType => entityType => Reg => Reg RS => bool" where
19 "isInst_M el e2 u w = (InstRec el e2 u (r_RS w) (s_RS w)) € set instDB_M"

20 primrec el_i_j_eq :: "entityType => Reg set => Reg set => instRec => bool" where
21 "el i_j_eq ee 1ii jj (InstRec el e2 u i j) = ((ee = el) A (ii = 1) A (33 = J))"
22 definition isAtE_M :: "entityType => Reg RS => bool" where

23 "isAtE_M el w = (el € {At_0,At_1}) A

24 (filter (el_i_j_eq el (r_RS w) (s_RS w)) instDB_M) # []1"

25 abbreviation AtE_Inst_ ST frame_ M where

26 "AtE_Inst_ST_frame M = (| r_carrier = wl_Phys_Possible, aR = ar_WL,
27 s_carrier = ts_set_M, aS = ar_TS_M, carrier = m_set,

28 e_carrier = thePossibleEntities, le = op C, ts = isTS_M, 2

29 inst = isInst_M, ate = isAtE_M |[)"

30 theorem (in AtE_Inst_TS_mereology) m_set_is_AtE_Inst_TS_mereology:

31 "AtE_Inst_TS_mereology AtE_Inst_ST_ frame_M"
32 proof (rule AtE_Inst_TS_mereology.intro)
33 ged

Fig. 20. Illustration of the computational representation of entities and their instantiation according to the example model, the
instantiation of a KCS-structure, and the head of the proof in which it is demonstrated that all the axioms are satisfied in the
computational representation of the example model.
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level of
record type locale formula type modal theory
RS_frame S5_RS_frame RS_predicate propositional
two_sort_RS_frame two_sort_S5_RS_frame two_sort_RS_predicate predicate
porder
_two_sort_RS_frame S5_RS_2S_partial_order
complete_upper_semilattice
partial_lower_semilattice
partial_lattice
S5_RS_2S_GEM M_porder_predicate spacetime
mereology
TS_porder TS_mereology TS_mereology timeslice
_two_sort_RS_frame _predicate mereology
M_TS_mereology
Inst_TS_porder Inst_TS_mereology Inst_TS_mereology instantiation

_two_sort_RS_frame _predicate and location
AtE_Inst_TS_porder AtE_Inst_TS_mereology AtE_Inst_TS_mereology  atomic
_two_sort_RS_frame _predicate entities

Table 2
Declaration hierarchies and correspondences record types, locales, and formula types.

tion of the structures described in appendix with Def. [T]at its core. For the computational realization of
such a model the proof engineer would have to have extensive proficiency in the set theory implemented
as part of Isabelle/HOL and all the mathematical libraries that extend it (Paulson, [1995|1994). In addition
there are also independent archives of proof libraries (Arc, [2005) that complement the Isabelle/HOL core
system. Again, this illustrates the need for well-trained and highly specialized proof engineers.

Acknowledgements

The extensive and helpful comments of the reviewers, particularly Till Mossakowski, are gratefully
acknowledged. All remaining errors are solely the responsibility of the author.

References

(2005). Archive of formal proofs. http://isa-afp.org/l

Alexandroff, P. (1961). Elementary Concepts of Topology. Dover Publications, New York, NY.

Arfken, G. B., Weber, H. J., and Harris, F. E. (2005). Mathematical Methods for Physicists, Sixth Edition: A Comprehensive
Guide. Academic Press, 6 edition.

Arnold, V. 1. (1997). Mathematical Methods of Classical Mechanics. Springer.

Ballarin, C. (2004). Locales and Locale Expressions in Isabelle/Isar. In Berardi, S., Coppo, M., and Damiani, F., editors, Types
for Proofs and Programs: International Workshop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected
Papers, pages 34-50. Springer Berlin Heidelberg, Berlin, Heidelberg.

Ballarin, C. (2017). HOL/Algebra/Lattice.thy.

Bateman, J. A., Borgo, S., Liittich, K., Masolo, C., and Mossakowski, T. (2007). Ontological Modularity and Spatial Diversity.
Spatial Cognition and Computation, 7(1).

Belot, G. (2007). The Representation of Time in Classical Mechanics. In Butterfield, J. and Earman, J., editors, Philosophy of
Physics. Elsevier.

Benzmiiller, C. (2015). HOL provers for first-order modal logics — experiments. In Benzmiiller, C. and Otten, J., editors,
ARQNL 2014. Automated Reasoning in Quantified Non-Classical Logics, volume 33 of EPiC Series in Computing, pages
37-41. EasyChair.

Benzmiiller, C. and Woltzenlogel Paleo, B. (2015). Higher-order modal logics: Automation and applications. In Paschke, A. and
Faber, W., editors, Reasoning Web 2015, number 9203 in LNCS, pages 32-74, Berlin, Germany. Springer. (Invited paper).

Bittner, T. (2018). Formal ontology of space, time, and physical entities in classical mechanics. Applied Ontology, 13(2):135-
179.


http://isa-afp.org/

32 T. Bittner / On the computational realization of Formal Ontologies

Bittner, T. and Donnelly, M. (2006). A classification of spatio-temporal entities based on their location in space-time. In
Meersman, R., Tari, Z., and Herrero, P., editors, OTM 2006 Workshop Proceedings: International Workshop on Semantic-
based Geographical Information Systems, volume 4278 of Lecture Notes in Computer Science, pages 1626—1635. Springer-
Verlag Berlin Heidelberg.

Bittner, T. and Donnelly, M. (2007). Logical properties of foundational relations in bio-ontologies. Artificial Intelligence in
Medicine, 39:197-216.

Blanchette, J. C. (2017). Picking Nits A User’s Guide to Nitpick for Isabelle/HOL Picking Nits, A User’s Guide to Nitpick for
Isabelle/HOL. Technical report, Institut fiir Informatik, Technische Universitdt Miinchen.

Butterfield, J. (2007). On Symplectic Reduction in Classical Mechanics. In Butterfield, J. and Earman, J., editors, Philosophy of
Physics. Elsevier.

Champollion, L. and Krifka, M. (2015). Mereology. In Dekker, P. and Aloni, M., editors, Cambridge Handbook of Formal
Semantics. Cambridge University Press.

Church, A. (1940). A formulation of the simple theory of types. The Journal of Symbolic Logic, 5(2):56—68.

Church, A. (1941). The Calculi of Lambda-Conversation. Princeton University Press, Princeton, NY.

Copi, L. (1979). Symbolic Logic. Prentice Hall, Upper Saddle River, NJ 07458.

Einstein, A. (1951). Relativity: The Special and the General Theory. New York: Crown Publishers Inc.

Foster, S., Zeyda, F., and Woodcock, J. (2015). Isabelle/UTP: A Mechanised Theory Engineering Framework. In Naumann, D.,
editor, Unifying Theories of Programming, pages 21-41, Cham. Springer International Publishing.

Gabbay, D. M. (2003). Many-Dimensional Modal Logics: Theory and Applications. Elsevier North Holland.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and Schneider, L. (2003). Sweetening Ontologies with DOLCE. Al
Magazine, 23(3):13-24.

Haarslev, V. and Moller, R. (2003). Racer: A Core Inference Engine for the Semantic Web. In Proceedings of the 2nd In-
ternational Workshop on Evaluation of Ontology-based Tools (EON2003), located at the 2nd International Semantic Web
Conference ISWC 2003, Sanibel Island, Florida, USA, October 20, pages 27-36.

Horrocks, 1. (1998). The FaCT system. In de Swart, H., editor, Automated Reasoning with Analytic Tableaux and Related
Methods: International Conference Tableaux’98, volume 1397 of Lecture Notes in Artificial Intelligenc, pages 307-312.
Springer-Verlag.

Hughes, G. and Cresswell, M. (2004). A new Introduction to Modal Logic. Routledge, London and New York.

Jones, M. P. (1993). A system of constructor classes: overloading and implicit higher-order polymorphism. In FPCA ’93:
Conference on Functional Programming and Computer Architecture, Copenhagen, Denmark, pages 52-61, New York, N.Y.
ACM Press.

Jones, S. P. and Jones, M. (1997). Type classes: an exploration of the design space. Technical report.

Kammiiller, F., Wenzel, M., and Paulson, L. C. (1999). Locales A Sectioning Concept for Isabelle. In Bertot, Y., Dowek, G.,
Théry, L., Hirschowitz, A., and Paulin, C., editors, Theorem Proving in Higher Order Logics: 12th International Confer-
ence, TPHOLs’ 99 Nice, France, September 14—17, 1999 Proceedings, pages 149-165. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Knublauch, H., Fergerson, R. W., Noy, N. F,, and Musen, M. A. (2004). The Protégé OWL Plugin: An Open Development
Environment for Semantic Web Applications. In Mcllraith, S. A., Plexousakis, D., and Harmelen, F. v., editors, Proc. Third
International Semantic Web Conference. Springer Verlag, Berlin.

Krifka, M. (1998). The origins of telicity. In Rothstein, S., editor, Events and Grammar, pages 197-235. Springer Netherlands,
Dordrecht.

Lemon, O. and Pratt, 1. (1997). Spatial Logic and the Complexity of Diagrammatic Reasoning. Machine Graphics and Vision.

Loui, M. C. (1996). Computational Complexity Theory. ACM Computing Surveys, 28(1).

Lowe, E. J. (2002). A survey of Metaphysics. Oxford University Press.

Milner, R., Tofte, M., and Harper, R. (1990). The Definition of Standard ML. MIT Press.

Minkowsk, H. (1908). Die Grundgleichungen fiir die elektromagnetischen Vorginge in bewegten Koérpern. Nachrichten von der
Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse., pages 53—111.

Mossakowski, T., Maeder, C., and Liittich, K. (2007). The Heterogeneous Tool Set. In Grumberg, O. and Huth, M., editors,
TACAS 2007, volume 4424 of Lecture Notes in Computer Science, pages 519-522. Springer Verlag.

Nipkow, T. (2003). Structured Proofs in Isar/HOL. In Geuvers, H. and Wiedijk, F., editors, Types for Proofs and Programs
(TYPES 2002), volume 2646, pages 259-278.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer.

Norton, J. D. (2012). Einstein’s Special Theory of Relativity and the Problems in the Electrodynamics of Moving Bodies that
Led him to it. In Janssen, M. and Lehner, C., editors, Cambridge Companion to Einstein. Cambridge University Press.

Paulson, L. (1995). Isabelle’s Object-Logics. Technical report, Computer Laboratory, University of Cambridge.

Paulson, L. and Nipkow, T. (2017). Isabelle - a generic proof assistant, Retrieved January 19, 2018 from: http://isabelle.
in.tum.de/l

Paulson, L. C. (1994). Isabelle: A Generic Theorem Prover. Springer Verlag.

Renz, J. and Nebel, B. (1999). On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the
Region Connection Calculus. Artificial Intelligence, 108(1-2):69-123.

Simons, P. (1987). Parts, A Study in Ontology. Clarendon Press, Oxford.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Journal of Web
Semantics, 5(2).

Smith, B. (2003). Ontology: An Introduction. In Floridi, L., editor, Blackwell Guide to the Philosophy of Computing and
Information Blackwell Guide to the Philosophy of Computing and Information, pages 155-166. Oxford: Blackwell.


http://isabelle.in.tum.de/
http://isabelle.in.tum.de/

T. Bittner / On the computational realization of Formal Ontologies 33

Smith, B. (2016). Basic Formal Ontology (BFO 2.0): Specification and users guide.

Smith, B. and Varzi, A. (2000). Fiat and Bona Fide Boundaries. Philosophy and Phenomenological Research, 60(2):401-420.

Tarski, A. and Givant, S. (1999). Tarski’s system of geometry. Bulletin of Symbolic Logic, 5(2):175-214.

Thompson, S. (1999). Haskell: The Craft of Functional Programming. Addison-Wesley, 2 edition.

Varzi, A. (2003). Mereology. In Zalta, E. N., editor, Stanford Encyclopedia of Philosophy. Stanford: CSLI (internet publication).

W3C OWL Working Group (2012). OWL 2 Web Ontology Language. Technical report, http://www.w3.org/TR/owl2-overview/.

Wenzel, M. (2005). Using Axiomatic Type Classes in Isabelle. Technical report, Technical University Munich.

Wenzel, M. (2017). The Isabelle/Isar Reference Manual. Technical report, Cambridge University and Technical University
Munich.

Wikimedia Commons (2013). File:slope field.png — wikimedia commons, the free media repository. [Online; accessed 21-
January-2018].

Wikimedia Commons (2015a). File:image tangent-plane.svg — wikimedia commons, the free media repository. [Online; ac-
cessed 21-January-2018].

Wikimedia Commons (2015b). Two coordinate charts on a manifold. Licensed under Creative Commons Attribution-Share
Alike 3.0 via Wikimedia Commons.

Appendix
A. Differential geometry

Bittner| (2018) uses the language of the differential geometry of manifolds to explicate some of the
ontological commitments underlying classical physical theories. The presentation of this subject here must
remain brief and rather selective. For details see, for example, overviews by |Arnold| (1997); Butterfield
(2007).

A.l. Manifolds

A differentiable manifold is a topological manifold with a globally defined differential structure. A
topological manifold is a topological space that is locally homeomorphic to a linear (i.e. vector) space.
Formally, this local structure is given by local homeomorphisms — the charts ¢;, mapping open subsets
U; of M to subsets of R™ which are n-dimensional vector spaces (Fig. 21| (left)). The (global) differential
structure of a manifold is built up by combining the local linear structures, local charts, to a system of
atlases that cover the whole manifold such that one can reach any chart from any other chart by means of a
smooth transformation. A smooth transformation or diffeomorphism is an invertible map that takes smooth
curves to smooth curves, where a smooth curve is a curve that has derivatives of all orders everywhere.
Where distinct charts overlap they must be compatible. (Fig. 21| (left)).

At every point x of a differentiable manifold M, there is a linear space T, M ’attached’ to M at z
(Fig.[21|(middle)), i.e., T;; M is the tangent space of M at x. For all x € M, T, M has the same dimension
as the manifold M at x. In planar (non-curved) manifolds like the Euclidean space M = R", the vectors
in the tangent space 1, M at every point x € M span the whole manifold M. That is, every point y € M
can be represented using a vector £ € T, M such that £ begins at x and ends at y. By contrast, in curved
manifolds like the surface of a sphere S C R3 only points in the immediate neighborhood U, of z € S
can be represented by vectors in the tangent space 77, S (Fig.[21](middle)). The disjoint union of all tangent
spaces 1, M of M gives rise to the tangent bundle TM of M, i.e., TM = J 5, ({x} x T M). A point
in the tangent bundle 7'M is a pair (z, &) with £ € T, M.

Between manifolds the sub-manifold relation C holds. Roughly, M; T M, if and only if M is a subset
of My, M, and M5 are manifolds, and the tangent spaces of M; are subspaces of the tangent spaces of
Ms. Join (| | S) and meet ([ |.S) operations of a non-empty set S of manifolds are such that the result is
a manifold which is, respectively, the least upper or the greatest lower bound of the members of S. The
mathematics of this is rather elaborate, since the whole manifold structure — including the tangent spaces
—needs to be taken into account (Butterfield, 2007).
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Fig. 21. Charts on a manifold (left) (Wikimedia Commons, [2015b)); Tangent space 7,S at € S on the manifold S
(middle) (Wikimedia Commons)} [2015a). Three integral curves for the slope field corresponding to the differential equation
dy/dx = x* — x — 1. (right) (Wikimedia Commons, [2013))

A.2. Smooth curves

A curve vy on a manifold M is a mapping v : R — M from the real numbers to points of M. In what
follows the letter “y’ will be used to refer to parametric curves, i.e., functions of type v : 8 — M as well
as to the curves {v(7) € M | 7 € R} themselves. The context will disambiguate. If the curve ~ is smooth
then at every point x = ~(7) there is a unique vector ¢ in the tangent space 7, M such that £ is tangent
to ~y at the point z (i.e., { = %7(7) |2). If 7y is a smooth curve on manifold M then v T M. Intuitively,
the tangent space 1, M contains all possible "directions" along which a curve on M can tangentially pass
through . That is, tangent spaces arise naturally as structures formed by equivalence classes of curves on
the underlying manifold.

B. Spacetime structure
B.1. Kinematics and the spacetime structure

The topological structure of spacetime in classical mechanics is identified with the structure of an n-
dimensional Hausdorff (Alexandroff,[1961) manifold”| with the topology ST = (R x M) for some (n—1)-
dimensional manifold M (Arnold, (1997 [Butterfield, |2007). The topology of time is identified with the
topology of the real numbers and the topology of space is identified with the topology of some Hausdorff
manifold M. In classical mechanics the dimension of M is usually 3. The geometric structure of the
spacetime manifold ST is induced by a symmetric bilinear functional g, : T, M x T, M — R on ST
(Arnold, [1997) — the metric field. Classical mechanics includes the following postulate (illustrated in the
left of Fig.[I)):

Postulate 1 ((Belot, 2007; Bittner, [2018)). The geometry g of the spacetime manifold (ST, g) singles out:
(a) a distinguished class o (T ) (see below) of hyper-surfaces that correspond to instants of time (or time-
slices) and (b) a distinguished class I of curves that correspond to (geometrically) possible worldlines of
particles.

Let ST be an n + 1 dimensional manifold with topology (R x M) where M is a manifold of dimension
n (usually 3). In addition, let 7 be an n-(usually 3) dimensional manifold (7, g7) carrying a Riemanian
geometry (i.e., g7 is required to be symmetric, definite positive, and may vary smoothly) (Arnold, [1997):

Definition 1 (7 -slicing (Belot, 2007; Bittner, 2018))). A T -slicing of (ST, g) is a smooth map (diffeomor-
phism) o : R x T — (R x M) with the following properties (Illustration in the left of Fig. .'

*Roughly, in a Haunsdorff manifold there are for any distinct points x,y € M disjoint (open) neighborhoods U, Uu,c M
such thatx € U,y € Uy,and U, N U, =
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(i) Every slice (t,o({t} x T)) = {(t,01(z)) | € T} of the T-slicing o att € R is a hypersurface
(an instant, a timeslice) according to the geometry g of (ST, g). In what follows it will be convenient
to use the notation oy(T) to refer to the timeslice {(t,o(x)) | x € T} in terms of the slicing o;

(ii) The T -slicing respects the worldline structure of spacetime in the sense that the set v* =45 o (R x
{z}) = {(t,01(x)) | t € R}, forany x € T, is a possible worldline of a particle through (t,0¢(x)) €
ST according to the geometry g of (ST, g), i.e., v* € I.

(iii) The T-slicing o is such that for every t € R the mapping oy : T — o4(T) is an isomorphism
between T and o(T).

Def. [T] gives rise to the following naming conventions:

Definition 2. The manifold T is called the abstract instant of the T -slicing o and each o(T) is called a
concrete time instant of the slicing o. The parameter t € R of o, is called coordinate time associated with
0. Y is the set of all T -slicing of a given underlying spacetime.

Def. [I]is used to further constrain what is geometrically possible:
Postulate 2. For every kinematically possible spacetime (ST, g) there exists a T -slicing, i.e., ¥ # (.

In physical theories Postulates [I] and [2] are complemented additional kinematic and dynamic constraints
that restrict what is physically possible.

B.2. Newtonian spacetime and Global Minkowski spacetime

Postulates[T]and [2] allow for a wide range of possible spacetime geometries including Newtonian space-
time and the global Minkowski spacetime of Special Relativity (Einstein, [1951; Minkowskl [1908)): New-
tonian spacetime has the geometric structure of an Euclidean manifold, i.e., the geometry of ST is iso-
morphic to the geometry of R*: (R*, 1) =2 (ST, g). The metric ¢ is a functional that is symmetric, definite
positive, and the same at all points of spacetime. In such a geometry there is a unique slicing o of space-
time into timeslices, i.e., ¥ = {o}. All timeslices are equipped with an Euclidean geometry that is iso-
morphic to the geometry of 3. Newtonian spacetime does not place restrictions on the rate of change of
location (velocity) of physically possible entities. This puts Newtonian spacetime in conflict with Classical
Electrodynamics where there is a maximum for the speed of light. (Norton, 2012)

According to the theory of Special Relativity (Einstein,|1951; Minkowsk, 1908), spacetime (ST, g) has
the structure of a manifold with topology (% x R?) and a constant pseudo-Riemanian geometry induced by
the metric 7. That is, (ST, g) = ((R x R3), 7). In a constant pseudo-Riemanian geometry the time-slices
have an Euclidean geometry, i.e., the geometry of space is isomorphic to 3. By contrast, spatio-temporal
distances may be positive, zero, or negative. At every point x € ST the metric n(z) partitions spacetime
in regions of positive, negative and zero distance with respect to « — the so-called light cone at . More
precisely, the metric field n of (ST, 7) is symmetric and indefinite but the same at all points of spacetime.
A spacetime curve v is time-like if and only if the square of the length all of the tangent vectors of v is
positiveﬂ The set of all time-like worldlines of a Minkowskian spacetime is:

Py=g{vel|VeeM:Vi''eR:z=~(7") =
V§ S TxM . § = %’Y(T)‘T:T/ — nx(é"g) > 0}

The restriction to time-like curves in Minkowski spacetime thereby geometrically encodes the postulate
of Special relativity that there is maximal velocity for particles — the speed of light.

(13)

Postulate 3. The kinematically possible worldlines of particles in Minkowski spacetime are the time-like
curves of I'py.

Definition 3 (Proper time). The length of a time-like curve v € T according to the metric 1 is called
proper time.

30f course, the sign is pure convention which depends on the specifics of the definition of the Minkowski metric 1 (Minkowskl
1908).
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The topology ST = (R x R?) in conjunction with the metric 7 does not fix a unique 7 -slicing o of
spacetime. That is, there are many distinct 7 -slicings of ST in 3. Proper time (Def. 3] is considered more
fundamental than coordinate time (Def. [2)) since it is directly linked to the underlying spacetime geometry
and does not depend on a particular slicing of spacetime. This is illustrated in the left of Fig.[I]

C. Dynamics and physical possibilities

A scalar field H : M — %} on a manifold M is a smooth mapping from M to the domain of scalars
(real numbers R for measurable qualities). A vector field X : M — T'M on a manifold M is a smooth
mapping from M into the tangent bundle T'M so that every point x € M maps to exactly one vector
& € T, M of the tangent space T, M (Fig. 21| (right)). There is a close relationship between the smooth
curves of a manifold and the vector fields on that manifold. The smooth parametric curve vx , : ® — M
is the integral curve of the vector field X € X' (M) through the point x € M if and only if for all 7 € R:

d
- Xa(T) = X(7x,2(7)) and 7x,4(0) = 2. (14)

That is, at all points y = yx ,,(7) the tangent to the curve yx ,(7) at y is the vector X (y) € T,,M. This is
illustrated in the right of Fig.

In standard presentations of classical mechanics integral curves appear as the specific solutions of the
differential equations that constitute the laws of physics — the equations of motion of the underlying
physical system. That is, to specify the dynamics of a physical system is to identify worldlines along which
physically possible processes can occur and along which physically possible particles can evolve. The
essence of the Lagrangian framework of classical mechanics is to identify the dynamically, i.e., physically,
possible worldlines within the larger class of kinematically possible worldlines using a scalar field that is
called The Lagrangian (L) which takes the tangent vectors of a manifold to the real numbers, i.e., roughly,
L : TST — R. In the presentation above the Lagrangian field is assumed to be determined empirically.
How to compute the vector fields which integral curves determine the physically possible worldlines is
described in any textbook on classical mechanics (Arnold, (1997} Butterfield, 2007).



