

Department of Mathematics

Office of Undergraduate Studies 233 Mathematics Building E-mail: math-undergrad@buffalo.edu Ph: (716) 645-8785

SAMPLE SYLLABUS

This document is published as an indication of what is typically taught in this course. Instructors have the responsibility of deciding on topics to be omitted, additional topics to be included and the emphasis, ordering and pacing of presentation.

Course Number: MTH 306

Course Title: Introduction to Differential Equations

Credit Hours: 4

Textbook: J. Lebl, et. al. Notes on Differential Equations, UB edition 1. This is an Open Source

textbook. The UB edition contains Lebl's original text and some additions made by Hassard, Javor, Ringland, and Viraj. Students can get a PDF for free from the department or the web. They can

order a print copy from Amazon. Be sure to get the UB edition.

Prerequisites: MTH 141-142

Notes: MTH 241 is not a prerequisite for this course: it cannot be assumed that all students have

knowledge of multivariable calculus. This course is approved for satisfying the "Computer Applications" requirement in the Math Major. It is therefore expected that students receive

substantial exposure to computing.

This schedule is written for 13 weeks of instruction. A typical semester has 14 teaching weeks. Thus, some flexibility is built in.

Week	Sections	Topics				
I	0.1- 0.3, 1.1, 1.2	Introduction to ODEs, Classification of ODEs, Integrals as solutions, Slope fields				
2	1.3 – 1.6	Separable equations, Linear equations and the integrating factor, Substitution, Autonomous equations				
3	1.7, 1.8, 2.1	Numerical methods: Euler's method, Exact equations, Second order linear ODEs				
4	2.2 – 2.4	MIDTERM EXAM I Constant coefficient second order linear ODEs, Higher order linear ODEs, Mechanical vibrations				
5	2.5, 2.6, 3.1	Nonhomogeneous equations, Forced oscillations and resonance, Introduction to systems of ODEs				
6	3.2 – 3.4	Matrices and linear systems, Linear systems of ODEs, Eigenvalue method				
7	3.5, 3.6	Two dimensional systems and their vector fields, Second order systems and applications				
8	3.7, 3.8	Multiple eigenvalues, Matrix exponentials				
9	3.9, 8.1	MIDTERM EXAM II Nonhomogeneous systems, Linearization, critical points, and equilibria				
10	8.2 – 8.4	Stability and classification of isolated critical points, Applications of nonlinear systems, Limit cycles				
11	8.5, 7.1, 7.2	Chaos, Power series, Series solutions of linear second order ODEs				
12	7.3, 6.1, 6.2	Singular points and the method of Frobenius, The Laplace transform, Transforms of derivatives and ODEs				
13	6.3, 6.4	Convolution, Dirac delta and impulse response				

Student Learning Outcomes for MTH 306 Introduction to Differential Equations

Assessment measures: weekly homework assignments, 2 midterm exams, final exam.

At the end of this course a student will be able to:	Assessment
 understand the concept of existence and uniqueness of solutions of a DE understand the concept of a general solution, a particular solution and initial conditions draw slope fields by hand and also by computer 	HWI, Midterm I Final Exam
solve I st order DEs (both nonlinear and linear) using various techniques: integrating factor, separable DE, substitution method, exact DE	HW2, Midterm I Final Exam
 understand the equilibrium solutions draw the phase diagram perform the stability analysis: identify stable points, unstable points, saddle points, and bifurcation points 	HW3, Midterm I Final Exam
 solve 2nd order constant coefficient homogenous DEs understand the concept of linear independence and determine if functions are linearly independent using Wronskian. understand that linear combinations of two linearly independent solutions give the general solution 	HW4, Midterm I Final Exam
 solve non-homogeneous 2nd order DEs use the method of undetermined coefficients to find the particular solution 	HW5, Midterm II Final Exam
 understand the "resonance" and "beat" phenomena understand what the system of equations is solve DEs using the method of elimination (convert two DEs into one and vice versa). 	HW6, Midterm II Final Exam
understand the basic notions of linear algebra such as vector, matrix, determinant, and eigenvalue	HW7, Midterm II Final Exam
 rewrite the system of DEs in the matrix form compute eigenvectors and eigenvalues for the derived matrix solve the system of equation using the eigenvalues in three different cases: real distinct roots, repeated roots, and complex roots 	HW8, Midterm II Final Exam
 sketch the direction fields and indicate stability on the phase plane perform the stability analysis of a linear system using eigenvalues draw slope fields and solution curves using a computer. 	HW9, Final Exam
 predict behavior of solutions of some nonlinear system using analysis of eigenvalues set up a power series and the Taylor series of a function compute the radius of convergence of a power series 	HW10, Final Exam

The table below indicates to what extent this course reflects each of the learning objectives of the undergraduate mathematics program. A description of learning objectives is available online at http://www.math.buffalo.edu/undergraduate/undergrad_programs.shtml.

Computational Skills:	Analytical Skills:	Practical Problem Solving:	Research Skills:	Communication Skills:
extensively	little or not at all	extensively	little or not at all	moderately