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Synaptic Actin Dysregulation, a Convergent Mechanism of

Mental Disorders?
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Actin polymerization governs activity-dependent modulation of excitatory synapses, including their morphology and functionality. It is
clear from human genetics that neuropsychiatric and neurodevelopmental disturbances are multigenetic in nature, highlighting the need
to better understand the critical neural pathways associated with these disorders and how they are altered by genetic risk alleles. One such
signaling pathway that is heavily implicated by candidate genes for psychiatric and neurodevelopmental disorders are regulators of
signaling to the actin cytoskeleton, suggesting that its disruption and the ensuring abnormalities of spine structures and postsynaptic
complexes is acommonly affected pathway in brain disorders. This review will discuss recent experimental findings that strongly support
genetic evidence linking the synaptic cytoskeleton to mental disorders, such as schizophrenia and autism spectrum disorders.
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Introduction

Dendritic spines are the postsynaptic sites of most excitatory syn-
aptic contacts. They are less than a femtoliter in volume, and yet
they are necessary for information coding and memory storage.
The underlying cytoskeleton of the spine is almost exclusively
composed of a highly branched meshwork of actin filaments
(Korobova and Svitkina, 2010), with ~85% of the filaments con-
stantly remodeling with an average turnover time of 44 s in the
spine head (Star etal., 2002). Multiple lines of evidence, including
imaging, biochemical, and genetic studies, demonstrate that the
modulation of this underlying actin cytoskeleton is a critical
driver of most of the essential functions of the spine, including
their development (Sala and Segal, 2014) trans-synaptic adhesion
(Spence and Soderling, 2015), receptor anchoring and trafficking
(Allison et al., 1998; Glebov et al., 2015; Loebrich et al., 2016), and
structural plasticity during LTP and LTD (Dillon and Goda,
2005).

Consistent with the central role of actin remodeling in gov-
erning most spine functions, dysfunction of the signaling path-
ways that reorganize synaptic actin is associated with a diverse
range of developmental brain disorders, including autism spec-
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trum disorders (ASDs), schizophrenia, and intellectual disability.
Indeed, human risk alleles for these disorders in genes, such as
SHANK3, GIT1, DISCI, SRGAP3, OPHNI, LIMKI, NRGI,
CYFIP1, SYNGAPI, KALRN, NCKAPI, and CNKSR2, regulate
the upstream signaling events that induce actin cytoskeletal dy-
namics in dendritic spines (Meng et al., 2002; Govek et al., 2004;
Gu et al., 2005; Hayashi-Takagi et al., 2010; Carlson et al., 2011;
Won et al,, 2011; Durand et al., 2012; De Rubeis et al., 2013; Han
et al., 2013; Sanders et al., 2015). Moreover, features of neurons
regulated by actin, such as spine density and morphology, are
often abnormal in subjects with developmental brain disorders
(Williams et al., 1980; Hutsler and Zhang, 2010). In this review,
we cover recent studies in model organisms, such as mouse, as
well as in postmortem human brain samples, that investigated
how perturbations in actin intersect with synaptic, circuit, and
behavioral phenotypes relevant to these disorders.

Synaptic cytoskeletal disturbances that drive abnormal wiring
and behavior

The architecture of the actin cytoskeleton within the postsynaptic
spine is predominately branched actin filaments that are formed by
the Actin-related protein-2/3 (Arp2/3) complex (Korobova and
Svitkina, 2010). The Arp2/3 activator, WAVE], is present within
spines, and Arp2/3 is specifically enriched within a submembrane
region (20-100 nm from the membrane) surrounding the spine
head (Soderling et al., 2007; Racz and Weinberg, 2008). Several lines
of evidence support a possible role for dysregulation of signaling
upstream of Arp2/3 in developmental brain disorders. For instance,
one function of DISCI, a susceptibility gene for schizophrenia, is to
regulate Rac signaling to spine actin via the guanine nucleotide ex-
change factor Kalirin-7 (Hayashi-Takagi et al., 2010). Additionally,
postmortem analysis reveals decreased expression of proteins that
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regulate synaptic actin signaling, including the Rho-family GTPases
(Hill et al., 2006; Hayashi-Takagi et al., 2010). Another schizophre-
nia-linked gene, DTNBPI, encodes the protein disbindin-1, which
assembles a protein complex with Abil and WAVE family members
that may be important for maintaining normal spine morphology
(Tto et al., 2010). Copy number variants associated with schizophre-
nia also impact key cytoskeletal signaling molecules, including
CYFIP1 and WRP/srGAP3, which regulate Rac-to-WAVE signal
transduction (Soderling et al., 2002; Stefansson et al., 2008; Adding-
ton and Rapoport, 2009; Zhao et al., 2013). More recently, the gene
encoding the WAVEI regulatory protein, NckAp1, has been identi-
fied as a strong risk allele for autism (Sanders et al., 2015). Recent
work by the Lewis laboratory (see below) has also shown that the
expression of subunits of the Arp2/3 Complex is significantly down-
regulated in the prefrontal cortex (PFC) from individuals with
schizophrenia (Datta et al., 2016).

The hypothesis that disrupted regulation of Arp2/3 activity can
underlie the synaptic and behavioral phenotypes associated with
these developmental brain disorders has recently been tested (IH
Kim et al., 2013). Loss of Arp2/3 activity in cortical pyramidal neu-
rons resulted in an immediate impairment of LTP-induced spine
structural plasticity and induced a progressive loss of spines in vivo.
The time course of these synaptic deficits overlapped with the devel-
opment of multiple positive, negative, and cognitive-type behavioral
symptoms that were consistent with a schizophrenia-like model. Ina
follow-up study (IH Kim et al., 2015), it was found the positive-like
symptoms responded to antipsychotics (haloperidol) and were
demonstrated to be due to the loss of Arp2/3 activity in the PFC.
Interestingly, pyramidal neurons of the PFC that had lost ArpC3
became more excitable as spines were lost, and they projected to the
dopamine-producing neurons of the ventral tegmental area/sub-
stantia nigra pars compacta. The resulting circuit abnormality re-
sulted in elevated striatal dopamine levels, which may explain the
efficacy of haloperidol in this model.

Although these studies have examined the role of Arp2/3 in
maintaining dendritic spines of mature neurons, it is also likely to
be important during the early development of excitatory syn-
apses. This developmental wiring of neuronal networks involves
the initiation of spine formation (dendritic filopodial emer-
gence) and spine maturation (spine head enlargement and sub-
sequent AMPA-type glutamate receptor recruitment or synapse
“unsilencing”). The role of dendritic filopodia in spinogenesis is
supported by several lines of evidence. Specifically, filopodia ini-
tiate contacts with synaptic partners (Jontes and Smith, 2000;
Yuste and Bonhoeffer, 2004) to create a synapse (Fiala et al., 1998;
Harris, 1999) and that dendritic filopodia select appropriate ax-
ons with which to form connections (Lohmann and Bonhoeffer,
2008).

Most filopodial structures are composed of bundled linear
parallel actin filaments (Svitkina et al., 2003); however, recent
electron microscopy imaging suggests that dendritic filopodia are
composed of branched filaments of mixed polarity, implying that
the actin structure of dendritic filopodia is unique and requires
Arp2/3 activity to form (Korobova and Svitkina, 2010). In con-
trast to this, mDia2, an actin nucleator that promotes linear actin
filaments, facilitates dendritic filopodial formation, suggesting
that linear actin filaments promote nascent filopodial emergence
(Hotulainen et al., 2009). Recently, the roles of Arp2/3 activity in
this initial stage of excitatory synapse formation were tested
(Spenceetal., 2016). It was found that loss of either Rac or Arp2/3
activity promoted dendritic filopodial emergence, rather than
impairing their formation. This is in line with prior data showing
that dendritic filopodia exhibit unique actin regulatory proteins,
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such as StGAP3/WRP, which turns off Rac activity and facilitates
filopodial emergence (Soderling et al., 2002; Carlson et al., 2011).
Perhaps more interestingly, dendritic protrusions that form in
the absence of Arp2/3 fail to recruit AMPA-type glutamate recep-
tors and do not undergo the developmental process of synapse
unsilencing (Spence et al., 2016).

Abnormalities in synapse development and AMPAR-dep-
endent unsilencing are likely to be relevant to neurodevelop-
mental disorders. For example, in mouse models of Fragile-X
syndrome, there is a delay in the unsilencing of synapses in the
barrel cortex (Harlow et al., 2010). In contrast, other models of
ASD, such as Syngapl mutant mice, appear to unsilence their
synapses prematurely in the hippocampus (Rumbaugh et al.,
2006; Clement et al., 2013). Evidence suggests that both mouse
models exhibit altered regulation of the synaptic cytoskeleton
(see also below) (Carlisle et al., 2008; Chen et al., 2010; Dolan et
al., 2013). Thus, dysfunctional regulation of Arp2/3-dependent
actin remodeling may impact not only the density of synapse
formation, but also severely impact the functional connectivity of
these synapses.

Targeting actin regulators for mental disorders

Upstream of Arp2/3 is the Rho GTPase family, the best studied of
which are Racl, RhoA, and Cdc42. Racl stimulates spine forma-
tion, dendrite initiation, elongation, and branching complexity
(Threadgill et al., 1997). The major downstream effectors of Racl
are p2l-activated kinase (PAK) and LIM-domain containing
protein kinase (LIMK), which facilitate actin filament assembly
through the phosphorylation and inactivation of cofilin (Sells et
al., 1997; Arber etal., 1998), a major actin-severing protein (Bam-
burg, 1999; dos Remedios et al., 2003). Abnormalities in Rho
GTPase signaling have been identified as a prominent cause of
intellectual disability (Allen et al., 1998; Ramakers, 2002). Regu-
lation of the RhoA pathway in the inner cortical plate is crucial for
controlling brain size and connectivity, and its dysregulation by
de novo mutations is considered to confer a high risk for autism
and schizophrenia (Lin et al., 2015). Emerging evidence suggests
that aberrant Racl/PAK signaling could lead to abnormal ne-
uronal connectivity and synaptic function, as well as deficient
cognitive and emotional functioning. Forebrain-specific domi-
nant-negative PAK transgenic mice display fewer dendritic
spines in cortical neurons, impaired synaptic plasticity, and spe-
cific deficits in the consolidation of long-term memory (Hayashi
etal,, 2004). Rac/PAK signaling is also defective in Fragile-X syn-
drome, the most common form of inherited intellectual disability
(Chen et al., 2010). Administration of a PAK inhibitor rescues
Fragile-X syndrome phenotypes, such as seizures, hyperactivity,
and repetitive movements (Dolan etal., 2013). In the NAc of mice
after chronic social defeat stress and human subjects with depres-
sion, Racl transcription is found to be reduced, which is associ-
ated with a repressive chromatin state surrounding Racl
promoter (Golden et al., 2013).

ASDs are characterized by social deficits and repetitive behav-
iors, and are accompanied by several comorbidities, including
intellectual disability, anxiety, hyperactivity, and epilepsy. Ge-
netic analysis of autistic patients suggests that autism-associated
de novo variants converge on the genes involved in the regulation
of actin filaments and the formation and function of synapses
(Gilman et al., 2011). Haploinsufficiency of Shank3 gene, which
encodes a synaptic scaffolding protein at glutamatergic synapses
(Naisbitt et al., 1999; Sheng and Kim, 2000; Hayashi et al., 2009),
is one of the most prevalent and highly penetrant monogenic
causes of autism (Bonaglia et al., 2001; Durand et al., 2007; Sebat
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et al., 2007; Betancur and Buxbaum, 2013). Mice with Shank3
deletions or mutations exhibit ASD-like behaviors and synaptic
deficits (Jiang and Ehlers, 2013; Duffney et al., 2015; Bidinosti et
al., 2016; Zhou et al., 2016). Shank forms a complex with BPIX,
the guanine nucleotide exchange factor involved in Racl activa-
tion (Manser et al., 1998), and overexpression of Shank in cul-
tured neurons promotes synaptic accumulation of BPIX (Park et
al., 2003). A recent study (Duffney et al., 2015) has found that the
expression of BPIX is strongly reduced in the PFC of Shank3-
deficient mice, which leads to the decreased Racl activity. The
Racl downstream effectors, active PAK and LIMK, are also sig-
nificantly reduced in Shank3-deficient mice, which results in the
disinhibition of cofilin. Consequently, the level of F-actin is sub-
stantially decreased in PFC of Shank3-deficient mice. In corrob-
oration with these results, overexpression of Shank3 has been
found to enhance actin polymerization by interacting with the
Arp2/3 complex (Durand et al., 2012) and increase F-actin levels
(Han et al., 2013).

These observations lead to the hypothesis that dysregulation
of the synaptic actin cytoskeleton is an important component of
the pathology that drives autistic phenotypes in Shank3-deficient
mice. Interestingly, inhibition of cofilin activity produces a
robust rescue of the social preference deficits and repetitive
behavior in Shank3-deficient mice, which correlates well with the
restoration of NMDAR trafficking and function, suggesting a
promising therapeutic strategy for autism treatment (Duffney et
al., 2015). Inhibiting PAK or Racl function in wild-type animals
produces ASD-like social deficits and NMDAR hypofunction,
whereas elevating Racl activity in PFC of Shank3-deficient mice
leads to the rescue of behavioral and NMDAR abnormality,
confirming the importance of Racl/PAK signaling in autism
(Duffney et al., 2015). These lines of evidence have revealed actin
dysregulation and ensuing NMDAR hypofunction in PFC pyra-
midal neurons as a pathophysiological basis for the ASD-like
behaviors in a Shank3 model of autism. It also suggests that per-
turbing the signaling molecules in Racl/PAK/cofilin pathway to
normalize cortical actin dynamics offers a potential therapeutic
strategy to ameliorate cognitive and synaptic defects in autism.
Nonspecific effects generated by actin-manipulating agents are
potentially a concern; however, many actin regulators are largely
brain-specific and more likely to represent appropriate future
targets. For example, high-throughput gene expression profiling
has found that different actin interacting proteins have distinct
transcriptional activity in different brain regions and non-CNS
areas, thus targeting the actin regulators highly restricted to frontal
cortex, such as human PAK3, whose mutation causes X-linked men-
tal retardation (Allen et al., 1998), could enable the specific normal-
ization of actin dynamics at PFC glutamatergic synapses. Moreover,
different postsynaptic proteins are differentially affected by altered
actin dynamics. As discussed below, Shank3 directly links NMDARs
to actin cytoskeleton, making NMDARs particularly sensitive to
Shank3-induced changes in actin dynamics.

Actin abnormalities, NMDA receptor dysfunction, and
autism spectrum disorders

Dysfunction of NMDARSs has recently been proposed as a candi-
date mechanism for ASDs, based on the results from animal
models of this disorder. Interestingly, animal models of ASD-
related phenotypes can display altered (reduced or enhanced)
NMDAR function and these autistic-like behaviors are often nor-
malized by pharmacological modulation of NMDARs (Lee et al.,
2015a). Although it is clear that multiple mechanisms could lead
to altered NMDAR levels, the synaptic actin cytoskeleton is
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known to be important for the synaptic retention of NMDARs
under basal conditions and during synaptic activity (Rosenmund
and Westbrook, 1993; Allison et al., 1998; Morishita et al., 2005),
and its dysregulation is likely involved in NMDAR dysfunction.

Multiple examples of reduced NMDAR function associated with
ASD-like behaviors have recently been described. For instance, mice
lacking the postsynaptic adhesion molecule neuroligin-1 show re-
petitive self-grooming associated with reduced NMDAR function,
which is rescued by treatment of the mice with the NMDAR agonist
D-cycloserine to enhance NMDAR function (Blundell et al., 2010).
In addition, mice lacking the excitatory postsynaptic scaffolding pro-
tein Shank2 have been shown to display autistic-like social deficits
that are responsive to D-cycloserine (Won et al., 2012).

Shank family proteins associate with diverse synaptic pro-
teins, including the actin-binding/regulatory proteins cortactin
(Du et al., 1998), Arp2/3 (Han et al., 2013), Abp1 (Qualmann et
al., 2004; Haeckel et al., 2008), BPIX, and IRSp53 (Bockmann et
al., 2002; Soltau et al., 2002; Soltau et al., 2004). These results
suggest the strong possibility that deletion of Shank genes in mice
may decrease synaptic actin filaments, leading to a suppression of
the synaptic localization of NMDARs. Recently, four different
mouse lines lacking Shank3 have been shown to exhibit reduced
NMDAR function and autistic-like behaviors, strongly suggest-
ing that this is a core pathology of these models (Kouser et al.,
2013; Duffney et al., 2015; Jaramillo et al., 2015; Speed et al.,
2015). Importantly, cofilin inhibition or Racl activation, which
could enhance synaptic F-actin levels, has been shown to normal-
ize both the reduced NMDAR function and autistic-like behav-
iors in a line of Shank3-mutant mice (Duffney et al., 2015).

Interestingly, excessive NMDAR function may also lead to
autistic-like phenotypes. For example, mice and rats prenatally ex-
posed to valproic acid, an antiepileptic agent, display enhanced
NMDAR function and autistic-like behaviors (in the case of rats)
(Rinaldi et al., 2007), which are rescued by the NMDAR antagonist
memantine (KC Kim et al., 2014; Kang and Kim, 2015). Most re-
cently, memantine also rescued repetitive behaviors of mice lacking
astroglial glutamate transporter, supporting the notion that exces-
sive NMDAR activity is also associated with autistic-like behaviors
(Aida et al., 2015). In some cases, this enhanced NMDAR activity
may be linked to altered regulation of the actin cytoskeleton. For
example, autistic-like social deficits are observed in mice lacking the
excitatory postsynaptic scaffolding protein IRSp53, and an unusu-
ally stable synaptic actin cytoskeleton may underlie these phenotypes
(MH Kim et al., 2009). IRSp53-mutant mice have abnormally stabi-
lized actin filaments in the hippocampus that are resistant to cofilin
activation (Chung et al., 2015). This is thought to increase synaptic
content of NMDARs under basal conditions and suppress activity-
dependent removal of synaptic NMDARs during long-term depres-
sion of NMDAR-mediated currents, a process known to require
actin depolymerization (Morishita et al., 2005). Memantine, which
rescues the social deficits in IRSp53-mutant mice, also normalizes
the reduced long-term depression of NMDAR-mediated currents
(Chung et al., 2015). These results, together with the D-cycloserine
results and studies of Shank3 mutant mice, suggest that NMDAR
dysfunction in either direction can cause autistic-like behaviors in
animals.

A challenge going forward will be to determine whether a
significant portion of the NMDAR dysfunctions observed in an-
imal models of ASDs involves actin dysfunction, as it is clear
other mechanisms also lead to NMDAR disturbances. For in-
stance, the transcription factor Tbrl regulates the expression of
the gene encoding the GluN2B subunits of NMDARs (Wang et
al., 2004a, b). Therefore, the reduced NMDAR function observed
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in the amygdala of Tbrl-mutant mice (Chuang et al., 2014;
Huang et al., 2014; Lee et al., 2015b) is likely to be caused by
insufficient levels of GluN2B-containing NMDARs. However, in
principle, any proteins that can impact synaptic actin filaments
have the potential to be associated with NMDAR dysfunction and
autistic-like behaviors in animals. Given that synaptic retention
of AMPA receptors also requires intact actin filaments (Allison et
al., 1998), defects in actin-binding/regulator proteins may also
affect AMPAR-mediated synaptic transmission at excitatory syn-
apses through direct mechanisms or indirectly through modula-
tion of NMDARs. These changes at excitatory synapses may lead
to the alteration of the balance between excitatory and inhibitory
synapses in a neuron and disruption of neural circuits in the
brains of animal models of ASD.

Altered regulation of actin dynamics and cortical dendritic
spine deficits in schizophrenia

In schizophrenia, deficits in cognitive functions are core and clin-
ically critical features of the illness (Elvevag and Goldberg, 2000).
These deficits include working memory impairments, which ap-
pear to reflect alterations in specific elements of dorsolateral pre-
frontal cortex (DLPFC) circuitry that are known to be critical for
working memory in primates (Arnsten et al., 2012). For example,
reciprocal excitatory connections among DLPFC layer 3 pyrami-
dal cells are thought to mediate sustained neuronal activity dur-
ing the maintenance phase of working memory tasks in monkeys
(Goldman-Rakic, 1995). These connections terminate on den-
dritic spines; thus, dendritic spine density can serve as a proxy for
the number of excitatory inputs that a pyramidal neuron receives
(Glausier and Lewis, 2013).

Basilar dendritic spine density has been consistently found to
be lower on layer 3 pyramidal cells of the DLPFC (Garey et al.,
1998; Glantz and Lewis, 2000; Konopaske et al., 2014) and at least
some other cortical regions (Sweet et al., 2009) in subjects with
schizophrenia. In contrast, spine density does not appear to be
altered on pyramidal neurons in layers 5 or 6 of the DLPFC
(Kolluri et al., 2005). These findings have raised the following
questions: (1) What pathogenic process might account for lower
dendritic spine density in the illness? (2) What molecular mech-
anisms could explain the presence of spine deficits preferentially
on layer 3 pyramidal neurons? (3) Could these mechanisms, and
the resulting spine deficits, give rise not only to working memory
impairments but also to the psychotic features that are character-
istic of schizophrenia?

Convergent lines of evidence suggest that the pathogenic pro-
cess underlying cortical dendritic spine deficits in schizophrenia
involves altered regulation of the actin cytoskeleton required for
the formation and maintenance of spines. First, de novo muta-
tions in schizophrenia are over-represented among loci encoding
cytoskeleton-associated proteins that regulate actin (Fromer et
al., 2014). Second, key molecules that regulate actin dynamics
exhibit altered expression in the DLPFC of subjects with schizo-
phrenia. For example, Rho GTPase cell division cycle 42 (Cdc42)
regulates the actin polymerization required for spine maturation
(Scottetal., 2003; Saneyoshi et al., 2010); Cdc42 mRNA levels are
lower in the DLPFC of subjects with schizophrenia (Hill et al.,
2006), including in layer 3 pyramidal neurons (Datta et al., 2015).
Similarly, transcript levels of kalirin, a Rho-family guanine ex-
change factor that is highly concentrated in spines and regulates
spine integrity through Rac signaling pathways (Cahill et al.,
2009), are lower in the DLPFC of subjects with schizophrenia
(Hill et al., 2006). Finally, expression levels of multiple subunits
of the Arp2/3 complex are altered in pyramidal neurons, but

Yan et al. ® Synaptic Actin Dysregulation

not in other cell types, in DLPFC layer 3 from subjects with
schizophrenia (Datta et al., 2016). These findings suggest that
the synaptic actin cytoskeleton is impaired in schizophrenia,
potentially contributing to decreased spine stability and ulti-
mately spine loss.

It is important to note that at least some of these gene expres-
sion alterations are present in layer 5 pyramidal neurons that do
not exhibit spine deficits in schizophrenia, and that the levels of
these transcripts predict spine density only in pyramidal cells in
layer 3 (Hill et al., 2006) (Ide and Lewis, 2010). However, the
presence of these alterations in pyramidal cells in both layers
suggests that these deficits (1) are not a secondary consequence of
a lower number of dendritic spines, and (2) might be a necessary
but not a sufficient cause of reduced spine density.

The apparent specificity of the spine deficits to layer 3 pyramidal
neurons might reflect disturbances in molecules that are expressed
selectively in these neurons. For example, several members of the
Cdc42 effector protein family (Cdc42ep3 and Cdc42ep4), which are
inhibited by Cdc42 activity, are preferentially expressed in layers 2
and 3 of the DLPFC (Arion et al., 2007). In schizophrenia, expression
levels of CDC42EP3 and CDC42EP4 are upregulated in layer 3 pyra-
midal cells (Ide and Lewis, 2010; Datta et al., 2015). Signaling via the
Cdc42-CDC42EP complex regulates septin organization, which can
act as a barrier in the spine neck that controls the flow of molecules
into spines required for F-actin-mediated growth of spines and syn-
aptic potentiation (Joberty et al., 2001; Ewers et al., 2014). The com-
bination of lower levels of Cdc42 and higher levels of CDC42EPs in
schizophrenia might alter the septin filament barrier, impair spine
plasticity, and result in spine loss (Ide and Lewis, 2010). In addition,
recent gene expression studies specifically in DLPFC layer 3 pyrami-
dal cells suggest that dysfunction in the Cdc42- PAK- LIMK signal-
ing pathway could also alter actin dynamics (Datta et al., 2015).
Thus, the prominence of spine deficits in layer 3 pyramidal cells in
schizophrenia might reflect the convergent effects of alterations in
different actin pathways, each of which could destabilize the synaptic
actin cytoskeleton.

Altered network activity in DLPFC layer 3 could contribute to
the working memory impairments present in schizophrenia
(Gonzalez-Burgos et al., 2015) and was also hypothesized (Wein-
berger, 1987) to cause the excessive dopamine release in the as-
sociative striatum associated with the psychotic symptoms of the
illness (Howes et al., 2012). Evidence for causality in this associ-
ation was recently provided by findings that deletion of the
Arp2/3 complex in mice resulted in cortical spine deficits and a
subcortical hyperdopaminergia that improved with antipsy-
chotic medications (IH Kim et al., 2015). Thus, the pathogenic
processes and molecular mechanisms producing cell type-
specific alterations in actin dynamics could produce cortical den-
dritic spine deficits as an upstream pathology that subsequently
gives rise to excessive striatal dopamine function and the appear-
ance of psychosis in schizophrenia (Lewis and Gonzalez-Burgos,
2006).

Conclusion and future directions

It is becoming clear from human genetic and brain tissue studies,
and from mouse models, that dysfunction of the actin cytoskele-
ton at excitatory spine synapses is likely a shared molecular pa-
thology across different neurodevelopmental and psychiatric
disorders. This realization, however, opens many new avenues
for future work that will be required to address critical and com-
plicated questions raised by these findings. First, a better under-
standing of specific actin-dependent spine functions that are
disrupted at different developmental stages and in different brain
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regions is clearly needed to better define the molecular mecha-
nisms of these disorders. As human genetic analyses continue to
identify new risk alleles, there will also be an increasing need for
new animal models to define these mechanisms. Where possible,
it will be essential to corroborate findings from animal models
with the analysis of clinical samples. Second, a better understand-
ing of how specific mutations of the synaptic actin pathway may
resultin clinically diverse disorders is needed. The recent focus on
Research Domains of Criteria may be beneficial in terms of fo-
cusing on behavioral and circuit phenotypes that cross current
diagnostic boundaries (Insel et al., 2010). Finally, it is clear that
neuronal actin remodeling is critical at other synaptic sites within
neurons, including presynaptic terminals and inhibitory syn-
apses. How these may be impacted in the context of disorders
whose basis is dysfunctional actin remodeling will be an impor-
tant future direction.
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