Distributed k-Clustering with Heavy Noise (NeurIPS 2018 Poster)

Xiangyu Guo and Shi Li

\{xiangyug, shil\}@buffalo.edu
Department of Computer Science \& Engineering, State University of New York at Buffalo

Introduction

- Input: Data set P from metric space (X, d) of size $n . P$ is distributed onto m different machines as
$P=P_{1} \cup P_{2} \cup \ldots \cup P_{m}$
- Output: A set $C \subset P$ of k centers and a set $Z \subset P$ of z outliers, that minimize some cost function $\operatorname{cost}(P \backslash Z, C)$:
$\bullet(k, z)$-center: $\operatorname{cost}(A, B):=\max _{p \in A} d(p, B)$
$\bullet(k, z)$-median: $\operatorname{cost}(A, B):=\Sigma_{p \in A} d(p, B)$
$\bullet(k, z)$-means: $\operatorname{cost}(A, B):=\Sigma_{p \in A} d^{2}(p, B)$
- Communication model: The MapReduce model. There exists a single coordinator S, and only communication between the coordinator and the machines are allowed.
- Major concerns:
- Clustering quality: The solution (C, Z) should achieve
$O(1)$-approximation, i.e. $\operatorname{cost}(P \backslash Z, C) \leq O(1) \cdot \mathrm{OPT}$.
- Communication cost: Focus on the case when data is heavily noisy, i.e. $z \gg k, m$.

Motivating Question

Can we achieve constant approximation with communication cost $o(z)$?

- No: Any $O(1)$-approximation algorithm needs $\Omega(z)$
communication cost.
- Yes: If we allow removing slightly more than z outliers:

Def. (C, Z) is an (α, β)-approximation if
$\operatorname{cost}(P \backslash Z, C) \leq \alpha \cdot$ OPT and $|Z| \leq \beta z$

Two-Levels Clustering Framework

> (1) Each machine i construct a local summary P_{i}^{\prime} and send to the coordinator machine S
> (2 The coordinator S solves a single (k, z)-clustering over the aggregated summaries $\cup_{i \in[m]} P_{i}^{\prime}$ to get final solution (C, Z).

- Folklore: view each summary P_{i}^{\prime} as local clustering centers on P_{i}, then if each P_{i}^{\prime} incurs small clustering cost, S can find a good global centers by clustering $\cup_{i \in[m]} P_{i}^{\prime}$.

Distributed (k, z)-Center

Results

approx. ratio comm cost
[MKCWM15] $\quad(O(1), 1) \quad O(m(k+z))$
[GLZ17] $\quad(O(1), 2+\epsilon) \tilde{O}\left(m\left(k+\epsilon^{-1}\right)\right.$
Ours $\quad(O(1), 1+\epsilon) \quad \tilde{O}\left(m k \epsilon^{-1}\right)$

Local Summary Construction

Parameter: A number $L>0$

© While $\exists p \in P_{i}$ s.t. \mid ball $(p, 2 L) \cup P_{i} \left\lvert\,>\frac{\epsilon z}{k m}\right.$

- Add p to P_{i}^{\prime} and set $w_{p}^{\prime}=\left|\operatorname{ball}(p, 4 L) \cup P_{i}\right|$
- Remove ball $(p, 4 L)$ from P_{i}
- Lemma. If $L \geq$ OPT, then $\Sigma_{i \in[m \mid}\left|P_{i}^{\prime}\right| \leq m k\left(1+\epsilon^{-1}\right)$ and $\Sigma_{i \in[m \mid} \Sigma_{p \in P_{i}} w_{p} \geq n-(1+\epsilon) z$
- Remark.
- the total size $\Sigma_{i \in[m]}\left|P_{i}^{\prime}\right|$ determines the communication cost \bullet the total weight $\Sigma_{i \in[m]} \Sigma_{p \in P_{i}} w_{p}$ is the number of points in P "covered" by the summary

The Whole Algorithm
(1) The coordinator guesses a number L
(2) Each machine constructs local summary $\left(P_{i}^{\prime},\left\{w_{p}\right\}_{p \in P_{i}^{\prime}}\right)$ w.r.t. L.
(3) Each machine sends its $\left|P_{i}^{\prime}\right|$ and $\Sigma_{p \in P_{i}} w_{p}$ to the coordinator. - if $\Sigma_{i \in[m \mid}\left|P_{i}^{\prime}\right|>m k\left(1+\epsilon^{-1}\right)$, the coordinator guesses a larger L;

(4) The coordinator solves a weighted $(k,(1+\epsilon) z)$-center
problem over $\cup_{i \in[m]} P_{i}^{\prime}$.

Theorem 1. We can find a $L \leq(1+\epsilon)$ OPT and a solution (C, Z) s.t.

- The communication cost is $m k\left(1+\epsilon^{-1}\right)$.
- $\operatorname{cost}(P \backslash Z, C)=O(1) L$ and $|Z| \leq(1+\epsilon) z$.

Distributed (k, z)-Median/Means

Results		
(k, z)-median	approx. ratio	comm. cost
[GLZ17]	$(O(1), 2+\epsilon)$	$\tilde{O}\left(m\left(\epsilon^{-1}+k\right)\right)$
[CAZ18]	$(O(1), 1)$	$O(k \log n+z)$
Ours	$(1+\epsilon, 1+\epsilon)$	$\tilde{O}\left(k \epsilon^{-3}+m k \epsilon^{-1}\right)$
(k, z)-means		
$[\mathrm{GLZ17}]$	$(O(1+1 / \delta), 2+\delta+\epsilon)$	$\tilde{O}\left(m\left(\delta^{-1}+k\right)\right)$
[CAZ18]	$(O(1), 1)$	$O(k \log n+z)$
Ours	$(1+\epsilon, 1+\epsilon)$	$\tilde{O}\left(k \epsilon^{-5}+m k \epsilon^{-1}\right)$

- The algorithm need exponential running time (in m, k, ϵ^{-1})

Local Summary Construction

Parameter: A number $L>0$.
(1) Each machine i samples a coreset Q_{i}^{L} w.r.t. a cost function defined by threshold distance:
$\operatorname{cost}_{L}(P, C):=\Sigma_{p \in P} d_{L}(p, C)^{l}-z L^{l}$, where
$d_{L}(p, C):=\min \{L, d(p, C)\}$, and $l=1,2$ for
(k, z)-median/means respectively.
Lemma. Let $\left(C^{*}, Z^{*}\right)$ denote the optimal solution, then $\operatorname{cost}\left(P \backslash Z^{*}, C^{*}\right)=\sup _{L>0}\left\{\Sigma_{p \in P} d_{L}\left(p, C^{*}\right)-z L\right\}$

- Remark. For each fixed L, the (k, z)-clustering problem is converted to a k-clustering problem.

The Whole Algorithm

(1) Discretize the set of all possible L as
$\mathbb{L}=\left\{L_{\min },(1+\epsilon) L_{\min },(1+\epsilon)^{2} L_{\min }, \cdots L_{\max }\right\}$
(2) Each machine i creates multiple local summaries, one for each $L \in \mathbb{L}$.
© The coordinator solves a min-max k-clustering problem on the aggregated coresets: $\min _{C} \sup _{L \in \mathbb{L}} \operatorname{cost}_{L}(P, C)$.

