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Abstract
Extension complexity measures the minimum size of all possible LP formulations that charac-

terize a given polytope. But such lower bounds are generally not very easy to establish. On the
other hand, LP hierarchies are restricted kinds of LP formulation, which is well-structured and
thus relatively easier to analyze and prove size lower bound for them. In the past decade there’s
a line of research that lifts existing hierarchy lower bound to general LP size lower bound. This
has resulted in the breakthrough result of [CLRS13], which showed that approximating maximum
constraint satisfaction problems requires quasi-polynomial size LPs. Their result is later improved
to sub-exponential by [KMR17]. Based on their results, people are able to prove extension com-
plexity lower bounds for a much richer set of problems. In this note we’ll expalain the result
of [CLRS13] and some subsequent ones, in particular, an extension complexity lower bound for
approximating vertex-cover [BFPS15].

We’ll also briefly discuss a very related line of research — SDP extension complexity, which
studies the minimum size of SDP formulations. One of the most important paper in the re-
cent years proves a quasi-polynomial SDP size lower bound for approximate max-3sat and sub-
exponential SDP size lower bound for the cut, TSP, and stable set polytopes[LRS15]. Remarkably,
its overall strategy almost parallels [CLRS13], only lifting from SDP hierarchy lower bounds.

1 Introduction
Linear Programming (LP) is a prominent tool used in combinatorial optimization, especially for
designing approximation algorithms. Due to the common belief of P ̸= NP, for many NP-hard problems
we don’t expect there to be polynomial-size LP that approximates the optimal arbitrarily. So a natural
question to ask is: how well can one approximate using small LP? Let’s take max-cut as an example.
Given a graph G = (V,E), we want to find the maximum cut in this graph. One classical LP relaxation
for this problem is as follows:

max

y∈R(
V
2
)

∑
uv∈E

yuv (1)

s.t. yuv ≤ yuw + ywv, ∀u, v, w ∈ V

yuv + yuw + yvw ≤ 2, ∀u, v, w ∈ V

0 ≤ yuv ≤ 1, ∀u, v ∈ V

Here each yuv can be viewed as a indicator variable telling that whether edge (u, v) is in the cut.
This LP is known to have integrality gap 2, which only matches the trivial algorithm that randomly
partition the vertex set V into two parts. But (1) is just one possible LP formulation for max-cut,
and it’s reasonable to ask: is there a clever LP formulation that beats the integrality gap 2, i.e.,
achieving 2−α for some absolute constant α > 0? The extension complexity addresses such problems
by giving negative answers like this: your LP cannot be too clever in the sense that its size must be
really huge to beat some integrality gap. Here the size of a LP formulation is defined as the number
of linear inequalities needed to specify this formulation. Intuitively, this is is the number of facets of
the corresponding polytope.

Extension complexity are unconditional in the sense that it doesn’t depend on any complexity
assumptions like P ̸= NP. Because such lower bound claims the limit for all possible LP formulations,
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it can often be hard to establish. But recent years’ research showed that for the maximum constraint
satisfaction problems (MaxCSP), we only need to prove lower bound for formulations arising from
the Sherali-Adams hierarchy[SA90]. This makes it possible to exploit many existing hierarchy lower
bounds of MaxCSPs. The focus of this survey will be Chan et al.’s work[CLRS13], which first relates
Sherali-Adams lower bound to general LP lower bound, showing that for MaxCSPs, the Sherali-Adams
relaxation is “complete” among all polynomial-size LPs. Its idea has inspired several important follow-
ups, including the SDP extension complexity lower bound for MaxCSP and some important families of
polytopes[LRS15]. Chan et al.’s results also made it possible to prove extension complexity results by
reducing from MaxCSPs. In particular, Bazzi et al.[BFPS15] proved a lower bound for approximating
vertex-cover within 2− ϵ using reduction techniques developed in [BPZ15], which will be another
focus of this survey.

Extension complexity. In its original form, extension complexity measures the LP size needed
to capture some polytope exactly. Usually this polytope is the convex hull of all integral solutions
for some discrete optimization problem: taking the max-cut as example, its feasible solutions set
is S = {yuv ∈ {0, 1}|{yuv}uv∈E satisfies (1)}, and we’d like to know the smallest number of linear
inequality needed to describe conv (S). If we can find a polynomial-size LP for conv (S), then we
can solve max-cut exactly in polynomial time, which is one popular way people sought to prove
P = NP in the early days. These efforts are heavily wrecked after Yannakakis[Yan91] proved that any
symmetric LP for the TSP polytope has exponential size. The key idea in [Yan91] (which also lays
the foundation for all subsequent works) is a factorization theorem that estabishes the equivalence
between a polytope’s extension complexity with the non-negative rank of its slack matrix. Here,
the slack matrix MP of a polytope P is defined as follows: each row corresponds to a supporting
hyperplane (facet) F of P in the form of F (x) = b− ⟨a, x⟩, and each column corresponds to a vertex
v of P , and MP (F, v) = F (v) measures the algebraic distance from v to F .

By analyzing a special family of slack matrices, Fiorini et al.[FMP+12] was able to strengthen
Yannakakis’ result to include the asymmetric LPs, showing that the TSP polytope requires 2Ω(n1/4)

LP to describe. Later Braun et al.[BFPS12] generalize the definition of extension complexity to
approximation problems, and show that approximating max-clique within O(n1/2−ϵ) requires LPs
of size 2Ω(nϵ). Braverman and Moitra[BM13] also analyze this family of slack matrices, and building
on the work of [BFPS12], they show that approximating max-clique within O(n1−ϵ) requires LP of
size 2Ω(nϵ).

Finally, we want to note the difference between the extension complexity and the computation
complexity of a problem: a problem with exponential extension complexity can admit polynomial-
time algorithms; and even an exponential-size LP may still be polynomial-time solvable, e.g., using
the Ellipsoid Method. The most prominent example may be the perfect matching problem: a break-
through results of [Rot14] proves that matching polytope has exponential extension complexity, and
later it’s shown that even semidefinite programming (SDP) may not be powerful enough to catch this
polytope [BBH+17](but only for the symmetric case). However, the matching problem is well-known
to be in P.

LP hierarchies. We’ll mostly use lower bound results of the Sherali-Adams hierarchy in this survey,
but there also exists other important kinds of hierarchy. We refer the readers to Laurent’s excellent
survey [Lau03] for more discussions about different hierarchies and their relationship. The hierarchy
technique has produced significant improvement over the approximation ratio for a few important
problems, and we refer the readers to surveys like [Chl07, Rot11, BS14] for more information about
these algorithmic results.

In this article we care more about the negative results, namely, the hierarchy lower bound. This line
of research is initiated by Arora et al.[ABL02], who studied integrality gap results for LP relaxations
arising from Lovász-Schrijver (LS) hierarchy[LS91]; specifically, they showed one needs Ω(log n) round
of LS lifting to approximate vertex-cover within 2−o(1). The hierarchy lower bound results of the
MaxCSPs will be particularly useful for us, and we list a few of them here: Fernández de la Vega and
Mathieu[dlVK07] showed that max-cut has integrality gap 1/2+ ϵ even after k-round Sherali-Adams
lifting, for any fixed ϵ and k. This was later strengthened to nδ-round lower bound by [CMM09].
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Some other works proved lower bounds for the Sum-of-Square (SoS) SDP hierarchy, which is stronger
than Sherali-Adams hierarchy, and therefore also imply Sherali-Adams lower bounds at least as same
strong: Grigoriev[Gri01] showed max-3xor requires Ω(n)-round SoS (thus also for Sherali-Adams) to
achieve (1/2 + ϵ, 1− ϵ)-approximation. This was later rediscovered by Schoenebeck[Sch08], who also
noticed that this implies a Ω(n)-round SoS lower bound for (7/8+ ϵ, 1− ϵ)-approximating max-3sat.

Organization: The rest of this survey will be organized as follows: first we’ll give some basic defini-
tions about LP and MaxCSP, then introduce Yannakakis’ Factorization Theorem, and in particular, its
approximate form for MaxCSPs. In section 4 we’ll explain the result of [CLRS13] in detail, giving the
quasi-polynomial lower bound for some MaxCSPs. Then in section 5 we describe the lower bound of
(2−ϵ)-approximating vertex-cover, based on the reduction technique of [BPZ15, BFPS15, BPR18].
Finally, we briefly survey some recent results on SDP extension complexity in section 6.

2 Preliminaries
Linear Programming (LP). Linear programming (LP) describes a broad class of optimization
problems, whose objective and constraints are all linear functions. Formally, a LP formulation can be
written as follows

max
x∈Rn

c⊤x (2)

s.t. Ax ≤ b, (3)
x ≥ 0, (4)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm. We also use LP(P, c) to denote the formulation 2, where P = {x :
Ax ≥ b, x ≥ 0} is the set of feasible solutions. We note that there’re many equivalent definitions of LP,
but we will stick to 2 in this article. It’s well-known that LP can be solved in time polynomial in m
and n. In most problems we care about, there’s n = O(m), so we define the size of a LP formulation
to be the number of constraints m.

Typically we’re focusing on discrete optimization problems with integral solutions. A LP re-
laxation1 for such a problem is a polytope that contains the convex hull of all its integral feasible
solutions. The natural strategy for finding the LP relaxation is to first write down a integer-linear
program (ILP) that characterize the integer solutions exactly, then relax its solutions to be real num-
bers. If the relaxed polytope is not too “loose” than the integral convex hull, one can expect to derive
a good approximation via the relaxation. To measure the LP relaxation’s ability of approximation,
we define integrality gap to be the maximum ratio between the solution quality of the integer program
and of its relaxation.

Constraint Satisfaction Problem (CSP). A constraint satisfaction problem (CSP) is denoted by a
tuple Π = (Ω,Φ), where Ω is the domain and Φ is a set of predicates {ψ : Ωr 7→ {0, 1}}. Here r is called
the arity of the CSP. Given CSP Π = (Ω,Φ), an instance I of the maximum constraint satisfaction
problem (max-csp) max-Π is defined as follows: I contains a variable set V = {X1, X2, . . . , Xn}
and a set of constraints E = {P1, P2, . . . , Pm}, where each Pi : Ωn 7→ {0, 1} is associated with
a ordered subset of coordinates Si ⊂ [n], |Si| = k and some predicate P ∈ Φ, such that for any
a = (a1, . . . , an) ∈ Ωn,

Pi(a) = P (ai1 , . . . , aik), Si = (i1, i2, . . . , ik), where all ij ’s are distinct

The objective of I is to find a value assignment F : V 7→ Ω so as to optimizing the following problem:

max
F

1

m

m∑
i=1

Pi(F (X1), F (X2), . . . , F (Xn)) (5)

1Later on we’ll use “LP formulation” and “LP relaxation” interchangeably, as the later just refers to a LP formulation
associated with some discrete optimization problem.
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Note the value assignment F is just some x ∈ Ωn, so we abuse notations and let I(x) = 1
m

∑m
i=1 Pi(x).

In a more general definition, each constraint can have a weight wi and the objective (5) becomes a
weighted sum.

Example 1. Consider the boolean CSP with Ω = {0, 1},Φ = {≠}. Then the max-csp instance
I = (V,E) can be viewed as a graph with vertex set V , and each constraint Pk ∈ E is an edge over
some vertices i, j. The objective is to assign 0-1 labels to each vertex, so as to maximizing the number
of edges with different ending labels. This is exactly the max-cut problem.

Example 2. Now consider the CSP with Ω = [q],Φ = {ℓi : [q]× [q] 7→ {0, 1}}, where each ℓi is defined
via some permutation πi on [q], such that ℓi(u, v) = 1 iff π(u) = v. Similar to the previous example,
the max-csp instance Π = (V,E) can be viewed as a graph, and the objective is to assign labels in [q]
to each vertex, so as to maximizing the number of satifying edges. This is exactly the unique-games
problem.

LP Relaxations for max-csp. To write a LP relaxation for max-csp problems, we need to first
linearize it. Here we follow the convention in [CLRS13]. For any CSP Π, let max-Πn be the set of
all max-Π instances over n variables. For now we will focus on boolean CSPs, so we can assume the
variable set for max-Πn is the n-dimension boolean cube {−1,+1}n.

Linearization For each n we pick some fixed D ∈ N, and associate every I ∈ max-Πn with a vector
Ĩ ∈ RD, every x ∈ {−1,+1}n with a vector x̃ ∈ RD. And the key requirement is that

I(x) = ⟨Ĩ, x̃⟩ for all I ∈ max-Πn, x ∈ {−1,+1}n. (6)

Feasible Region The feasible region is a closed convex polyhedron P ⊂ RD described by r linear
inequality constraints, which contains all linearization of integral solutions, i.e.,

∀x ∈ {−1,+1}n, there’s x̃ ∈ P, (7)

(c, s)-approximation For constant 1 ≥ c > s ≥ 0, we say a LP relaxation Ln := LP(P, Ĩ) achieves
(c, s)-approximation if for any I ∈ max-Πn with opt(I) ≤ s, the optimal solution of Ln has
value no more than c. Formally, let Ln(I) := maxy∈P⟨y, Ĩ⟩ denote the optimal value of Ln, we
want

opt(I) ≤ s =⇒ Ln(I) ≤ c. (8)

Fourier Analysis for Boolean Functions. We will mostly deal with functions defined on the
boolean cube {−1, 1}n. We will use some basic facts in Fourier analysis; for a more comprehensive
treatment, we refer the readers to the textbook by O’Donnell[O’D14]. Every function f : {−1, 1}n 7→ R
can be expressed as a multilinear polynomial as follows:

f(x) =
∑
α⊆[n]

f̂(α) · χα(x)

where χα(x) :=
∏

i∈α xi is called Fourier basis, and

f̂(α) = ⟨f, χα⟩ := E [f · χα] =
1

2n

∑
x∈{−1,1}n

f(x)χα(x).

The degree of f is defined to be the degree of its Fourier expansion, i.e., the maximum d such that
there exists |α| = d and f̂(α) ̸= 0.

In this article we’re mostly interested in one family of boolean functions, juntas, which has the
following simple structure: the output of a k-junta f depends only on at most k coordinates of the
input, i.e., there exists some S ⊆ [n], |S| ≤ k, s.t. f =

∑
α⊆S f̂(α) · χα. Apparently by definition, a
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k-junta is at most degree-k, but a low-degree function may not necessary be a simple junta: consider
the function f(x) =

∑n
i=1 xi, which has degree 1 but is a n-junta.

Sometimes it’s more convenient to define a problem over {0, 1}n rather than {−1,+1}n. But
we can easily switch between these two cubes with the bijection x 7→ 1 − 2x. Therefore for any
g : {−1, 1}n 7→ R, we can identify it with a equivalent f : {0, 1}n 7→ R defined as f(x) = g(1 − 2x),
and vice versa. This bijection also preserves the degree of variables, thus a degree-d function on one
cube corresponds to a function on the other cube of the same degree. Therefore we won’t differentiate
between these two cubes in the rest of the article.

3 Factorization Theorems
The factorization theorem relates the extension complexity of a polytope to the nonnegative rank of
a specific matrix. This converts the task of searching a set of infinitly many LP formulations into
analyzing one single matrix, which is much more concrete to work with. In this section we’ll formally
define all the concepts mentioned in the previous sentence, and state the Factorization Theorem.

Extended Formulations. Given polytope P , we’re interested in whether it can be obtained by
projecting from some simpler polytope Q in higher dimensions. Q is called an extended formulation
of P , which is formally defined as follows

Definition 1 (Extended Formulation). Given a polytope P = {x ∈ Rn : Ax ≤ b} = conv (V ) with
A ∈ Rm×n, b ∈ Rm, we say polytope Q = {(x, y) ∈ Rn+r : Ex+ Fy = g, y ∈ Rr, y ≥ 0} is a extended
formulation of P if P = πx(Q) := {x ∈ Rn : ∃y ∈ Rr s.t. (x, y) ∈ Q}. The size of Q is the number of
its inequality constraints (y ≥ 0), i.e. r.

The extension complexity of P is the minimum size among all its possible extended formulations,
denoted as xc(P ).

Factorization Theorem. First we formally define the slack matrix of a given polytope, which
(intuitively) characterize the distance of each vertex to each facet of the polytope.

Definition 2 (slack matrix). For a given polytope P = {x ∈ Rn : Ax ≤ b} = conv (V ), suppose
A ∈ Rm×n, b ∈ Rm, V = {v1, . . . , vk}. The slack matrix of P is defined as

SP (i, j) := bi − ⟨Ai, vj⟩ (9)

The Factorization Theorem establishes the equivalence between xc(P ) and SP ’s non-negative rank,
which is defined as follows:

Definition 3 (Nonnegative rank). Given a nonnegative matrix M ∈ Rm×n
≥0 , its nonnegative rank

rank+(M) is the minimum r such that there exists U ∈ Rm×r
≥0 , V ∈ Rr×n

≥0 satisfying M = UV .

Remark: By definition, the slack matrix SP is of dimension m×k, where m is the number of facets
and k is the number of vertices. But for our purpose we can actually extend it to a infinite matrix:
∀x ∈ P , we can add a column in SP for x; similarly for any valid inequality b − ⟨a, x⟩ ≥ 0 on P , we
can add a row for it. This would not change the non-negative rank of SP , since by Farkas’ Lemma, all
such rows (columns) can be obtained by a non-negative linear combination of facets (vertices). This
property gives us much freedom when analyzing SP , as in most situation SP is not given explicitly
and we don’t know exactly what each facet looks like.

Now we formally state the Factorization Theorem:

Theorem 1 (Yannakakis’ Factorization Theorem[Yan91]). For a given polytope P , its slack matrix
SP has a rank-r non-negative factorization if and only if P has a size-r extended formulation.

Remark: With the Factorization Theorem, to prove a lower bound for xc(P ), we only need to prove
a lower bound for rank+(SP ). While in practice, we usually focus on proving a lower bound for some
more structured sub-matrix M of SP , because a lower bound for rank+(M) also applies to rank+(SP ).
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Factorization Theorem for Approximation. [BFPS12] first generalize definition of extended
formulation to approximate problems by using nested polyhedron pairs, and define the extension
complexity accordingly. For simplicity, we’ll restrict the case to max-csp problems. Suppose P is a
polytope that achieves (c, s)-approximation for max-Πn, as defined in (8). We define the slack matrix
Mn,Π

c,s ∈ Rmax-Πn×{0,1}n as follows

Mn,Π
c,s (I, x) = c− I(x) ∀x ∈ {−1, 1}n and I ∈ max-Πn with opt(I) ≤ s. (10)

And the factorization theorem for max-Πn is the following:
Theorem 2 (LP Factorization Theorem for Approximate MaxCSP[CLRS13]). Given a max-csp
instance max-Πn over n variables, there exists a LP relaxation of size R that (c, s)-approximates
max-Πn if and only if rank+

(
Mn,Π

c,s

)
≤ R

Remark: Here we are focusing on max-csp problems, while it’s also similar to define the approximate
extended formulation for minimization problems. In section 5, we’ll see a more general definition for
approximate LP formulations subsuming that of [BFPS12], and use it to prove hardness result for
vertex-cover.

4 Lifting Lower Bounds from LP Hierarchy
The main theme of this section is to present the result of [CLRS13]: on (boolean) MaxCSPs, one can
lift the hierarchy lower bound to general LP size lower bound2, by showing that any LP formulation of
similar size cannot perform much better than formulations produced by hierarchies. In the following
we’ll first introduce the Sherali-Adams hierarchy[SA90], then explain the overall strategy of [CLRS13],
and discuss the implication and limits of their result.

4.1 Sherali-Adams Hierarchy

Sherali-Adams Lifting. One natural definition of Sherali-Adams hierarchy is to view it as a way
to lift a base LP relaxation. The resulted LP formulation is called a Sherali-Adams lifting.
Definition 4 (Sherali-Adams lifting). Assume we’re dealing with some {0, 1}-optimization problem.
Given a base LP relaxation L = LP(c,P) with P = {x ∈ Rn : Ax ≥ b, x ≥ 0}, its d-round Sherali-
Adams lifting SAd(P) is defined as follows:

1. New constraints: for each constraint aTi x ≥ bi, and every S, T ⊆ [n] such that S ∩ T =
∅, |S|+ |T | ≤ d− 1, introduce new constraint

(a⊤i x− bi)
∏
i∈S

xi
∏
j∈T

(1− xi) ≥ 0

2. Linearization: Expand the product in each new constraint, and for each monomial
∏

i∈α xi
introduce a new variable yα to replace it. Then all constraints will become linear constraints for
y. Finally, add the constraint y∅ = 1

And the final relaxation we get consists of the following constraints:

y∅ = 1, (11)∑
T ′⊆T

(−1)|T
′|yS∪T ′ ≥ 0, ∀S ∩ T = ∅, |S|+ |T | ≤ d (12)

∑
T ′⊆T

(−1)|T
′|

∑
j∈[n]

aijyS∪T ′∪{j}

− biyS∪T ′

 ≥ 0, ∀ i ∈ [m], S ∩ T = ∅, |S|+ |T | ≤ d− 1 (13)

To get a solution of the original relaxation L, just project y back as xi = y{i}.
2We’ll use “extension complexity lower bound” and “LP size lower bound” interchangeably.
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Since the variable {yα : α ⊆ [n]} reside in a higher-dimension space, this is also called lift-and-project
method. It’s easy to see that the new relaxation has nO(d) many constraints as well as variables, thus
can be solved in nO(d) time. Intuitively, each variable yα models the correlation of {xi : i ∈ α}, and
can be thought as the moments up to degree-d of the variables under some distribution. Indeed, we
can define a pseudo-expectation Ẽ based on any feasible SAd solutions:

Ẽ

[∏
i∈α

xi

]
= yα

Then Ẽ is a linear functional over L2({0, 1}n). One can show that actually Ẽ and y uniquely determines
each other, and we can rewrite our relaxation as a equivalent program for finding pseudo-expecations.
This viewpoint is more convenient to use when we define the Sherali-Adams relaxation for MaxCSPs.

Sherali-Adams Relaxation for MaxCSP. The MaxCSP problem is defined on {−1, 1}n instead
of {0, 1}n, but as said before, we can switch between the two cubes while preserving the degree of
polynomials, so this doesn’t affect the size of the relaxation. Another important distinction is that
we will use one canonical relaxation for all MaxCSPs, while in Definition 4, we may get different
relaxations when lifting from different base LP formulations. However, one can show that this will
only result in quadratic difference in the number of rounds: given a d-round canonical SA relaxation
(will be defined later), one can easily find a tighter Θ(d2)-round SA lifting from any naturaly base
formulation, and vice versa. For more details, see Appendix A of [CLRS13].

We define the SA relaxation for MaxCSPs from the pseudo-expectation view. A feasible solution
of the d-round Sherali-Adams relaxation for max-Πn is a linear functional Ẽ on L2({−1, 1}n) which
satisfies Ẽ1 = 1 and ẼP ≥ 0 for any nonnegative d-junta P . By the self-duality of L2({−1, 1}n), we
can also view Ẽ as a function µ ∈ L2({−1, 1}n), such that Ẽf = ⟨µ, f⟩, ⟨µ,1⟩ = 1, and ⟨µ, P ⟩ ≥ 0
for all nonnegative d-junta P . Analogously we call µ as a degree-d pseudo-distribution, although it’s
essentially the same object as Ẽ. Since µ is uniquely determined by its Fourier coefficients {µ̂(α) =
⟨µ, χα⟩ : α ⊆ [n]}, if we further require µ̂(α) = 0 for all α with |α| > d, we have

µ =
∑

α:|α|≤d

µ̂(α)χα =
∑

α:|α|≤d

Ẽ [χα]χα

There’s an alternative view of the degree-d pseudo-distribution µ: a separating functional between a
given function f : {−1, 1}n 7→ R and Jd, the cone generated by all nonnegative d-juntas. If f ∈ Jd

then there’s ⟨µ, f⟩ ≥ 0, otherwise ⟨µ, f⟩ < 0.
With the above definitions, we can easily derive the following properties of Ẽ:

Claim 1. Let Ẽ be a degree-d pseudo-expectation , then

(i) Ẽ preserve the nonnegativity for low-degree juntas: For any non-negative d-junta f : {−1, 1}n 7→
R≥0, Ẽf ≥ 0.

(ii) ∥Ẽ∥∞ is bounded: For any α ⊆ [n], |Ẽχα| ≤ 1, thus ∥Ẽ∥∞ ≤
∑d

i=0

(
n
i

)
.

Finally, the d-round Sherali-Adams value of a max-Πn instance I is defined as

sad(I) := max
degree−d pseudo expectation Ẽ

Ẽ [I]

4.2 Technique Overview
We give a overview of the strategy used in [CLRS13]. Recall the definition of slack matrix Mn,Π

c,s for
a MaxCSP problem max-Πn:

Mn,Π
c,s (I, x) = c− I(x) ∀x ∈ {−1, 1}n and I ∈ max-Πn with opt(I) ≤ s.

By Theorem 2, to prove there’s no small LP formulation that achieves (c, s)-approximation, it’s
equivalent to proving Mn,Π

c,s has large nonnegative rank. The key idea of our proof can be summarized
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in one sentence: a low-nonnegative-rank factorization of Mn,Π
c,s will imply a low-degree (approximate)

Sherali-Adams solution. This would contradict with existing Sherali-Adams lower bounds for MaxCSP,
thus proving rank+(M

n,Π
c,s ) must be large. Specifically, the proof consist of two parts:

1. Existence of simple certificates. Suppose rank+(M
n,Π
c,s ) has a rank-R nonnegative factor-

ization, i.e., there is a set of R nonnegative functions qi : {−1, 1}n 7→ R≥0 such that for any
I ∈ max-Πn we have

c− I(x) =
R∑
i=1

λiqi(x) + λ0 (14)

where all λi ≥ 0 only depend on I. Here we can assume for example R ≤ nd/2, because we know
SAd has size nΘ(d) and we want to prove any LP L’s size cannot be too smaller than this. One
can show that there’s a way to choose a subset of qi’s such that every chosen qi is approximately
a K-junta with K = o(n), and furthermore, those not chosen has very small “magnitude” that
can be ignored.

2. Random restriction: To use SAd lower bound, we need further simplify all qi’s to d-juntas. We
use the idea of random restriction3: For each qi, if we randomly pick a small subset of coordinates
S ⊂ [n], |S| = m and restrict qi to it (i.e., fix the input value in all other coordinates), then with
hight probability qi will become d-juntas. The ”restriction” is achieved by randomly embedding
a max-Πm instance into n variables to get a max-Πn, s.t. any constraint is imposed only
on (a subset of) S. With the assumption that R is not too large, we can take union bound
for all qi, i ∈ [R], and deduce that there’s a choice of S that makes all qi’s become d-junta
simultaneously.

Now as all qi’s are approximately nonnegative d-juntas4, the desired contradiction can easily be
seen: since by assumption d-round SA lift cannot achieve (c, s)-approximation, the optimal value of
sad(I) > c, i.e, applying the corresponding degree-d pseudo-expectation Ẽ on the LHS of (14) will get
some constant β < 0; On the other side, if we apply Ẽ on the RHS of (14), since all qi’s are close to
nonnegative d-junta, we’ll get a value −ϵn with some diminishing ϵn. Choosing n large enough leads
to the contradiction.

4.3 A Quasi-polynomial Extension Complexity Lower Bound for MaxCSP
In this section we sketch the proof of the main result in [CLRS13], which can be summarized in the
following theorem

Theorem 3 ([CLRS13]). For k-ary MaxCSP, any general LP relaxation satisfying requirements (6)
and (7) cannot be much stronger than Sherali-Adams relaxation in the sense that

(i) In the polynomial regime, Sherali-Adams relaxation is the most powerful: for fixed d ≥ k, d ∈ N,
if SAd cannot achieve (c, s)-approximation for max-Π, then no sequences of LP of size at most
nd/2 can achieve (c, s)-approximation for max-Π.

(ii) In the super-polynomial regime, general LP cannot be exponentially stronger than Sherali-Adams
relaxation: let d : N 7→ N be a monotone increasing function with d(n) ≤ n. If d(n)-round Sherali-
Adams relaxation cannot achieve (c, s)-approximation for max-Πn, then no LP relaxation of size
nd(n)

2 can achieve (c, s)-approximation for max-ΠN , where N ≤ n10d(n).

A straighforward calculation shows that Theorem 3(ii) implies quasi-polynomial extension com-
plexity lower bound if the MaxCSP problem is hard for nΩ(1)-round Sherali-Adams relaxation, which

3The random restriction idea is heavily used in the analysis of boolean functions and circuit complexity, e.g. the
famous Switching Lemma by Håstad.

4We’ll see later that qi actually only needs to be a conical d-junta, i.e., nonnegative linear combination of nonnegative
d-juntas. This is easier to approximate and lead to better lower bound.
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is the case for e.g., (1− ϵ, 1/2+ ϵ)-approximating max-cut, (1− ϵ, 7/8+ ϵ)-approximating max-3sat.
In the rest of this section, we will focus on proving Theorem 3, and we’ll organize the proof in the
framework as described in section 4.2.

Existence of simple certificate. Consider the factorization (14): since all λi and qi are nonegative,
by scaling we can further assume that every qi is a density, i.e.

E [qi] := Ex∈{−1,1}n [qi(x)] = 1

We further define the entropy of a density as the entropy of its corresponding probability measure

H(q) := −
∑

x∈{−1,1}n

(2−nq(x)) log2(2
−nq(x))

Then we can apply the following Chang’s Lemma[Cha02, IMR14] to each high-entropy qi:

Lemma 1. Let h : {1, 1}n 7→ R≥0 be a density function and suppose it has entropy at least n− t for
some t < n, then for every 1 ≤ d ≤ n and γ > 0, there exists a set J ⊆ [n] with

|J | ≤ 2td

γ2
(15)

such that for all subsets α ⊈ J with |α| ≤ d, we have |ĥ(α)| ≤ γ.

Intuitively, the lemma states that if a density function has high entropy, then its low-degree part can
be approximated by a |J |-junta with error γ. There’re several parameters need to be specified in
Lemma 1, but at least we want a |J | = o(n) and γ = o(1), otherwise the result doesn’t make much

sense. For example, one can choose γ ∼
(

td√
n

)1/2
, then |J | ≲ √

n. And we claim that this is all we
need, because we can safely ignore the high-degre parts or those qi with low-entropy:

1. Recall the property of degree-d pseudo-expectation Ẽ: it evaluates to 0 for any monomial with
degree higher than d. Thus when we apply Ẽ over a qi, only its low-degree part —

∑
|α|≤d ĥi(α)χα

— matters.

2. Suppose some density qi has low-entropy H(qi) < n − t, then there’s some x′ that makes
qi(x

′) > 2t by the definition of entropy. Now look at (14) with x = x′:

c− I(x′) =
R∑
i=1

λiqi(x
′) + λ0

Since the LHS is always less than or equal to 1 as c ≤ 1, we conclude that λi < 2−t. Thus by
choosing a suitable t, we can easily control the error due to Ẽqi.

Random Restriction. The idea is as follows: with Lemma 1 we can say that every high-entropy qi
has a |Ji|-junta approximation for its low-degree part, where Ji ⊂ [n], |Ji| = o(n). Now if we randomly
pick a subset S with |S| = m = o(n), and restrict qi to coordinates in S, then with large probability
|S ∩ Ji| ≤ d. Based on the fact that there’re at most R = nd/2-many qi’s, we can apply union bound
to show that there exists a set S s.t. |S ∩ Ji| ≤ d for every i ∈ [R].

Lemma 2. For any d ∈ N, let Q be a collection of densities h : {−1, 1}n 7→ R≥0 such that each of
them has entropy at least nt. If |Q| ≤ nd/2, then for all integers m with 3 ≤ m ≤ n/4, there exists a
set S ⊆ [n] such that

• |S| = m

9



• For every q ∈ Q, there exists a set of at most d coordinates J(q) ⊂ S such that all degre-d terms
of q not contained in J(q) are small. Quantitatively, we have

|q̂(α)| ≤
(
16mtd√

n

)1/2

,∀α ⊂ S, α ⊈ J(q), |α| ≤ d

Bounding the approximation error. Now we put everything together: Let m ≤ n be parameters
that will be chosen later. With the existence of the size-m set S as claimed in Lemma 2, our final
max-Πn instance is build as follows: take a (c, s)-hard instance I0 ∈ max-Πm for SAd, i.e., opt(I0) ≤ s
but SAd(I0) > c, then “plant” I0 on the variable in S to get a max-Πn instance I; All variables
outside S are dummy variables and are not imposed with any constraints. This way it’s easy to see
that opt(I) = opt(I0) ≤ s.

Let Ẽ0 be the SAd solution for I0. We extend Ẽ0 to a solution ẼS for I:

ẼS [χα] =

{
Ẽ0[χα], if α ⊆ S

0, otherwise.

By definition ẼS [I] = sad(I0), and it’s easy to verify that ẼS is a valid degree-d pseudo-expectation
for functions over {−1, 1}n. Now we apply ẼS to both sides of (14) to get.

c− sad(I0) =
R∑
i=1

λiẼS [qi] + λ0 (16)

By assumption, the LHS of (16) is bounded away from 0, i.e., less than some constant β < 0. We now
show the RHS≥ −ϵn for some diminishing error ϵn. First let qSi :=

∑
α⊆S q̂i(α)χα be the restriction

of qi, then ẼS [qi] = ẼS [q
S
i ] = Ẽ0[q

S
i ]. The error comes from two parts:

1. If qi is a low-entropy density with H(qi) < n−t, as discussed previously, λi < 2−t. By Claim 1(ii)
and R ≤ nd/2, we have

∑
i:H(qi)<n−t

λiẼS [qi] =
∑

i:H(qi)<n−t

λiẼ0[q
S
i ] ≥ −2−tnd/2

d∑
i=1

(
m

i

)
(17)

2. If H(qi) ≥ n − t, by Lemma 2 we know the degree-d part of qSi can be decomposed as a

nonnegative d-junta plus some error ei, s.t. |êi(α)| ≤
(

16mtd√
n

)1/2
,∀α ⊆ S, |α| ≤ d. So we have

Ẽ0[q
S
i ] ≥ −|Ẽ0[ei]| ≥ −

∑
α:|α|≤d

|êi(α)| · |Ẽ0[χα]| ≥ −
(
16mtd√

n

)1/2 d∑
i=0

(
m

i

)
.

Therefore ∑
i:H(qi)≥n−t

λiẼS [qi] =
∑

i:H(qi)≥n−t

λiẼ0[q
S
i ]

≥ −
(
16mtd√

n

)1/2 d∑
i=0

(
m

i

) ∑
i:H(qi)≥n−t

λi

≥ −
(
16mtd√

n

)1/2 d∑
i=0

(
m

i

)
(18)

where the last inequality is by
∑R

i=1 λi ≤ 1 (this can be seen by taking expectation on both
sides of (14)).
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Combining (17) and (18), we conclude that the RHS of (16) has
R∑
i=1

λiẼS [qi] + λ0 ≥
R∑
i=1

λiẼS [qi] ≥ −O

(((
16mtd√

n

)1/2

+ nd/22−t

)
·md

)
Let −ϵn denote the RHS of the above inequality. If we take t = d log n, then

ϵn = O

(
md

√
md log n

n1/4

)
(19)

For fixed m, d, apparently ϵn → 0 when n→ ∞, thus proving Theorem 3(i). While for superconstant
d = d(m), taking n = m10d still make ϵn = o(1), and the size lower bound is nd/2 ≥ m5d(m)2 .

4.4 Discussion and Improvement
For MaxCSP with exponentially large Sherali-Adams lower bound, Theorem 3 only gives quasi-
polynomial extension complexity lower bound. To see why Theorem 3 fails to give a stronger lower
bound, first recall the final error bound (19) obtained in the proof:

ϵn = O

(
md

√
md log n

n1/4

)
.

To make ϵn → 0, n1/4 has to be at least larger than md, and this is why we only get a quasi-polynomial
lower bound. If we can improve the denominator to nω(1) or nΩ(d), then we can significanly improve the
lower bound to e.g., sub-exponential in the later case. The n−1/4 factor comes from the approximation
error given by Chang’s Lemma (Lemma 1). Unfortunately, this is essentially tight and one can find
counter examples showing that it’s impossible to get n−ω(1) or n−Ω(d) error rate. For more details
regarding this bottleneck, we refer the readers to section 3.1 of [CLRS13].

However, not all hope is lost: observe that in Chang’s Lemma we’re trying to approximate a
high-entropy density by a single junta, but for our final purpose, it suffices to have an approximation
in the form of non-negative linear combination of non-negative juntas. This is how [KMR17] finally
improved the lower bound to sub-exponential.

5 Lower Bounds via Reductions
In the area of computational complexity, the most widely-used approach to proving hardness is by
reductions: starting from some known hard problem A, use the instance of problem B to build gadgets
that can efficiently represent any A-instance. Then this implies if one can solve B efficiently, so can
one solve A. So a natural question is: can we find a general reduction strategy for proving extension
complexity lower bound? Braun et al.[BPZ15, BPR18] proposed an abstract framework to address
this problem. We will briefly introduce their framework, and present the result of [BFPS15] that
proves a (2− ϵ)-LP hardness5 for approximating vertex-cover.

5.1 The framework
We first give a abstract definition that captures the type of optimization problems we’re dealing with:

Definition 5 (Optimization problem). An optimization problem P is defined as a tuple P = (S, J),
where S is the set of feasible solutions, and J is the set of instances. Every I ∈ J can be viewed as
an objective function I : S 7→ R.

To study the extension complexity of an optimization problem, we need first define an appropriate
linearization of it. The linearization is very similar to how we define it for MaxCSP in Section 2,
except that the definition now covers a broader range of problems:

5We say a problem is “LP-hard to c-approximate” if there’s no polynomial-size LP formulation that c-approximates
the problem.
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Definition 6 (LP formulation for optimization problem). Given any optimization problem P = (S, J)
and functions C, S : J 7→ R, a (C, S)-approximate LP formulation of P consists of a linear program
Ax ≤ b with x ∈ RD for some D > 0 such that:

Feasible solutions For every s ∈ S, there’s a xs ∈ RD satisfying Axs ≤ b, i.e., conv ({xs : s ∈ S})
is contained in the feasible region.

Objective functions For every I ∈ J, there’s an affine function wI : RD 7→ R satisfying wI(x
s) =

I(s),∀ s ∈ S.

(C, S)-approximation guarantee Let JS := {I ∈ J : maxs∈S I(s) ≤ S(I)}, we require that

max {wI(x)|Ax ≤ b} ≤ C(I) for all I ∈ JS

The above definition is for when P is a maximization problem. For minimization problems we
can analogously define JS = {I ∈ J : maxs∈S I(s) ≥ S(I)} and require

min {wI(x)|Ax ≤ b} ≥ C(I) for all I ∈ JS .

The size of the LP is the number of inequalities in Ax ≤ b. And we let fcLP(P, C, S) denote the
minimal size of all the (C,S)-approximate LP formulation for P; we also use fcLP(P, α) to denote case
when C/S = α (or S/C = α, for minimization problems).

We can also give an analogy of Yannakakis’ Factorization Theorem in our setting. First we define
the slack matrix of a (C, S)-approximate optimization problem

Definition 7 (Slack matrix for approximate optimization problem). Given optimization problem
P = (S, J) with (C, S)-approximation guarantee, we define the (C,S)-approximation slack matrix of
P as the nonnegative JS ×S matrix MP,C,S:

MP,C,S(I, s) := C(I)− I(s)

Then we define a type of matrix factorization that’s almost identical as the nonnegative factorization,
only that they may differ by one affine shift:

Definition 8 (LP factorization). For any M ∈ Rm×n
≥0 , it has a size-r LP factorization if M =

TU + µ1⊤ with T ∈ Rm×r
≥0 , U ∈ Rr×n

≥0 , µ ∈ Rm
≥0, and 1 ∈ Rn is the all-1 vector. The LP rank of M is

defined as the minimum r s.t. there exists a size-r LP factorization of M , denoted as rankLP(M).

And the factorization theorem establishes the equivalence between LP rank and LP formula size:

Theorem 4 (Factorization Theorem for LP formula size). For any approximation problem P =
(S,F ,F∗) with (C, S)-approximation guarantee, we have

fcLP(P, C, S) = rankLP(MP,C,S)

Remark: One may wonder why we not just use the extension complexity xc and nonnegative rank
rank+ as previously. The extension complexity for approximation problems, as defined in [BFPS12],
may not equal the slack matrix’s nonnegative rank exactly: they may differ by 1 (see Theorem 1 and 2
in [BFPS12]). Furthermore, they’re defined with respect to specific linear encoding of the problem. On
the other hand, the fcLP and rankLP not only have a slightly cleaner factorization theorem, they also
subsume the framework of [BFPS12] in the sense that: fcLP can be viewed as the minimum extension
complexity with respect to all possible linear encodings. Therefore, fcLP is a stronger notion than xc
for approximation problems, and a lower bound for fcLP is a lower bound for xc. For more detailed
discussion about the relation to approximate extended formulations, we refer the readers to Appendix
B of [BPZ15].

We will now define the reduction between optimization problems that also translate the approxi-
mation guarantee.
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Definition 9 (Reduction). Let P1 = (S1, J1),P2 = (S2, J2) be optimization problems with approxi-
mation guarantees (C1, S1), (C2, S2), respectively. Furthermore, let τ1 = +1 if P1 is a maximization
problem and τ1 = −1 if it’s a minimization problem, and define τ2 for P2 similarly. Then a reduction
from P1 to P2 respecting approxation guarantee consists of

1. two mappings: α : J1 7→ J2 and β : S1 7→ S2 translating instances and feasible solutions,
respectively;

2. two nonnegative J1 ×S1 matrices M1,M2

such that for any I1 ∈ J1, s1 ∈ S1 and I2 = α(I1), s2 = β(s1), there’s

Completeness: τ1[C1(I1)− I1(s1)] = τ2[C2(I2)− I2(s2)] ·M1(I1, s1) +M2(I1, s1) (20)
Soundness: τ2 · opt(I2) ≤ S2(I2) if τ1 · opt(I1) ≤ S1(I1) (21)

Since by definition MP1,C1,S1(I1, s1) = τ1[C1(I1)−I1(s1)] and MP2,C2,S2(I2, s2) = τ2[C2(I2)−I2(s2)],
the completeness requirement (20) is essentially describing a mapping from MP1,C1,S1

to MP2,C2,S2
.

Intuitively, if M1,M2 is relatively simple, then MP1,C1,S1
and MP2,C2,S2

should have similar rankLP.
This intuition is formalized in the following theorem:

Theorem 5 ([BPR18]). Given optimization problems P1,P2 with corresponding completeness and
soundness guarantees (C1, S1), (C2, S2), if we have a reduction from P1 to P2 that respects their
approximation guarantees as in Definition 9, then

fcLP(P1, C1, S1) ≤ rankLP(M2) + rankLP(M1) + rank+(M1) · fcLP(P2, C2, S2) (22)

5.2 Extension complexity for approximating vertex-cover
5.2.1 LP-hardness for ( 32 − ϵ)-approximating vertex-cover

It’s known that the basic relaxation for vertex-cover has a integrality gap 2− ϵ even after Ω(nγ)-
rounds of Sherali-Adams lift[CMM09]. But we can’t use Theorem 3 here because it only applies to
MaxCSP problems. We will prove the LP-hardness result using the reduction theorem 5 stated in
the last section. First, as a direct consequence of Theorem 3, we have the following corollary about
max-cut:

Corollary 1. For every ϵ > 0 and for infinitely many n ∈ N, the max-cut problem on n-vertex graph
has fcLP(max-cut, 1− ϵ, 1/2 + ϵ) ≥ nΩ(logn/ log logn).

•TODO: Define the

VC problem,

emphasize the

“non-uniformity” of

this problem. The

LP for MaxCut is a

“uniform” model in

the sense that the LP

only depends on

input size n, while

the LP for VC can

(and should) depend

on the actual input.

By reducing from max-cut, we’ll show the following LP-hardness result for vertex-cover:

Theorem 6. For every ϵ > 0 and for infinitely many n ∈ N, there exists a n-vertex graph G = (V,E)
such that fcLP(vertex-cover(G), 1.5− ϵ) ≥ nΩ(logn/ log logn).

Proof. The reduction consists of two mappings: H, between the problem instances, and U , between
feasible solutions. We first define the mapping H from max-cut instance to vertex-cover instance.
Let max-cutn denote the set of all max-cut instances on n-vertex graph, then each G ∈ max-cutn

can be viewed as a weight-assignment on all edges of Kn, the n-vertex complete graph. In particular,
we can focus on 0− 1 edge weights, and G is just a subset of edges of Kn. To construct the mapping
from max-cutn to vertex-cover, we first build a conflict graph K∗ from Kn, then our reduction
will map each G ∈ max-cutn to a vertex-cover instance on some subgraph G∗ ⊆ K∗. The conflict
graph K∗ is defined as follows (see Figure 1 for an illustration):

vertices: Use [n] to index the vertices of Kn. For each (i, j) ∈ E(Kn), it corresponds to a XOR
constraint P defined on variable Xi, Xj , and we create two vertices to represent the two satisfying
partial assignment σ : (Xi, Xj) 7→ {0, 1}2 for this constraint: specifically, we use vP,(0,1), vP,(1,0)

to denote the two vertices.
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edges: We connect two vertices vP1,σ1 and vP2,σ2 if the partial assignments σ1, σ2 are incompatible:
i.e., there exists some Xi that’s in both P1 and P2’s variable set, and σ1(i) ̸= σ2(i).

K∗ is known as a universal FGLSS graph[FGL+91] which encodes all possible choices of predicates si-
multaneously. Note |V (K∗)| = 2

(
n
2

)
, so the mapping is between max-cutn and vertex-covern(n−1).

With K∗, the mapping between problem instances is naturally defined: given any G ∈ max-cutn,
the vertex-cover instance H(G) is the subgraph G∗ ⊆ K∗ induced by the vertex set mapped from
E(G).

(0; 1) (0; 1) (0; 1)

(1; 0) (1; 0) (1; 0)

σ : (X1; X2) 7! f0; 1g2

s:t: X1 ⊕X2 = 1

σ : (X2; X5) 7! f0; 1g2

s:t: X2 ⊕X5 = 1

σ : (X7; X5) 7! f0; 1g2

s:t: X7 ⊕X5 = 1

1

2

5

7

=)

Max Cut Vertex Cover

Figure 1: Conflict graph of the 2-XOR clause, used for reduction from max-cut to vertex-cover.

To finish the definition of the reduction, we now define the mapping U between feasible solutions.
Given any max-cutn solution x ∈ {0, 1}n, define vertex set U(x) := {vP,σ ∈ V (G∗) : σ ⊈ x} as the
set of all vertices corresponding to partial assignments incompatible with x. We claim this is a valid
vertex cover: for any edge (vP1,σ1 , vP2,σ2) ∈ E(G∗), since by construction σ1 and σ2 are incompatible,
at least one of them will be incompatible with x, thus being included in U(x).

Now we use Theorem 5 to show the above reduction gives a (1.5 − ϵ)-LP hardness for vertex-
cover. Let P1 = (S1, J1) be the max-cut problem, and P2 = (S2, J2) be the vertex-cover
problem; also, let G = I1 ∈ J1 be the max-cut instance we reduce from, and G∗ = I2 = H(I1) be
the vertex-cover instance reduced to.

• Soundness: First we prove the soundness requirement (21). Observe that if I1 has m constraints,
i.e., |E(G)| = m, then |V (G∗)| = 2m. Suppose opt(I1) ≤ 1/2 + ϵ, we show that there must
be opt(I2) ≥ (1.5 − ϵ)m: for any valid vertex cover U ⊂ V (G∗), its complement Ū is an
independent set of size |V (G∗)| − |U | = 2m − |U |. Furthermore for any two vP1,σ1

, vP2,σ2
∈ Ū ,

the partial assignment σ1 and σ2 are compatible with each other. Take the union of all such
partial assignment defined by Ū , and extend it arbitrarily to other variables in [n] to get an full
assignment x ∈ 0, 1n, then x satisfies at least |Ū | many constraints in G. Therefore we have
2m− |U | ≤ (1/2 + ϵ)m, i.e., |U | ≥ (1.5− ϵ)m.

• Completeness: For completeness (20), observe that (1) if a constraint P (Xi, Xj) = 1[Xi⊕Xj = 1]
is satisfied by x, then exactly one of vP,(1,0), vP,(0,1) is included in U(x); (2) if P (Xi, Xj) is not
satisfied by x, then both vP,(1,0), vP,(0,1) are included in U(x). Therefore we have the following
equation:

I1(x) =
1

m
(2m− I2(U(x)))

And the completeness requirement (20) is satisfied as follows:

1− ϵ− I1(x) = − 1

m
((1 + ϵ)m− I2(U(x)))
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Thus by Theorem 5, we have

fcLP(P1, 1− ϵ, 1/2 + ϵ) ≤ fcLP(P2, 1.5− ϵ) + 1

Apply Corollary 1 we get the desired lower bound

5.2.2 Improvement: LP hardness of (2− ϵ)-approximating vertex-cover

From the proof of Theorem 6, we can see that if the max-cut problem provides a larger gap, say
(1 − ϵ, ϵ)-LP hardness, then the same reduction can prove a (2 − ϵ)-LP hardness result for vertex-
cover. Unfortunately, the (1− ϵ, 1/2+ ϵ)-LP hardness of max-cut is known to be tight: the natural
LP has integrality gap 2. A natural thought is to seek harder MaxCSP problems that can utilize the
conflict graph for reduction. Indeed, the key property of the CSP we need is the one-free bit property
defined as follows:

Definition 10 (One-free bit CSP(1f-csp)[BK09]). A 1f-csp instance of arity k is a special binary
max-csp instance of the same arity, such that each constraint has exactly two satisfying assignments
out of the 2k possible ones.

Apparently max-cut is just a special kind of 1f-csp. If we reduce from 1f-csp to vertex-cover
using the conflict graph, then an almost unsatisfiable instance will translate to a vertex-cover
instance that has opt ∼ 2m, where m is the number of constraints in the 1f-csp instance. This gives
the desired 2− ϵ soundness parameter for vertex-cover.

A natural candidate of hard MaxCSPs is the unique-games problem, which is known to be
(1−ϵ, ϵ)-LP hard for any ϵ > 0. Unfortunately, unique-games is not a 1f-csp, so we cannot use it as
base problems directly. But we can actually reduce unique-games to 1f-csp under the framework
of Theorem 5 while preserving the completeness-soundness gap. Then following a similar approach as
Theorem 6, we can get the (2− ϵ)-LP hardness of vertex-cover.

For completeness, we restate the definition of unique-games (see Example 2) below, but in the
form of a graph coloring problem:

Definition 11 (unique-games). An unique-games(n, q) instance consists of a graph G = (V,E),
a set of labels Ω = [q], and a set of permutations {πuv : [q] 7→ [q] | (u, v) ∈ E} associated with each
edge in E. The goal is to find a labeling ℓ : V 7→ [q] to maximize the number of satisfied edges, where
an edge (u, v) is satisfied iff π(ℓ(u)) = ℓ(v).

And we have the follwoing LP-hardness result for unique-games:

Theorem 7 ([LRS15],Corollary 7.7). For every q ≥ 2, δ > 0, and d ≥ 1, there exists constant c > 0,
such that for all n ≥ 1,

fcLP

(
unique-games(n, q), 1− δ,

1

q
+ δ

)
≥ cnd

In other words, no LP family of polynomial size can (1−δ, 1/q+δ)-approximate unique-games(n, q).

In particular, we can restric the unique-games instance to regular graphs, and the above theorem
still hold. Let unique-games∆(n, q) denote the instance on ∆-regular graphs, and we reduce unique-
games to 1f-csp as follows:

Lemma 3 (unique-games =⇒ 1f-csp). For any η, ϵ, δ, ζ > 0, and positive integers t, q,∆ that only
depend on η, ϵ, δ, we have

fcLP(unique-games∆(n, q), 1− ζ, δ)− n∆tqt+1 ≤ fcLP(1f-csp, (1− ϵ)(1− ζt), η) (23)

The reduction from unique-games to 1f-csp is fairly standard: using 1f-csp constraint to build
a long code tester (a.k.a. dictatorship tester) testing the validity of the given labeling for the unique-
games instance. Since a tester is equivalent to a CSP instance, we get the 1f-csp instance. For
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detailed proof, we refer the readers to Theorem 9.2 in [BPR18]. Combined with Theorem 7, this implies
(1 − ϵ, ϵ)-approximating 1f-csp requires nω(1)-size LP formulations (since the n∆t+1qt+1 = poly(n)
as ∆, q, t are independent with n). The last step is reducing from 1f-csp to vertex-cover, which
is just the same as in the proof of Theorem 6.

Theorem 8 (1f-csp =⇒ vertex-cover). For every ϵ > 0 and for infinitely many n ∈ N, there
exists a n-vertex graph G = (V,E) such that fcLP(vertex-cover(G), 2− ϵ) ≥ nω(1).

Proof. The proof is almost the same as that of Theorem 6: In the conflict graph, for every constraint
P from the 1f-csp we create two vertices vP,σ1

, vP,σ2
corresponding to the two satisfying partial

assignment of P ; Two vertices are connected if the two partial assignment conflict. The rest of the
proof follows as in the proof of Theorem 6, only that the 1f-csp is (1− ϵ, ϵ)-LP hard.

In Theorem 8 we only get a nω(1) lower bound for (2 − ϵ)-approximate vertex-cover, which
is weaker than the nΩ(logn/ log logn) bound for (1.5 + ϵ)-approximate vertex-cover. This is mainly
because the base problem (unique-games) only has a nω(1) extension complexity lower bound. But
we can actually circumvent this barrier: using a reduction almost identical in Lemma 3, one can
construct a 1f-csp instance that requires the same Sherali-Adams lower bound as the unique-games,
while still preserving the large completeness-soundness gap (1− ϵ, ϵ). As it’s already known unique-
games survives nΘ(1)-round of Sherali-Adams lifting[CMM09], this gives a same Sherali-Adams lower
bound for 1f-csp, which in turn implies6 a nΩ(logn/ log logn) extension complexity lower bound due to
Theorem 3, and thus a nΩ(logn/ log logn) lower bound for (2− ϵ)-approximate vertex-cover.

5.3 Discussion
The nature of reduction means that any improvement on the fcLP of the base problem will imply the
same improvement on fcLP(vertex-cover). Indeed, this already happens for (1.5 + ϵ)-approximate
vertex-cover: as mentioned in section 4.4, the lower bound for (1− ϵ, 1/2 + ϵ)-approximate max-
cut can be improved to 2n

c(ϵ) where c(ϵ) is some constant only depending on ϵ; This automatically
implies subexponential extension complexity lower bound for (1.5 + ϵ)-approximate vertex-cover.

Apart from vertex-cover, one can deduce extension complexity lower bound for many other
problems by reduction. A most direct one is independent-set as it’s the complement of vertex-
cover: we can get a LP hardness result for independent-set by the same reduction as in Theorem 6
and 8. Indeed, one can show that fcLP(independent-set, 1/ϵ) ≥ nΩ(logn/ log logn) using the same
reduction gadgets. For more results we refer the readers to [BPR18].

6 Related results for SDP extension complexity
Semidefinite programming (SDP) can be thought as a generalization of LP, where the variables are
required to be in a positive semidefinite (PSD) cone. There’s a counterpart of the nonnegative rank
called PSD rank, and a factorization theorem that relates the PSD rank of slack matrices with SDP
formulation size[GPT13, FMP+12]. The SDP extension complexity results surveyed in this section,
although utilize very different techniques, are similar to the LP results from a highlevel viewpoint.
The SDP extension complexity lower bound is also proved by lifting from hierarchy lower bound: the
hierarchy used is the Sum-of-Square (SoS) hierarchy (a.k.a. Lasserre hierarchy) that can be thought
as an SDP counterpart of Sherali-Adams hierarchy.

Lee et al.[LRS15] proved a lifting theorem similar to Theorem 3, claiming that if degree-d(n) SoS
relaxation cannot achieve (c + ϵ, s)-approximation for max-Πn, then no SDP relaxation of size at
most O(nd(n)

2/8) can achieve a (c, s)-apprxoimation for max-ΠN for N > n4d(n). This combined with
known Ωϵ(n)-SoS lower bound of max-3sat [Gri01, Sch08], gives a quasi-polynomial SDP size-lower
bound for (7/8 + ϵ)-approximate max-3sat. The proof strategy of [LRS15] can also be divided into
three steps as in [CLRS13]: First, a low psd rank factorization gives a “high-entropy” certificate Q
(like the set of qi’s in (14)); Then one can show this certificate Q is well-approximated by a relatively

6Note we cannot apply Theorem 3 directly to unique-games, since it’s not a binary CSP.
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simple function R: in the SDP setting, R is a not-very-high degree sum-of-squares; Finally one uses the
idea of random restriction to reduce the degree of R to some small number d. Then R would serve as a
degree-d SoS solution for the MaxCSP, which would violates known SoS lower bound. The main source
of complicatedness here is Q being a matrix-valued function, and [LRS15] uses a “quantum-learning”
argument to approximate Q, which is basically a sub-gradient descent algorithm. The same approach
is also used for obtaining sub-exponential SDP size lower bound for polytopes like cutn,tspn, stabn.
Their techniques can also be adapted to derive LP size lower bound, and in particular, they give a
nω(1)-LP size lower bound for (1− δ, 1/q + δ)-approximate unique-games(n, q). Another interesting
result obtained via lifting SoS lower bound is an SDP size lower bound for the matching polytope:
Braun et al.[BBH+17] proved that approximating matchingn within 1− ϵ/(n− 1) will require 2Ω(n)-
sized symmetric SDP.

The reduction technique presented in section 5 also naturally extends to SDPs. Using the quasi-
polynomial lower bound of max-3sat mentioned in previous paragraphs, Braun et al.[BPR18] is able
to show a nΩ(logn/ log logn) SDP size lower bound for (4/5 − ϵ, 3/4 + ϵ)-approximate max-cut. For
more results obtained via reduction, we refer the readers to [BPZ15, BPR18].

7 Open problems
•TODO: This part

needs revision.At the end of this survey we’d like to highlight some major open problems remained in this area. All the
currently known results are for relatively simple problems, like the binary MaxCSP, or very structured
polytopes like cut, stab, corr. While for many other important combinatorial optimization prob-
lems like Set-Cover, Scheduling, few is known. The situation is true even for hierarchy lower bounds.
There’re a few problems that admit efficient lift-and-project algorithms, like Knapsack[KMN11], Di-
rected Steiner Tree[Rot11], and some variants of Scheduling[LR16, GKL19]; But many seems to resist
hierarchy liftings, although few lower bounds are known either.

The lack of stronger LP size lower bound for non-binary CSPs, especially the unique-games
problem, is also unsatisfying. Right now we only have a nω(1)-LP size lower bound for unique-games
from [LRS15]7. Given the central importance of unique-games in hardness of approximation, any
progress would probably imply some extension complexity results for lots of problems that are “UG-
hard”.

Another natural question is whether one can prove stronger SDP size lower bound. For MaxCSPs,
the best known lower bound is still quasi-polynomial[LRS15]. Apart from the NP-hard problems,
the matching polytope is also very intriguing: although its LP extension complexity is settled by
Rothvoß[Rot14], much less is known about the SDP case. For now we know any symmetric SDP ex-
tended formulation of matching has exponential size[BBH+17], but nothing is known for asymmetric
SDPs.
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