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Abstract: Secure sketches and fuzzy extractors enable the use of biometric data in cryptographic applications by correct-
ing errors in noisy biometric readings and producing cryptographic materials suitable for many applications.
Such constructions work by producing a public sketch, whichis later used to reproduce the original biometric
and all derived information exactly from a noisy biometric reading. It has been previously shown that release
of multiple sketches associated with a single biometric presents security problems for certain constructions.
Through novel analysis we demonstrate that all other constructions in the literature are also prone to similar
problems, which hinders their adoption in practice. To mitigate the problem, we propose for each user to
store one short secret string for all possible uses of her biometric, and show that simple constructions in the
computational setting have numerous security and usability advantages under standard hardness assumptions.
Our constructions are generic in that they can be used with any existing secure sketch as a black box.

1 INTRODUCTION

The motivation for this work comes from prac-
tical use of biometric-derived data and its suitabil-
ity for adoption. Secure sketches and fuzzy extrac-
tors (Dodis et al., 2004) were introduced as mecha-
nisms of deriving cryptographic material from noisy
biometric data, which can be used for authentication,
encryption, and other purposes. Such constructions
produce a helper string (secure sketch) – which is
viewed as public – from a biometric and later re-
produce the cryptographic string from a close noisy
biometric reading using the helper string. Only mini-
mal information about the biometric should be leaked
due to the release of the helper string.

While this powerful concept enables new applica-
tions and can be attractive to users who no longer need
to maintain secrets to participate in cryptographic pro-
tocols, it has been shown that leakage of informa-
tion associated with the biometric in such construc-
tions is unavoidable (Smith, 2004; Dodis and Smith,
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2005). Furthermore, this concept has been more heav-
ily studied in the context when the construction is ap-
plied to a biometric only once. Consecutive publica-
tions (Boyen, 2004; Simoens et al., 2009) explored
the security guarantees of such schemes in terms of
their reusability, when a single biometric or its noisy
version is used to produce multiple secure sketches
using the same or different algorithms. Informa-
tion leakage prevents such constructions from meet-
ing standard security requirements sought of them in
cryptographic applications such as indistinguishabil-
ity (inability to link two records to the same biomet-
ric) and irreversibility (inability to reverse the con-
struction and directly recover information about the
biometric). Some of the more popular constructions
have been shown to have serious security weaknesses
in presence of even very weak adversaries (Simoens
et al., 2009). In this work, we analyze other schemes
from the literature and show that they also cannot be
safely reused. In particular, our novel analysis shows
that the remaining constructions fail to satisfy stan-
dard security expectations with respect to reusability
and therefore cannot be used in security applications.

In such schemes, information leakage is quanti-



fied as the entropy loss associated with the release
of the helper string, providing a rough upper bound.
For the current error rates and typical sets of parame-
ters in biometric data, the information theoretic anal-
ysis provides bounds that result in leakage of most or
even all entropy contained in a biometric (see (Blan-
ton and Hudelson, 2009) for a sample iris code analy-
sis). Because this information leakage is unavoidable,
it presents problems even in case of weak adversaries.

To overcome the issues of information leakage
and unsafe reuse of biometrics, we propose to use the
computational setting, where a user stores a single key
and the adversary is computationally bounded. The
key is introduced for the purpose of avoiding informa-
tion leakage and improving security of the schemes
and does not change the functionality. We believe
that keeping a single short key for all possible uses of
biometric-based material in different security applica-
tions is a small price to pay for achieving significant
security improvements (which otherwise are not pos-
sible) and the ability to safely use such constructions
in a variety of applications. We show that the use of
one key and standard computational assumptions (ex-
istence of pseudo-random and hash functions) is suf-
ficient for achieving very attractive properties using
simple schemes. Our constructions are generic in that
they can use any existing secure sketch scheme as a
black box for any type of distance metric).

We would like to note that the use of the secret in
our schemes should not be confused with multi-factor
authentication or the use of shared secrets, as in our
schemes the secret never leaves the user and is not
shared and a single secret is sufficient for all possi-
ble uses including multiple biometric types, multiple
applications, and multiple servers.

The security benefits of our schemes are:
• We achieve provably no information leakage.
• Previously, only certain restricted types of error-

correcting codes could be used to ensure security
of fuzzy sketches and extractors (Boyen, 2004).
Our solution lifts such restrictions and can be used
with any type of error-correcting code.
• Prior (Simoens et al., 2009) and our analysis of

secure sketch constructions shows that they all
fail to achieve standard security requirements for
cryptographic applications, while our solution is
secure in a much stronger adversarial model.
• Previously, exposure of a biometric-derived key

was shown to reveal no information about the bio-
metric for a specific construction in the random
oracle model (Boyen, 2004). Our construction, on
the other hand, achieves this result in the standard
model using any existing secure sketch.

In our analysis of existing constructions, we use

a very weak adversary. The security of our own
schemes, on the other hand, is shown using a very
strong adversary (the strongest in the literature).

To summarize, our contributions are two-fold: (i)
new analysis of fuzzy sketch schemes that shows that
even a weak adversary has a significant advantage in
compromising security of existing constructions, and
(ii) simple schemes that use a single secret to achieve
strong security under standard assumptions.

2 MODEL AND DEFINITIONS

2.1 Fuzzy sketches and extractors

Secure(or fuzzy) sketches, introduced by (Dodis et al.,
2004), correct errors in noisy secrets by releasing a
helper stringS. Let W denote a random variable and
w its value.

Definition 1 A (M ,m,m′, t)-secure sketch is a pair
of randomized algorithms:
• SS is a function that, on input w from metric space
M with distance functiondist, outputs a sketch S.
• Rec is a function that, on input w′ ∈ M and

S= SS(w), recovers and outputs the original w
if dist(w,w′)≤ t.

Secure sketches have been constructed for different
metric spacesM , for which dist(a,b) is defined for
all a,b∈ M . Security of a secure sketch is evaluated
in terms of entropy ofW before (m) and after (m′)
releasing the stringS, i.e., the entropy lossm−m′ as-
sociated with makingSpublic. Precise definitions can
be found in (Dodis et al., 2008).

Fuzzy extractorsallow one to extract randomness
from w (to use it as cryptographic material) and later
reproduce it usingw′ close to the originalw.

Definition 2 A (M ,m,m′, t,ε)-fuzzy extractor is a
pair of algorithms:
• Gen is a function that, on input w∈ M , outputs

extracted random string R and a helper string P.
• Rep is a function that, on input w′ and P repro-

duces and outputs R that was generated using
Gen(w) if dist(w,w′)≤ t.

The security requirement is that, for anyW of min-
entropym, the statistical distance between the distri-
bution ofR and the uniform distribution of strings of
the same length is no greater thanε, even after ob-
servingP. A fuzzy extractor can be built from a se-
cure sketch using a generic construction from (Dodis
et al., 2004):
Gen(w):
1. ExecuteS← SS(w; r1), wherer1 denotes random

coins used bySS (if any).



2. Use a strong extractorExt to extract a random
string R from w, i.e., R← Ext(w; r2), wherer2
denotes random coins used byExt.

3. Output publicP= (S, r2) and secretR.

Rep(w′,P= (S, r2)):
1. Executew← Rec(w′,S). If Rec fails (i.e., when

dist(w,w′)> t such thatS= SS(w)), stop.
2. ExtractR from w usingr2 asR← Ext(w, r2) and

outputR.
Strong extractors (Nisan and Ta-Shma, 1999) can ex-
tract at mostm−2log(1

ε )+O(1) nearly random bits
(m andε are as defined above). The entropy loss of
2 log(1

ε ) +O(1) is in addition to the loss due to re-
lease of sketchS, unless the extractor is modeled as a
random oracle.

Many constructions utilize error-correcting codes.
A codeC is a subset ofK elements{w0, . . .,wK−1} of
M . The minimum distance ofC is the smallestd such
thatdist(wi ,wj) ≥ d for all i 6= j, which implies that
the code can detect up tod−1 errors; and the error-
correcting distance ist = ⌊(d−1)/2⌋. A linear error-
correcting codeC over fieldFq is ak-dimensional lin-
ear subspace of the vector spaceF

n
q which uses Ham-

ming distance as the metric. For any linear codeC, an
(n− k)×n parity-check matrixH projects any vector
v∈ F

n
q to the space orthogonal toC. This projection

is called the syndrome and denoted bysyn(v) = Hv.
Thenv∈C iff syn(v) = 0. The syndrome contains all
information necessary for decoding, i.e., when code-
wordc is transmitted and noisyw= c+e is received,
syn(w) = syn(c)+ syn(e) = 0+ syn(e), wheresyn(e)
can be used to determine the error patterne.

Metric-specific secure sketch constructions are
known for the Hamming distance (used for iris
codes), the set difference (used for fingerprints), and
the edit distance (used for DNA comparisons). Also,
the permutation-based construction is available for
any transitive metric (e.g., Hamming distance and
set intersection). Schemes for the Hamming distance
have been most heavily analyzed, and some schemes
are known to have security problems when reused on
related biometrics. In this work we analyze remaining
known constructions and show their insecurity.

2.2 Secure sketch constructions

(Simoens et al., 2009) show that two popular secure
sketch constructions – the code offset construction
with a linear error-correcting code (the syndrome con-
struction) and the construction based on permutation
groups – do not withstand the requirements of indis-
tinguishability and reversibility, i.e., the adversary can
win such experiments with overwhelming probability.
The former scheme is for the Hamming distance (and

is among the most widely studied schemes) and the
latter is for any transitive distance metric. We con-
centrate on the analysis of other schemes and outline
schemes for the set difference and edit distance. In
what follows, we usea

R
← A to denote that the valuea

is chosen uniformly at random from the setA.

Fuzzy vault. The fuzzy vault scheme (Juels and
Sudan, 2002) can be used as a fuzzy sketch for set
difference. A biometric is comprised of unordered
elementsw = {w1, . . .,ws} (e.g., minutiae points in
fingerprints), which are disguised by adding a large
number ofchaff points. The genuine points carry
information that allowsw to be reconstructed from
noisyw′. Heret ∈ [1,s] andr ∈ [s+1,n] are system-
wide parameters, wheren is the set of all possible
points, or the universe. Work is over fieldFn, wheren
is a prime power.

To computeSS(w):
1. Choose a random polynomialp(·) of degree at

mosts− t−1 overFn.
2. For eachwi ∈ w, let xi = wi andyi = p(xi).
3. Chooser−sdistinct pointsxs+1, . . .,xr at random

from Fn \w and setyi
R
← Fn \ {p(xi)} for i = s+

1, . . ., r.
4. OutputSS(w) = {(x1,y1), . . .,(xs,ys)} sorted by

the value ofxi ’s.

To computeRec(w′,S):
1. Create the setD of pairs(xi ,yi) such thatxi ∈ w′.
2. Run Reed-Solomon decoding onD to recover the

polynomialp(·).
3. Outputspoints of the form(xi , p(xi)) from S.
Privacy of the biometric depends on the number and
distribution of pointsS (i.e., the difficulty of identi-
fying the original points and the number of spurious
polynomials created by the chaff points). The en-
tropy loss due to the release ofS is upper bounded
by t logn+ log

(n
r

)

− log
(n−s

r−s

)

+2.

Improved fuzzy vault. (Dodis et al., 2008) observed
that the polynomial in the above construction does not
need to be random, which allows for a secure sketch
with significantly lower entropy loss,t logn.

To computeSS(w):
1. Compute unique monic polynomialp(x) =

∏wi∈w(x−wi) of degrees.
2. Output the coefficients ofp() of degrees−1 down

to s− t, which will form SS(w) = (cs−1, . . .,cs−t).

To computeRec(w′,S= (cs−1, . . .,cs−t)):
1. Create a new polynomialphigh of degrees that

shares the topt + 1 coefficients withp(), i.e.,
phigh(x) = xs+∑s−1

i=s−t cixi .
2. Evaluatephigh on points of w′ to obtain pairs

(a1,b1), . . . , (as,bs).



3. Use Reed-Solomon decoding to find a polynomial
plow of degrees− t−1 such thatplow(ai) = bi for
at leasts− t/2 values ofai ’s. If none are found,
output fail.

4. Output the roots of the polynomialphigh− plow.

Another construction for set difference,Pinsketch,
is suitable for large universe sizes and variable num-
ber of elements inw. It is syndrome-based, and its
(in)security is not difficult to reduce to the previously
analyzed code-offset scheme. We thus omit its anal-
ysis. For the edit distance, the only known way to
construct a secure sketch is by embedding it into a
transitive metric of larger dimension and applying a
secure sketch construction to the target metric. An
embedding with attractive properties was developed
in (Dodis et al., 2008) using Pinsketch. Once again,
the insecurity of the resulting scheme can be shown
using prior results and is omitted. This covers all se-
cure sketch schemes.

2.3 Security notions

The original security definitions of fuzzy sketches and
extractors were formulated for a single instance of a
fuzzy sketch or extractor in isolation (Dodis et al.,
2004). Consecutive literature (Boyen, 2004; Simoens
et al., 2009) considered a stronger (and more re-
alistic) adversarial model where such constructions
can be invoked multiple times and therefore the se-
curity guarantees must hold when the constructions
are reused. Furthermore, the power granted to the
adversary can greatly differ. In this work we use
weak adversaries while analyzing existing construc-
tion (to show that they do not provide sufficient secu-
rity guarantees even in presence of weak adversaries)
and strong adversaries when proving security of our
proposed solution. In a nutshell, a weak adversary
is given two fuzzy sketches and tries to determine
whether they were produced using related biometrics
or what the biometric was, while a strong adversary
can adaptively ask for fuzzy sketches and private keys
that fuzzy extractors output.

Let t be the maximum amount of errors that the
biometric system can tolerate. We define∆t to be the
set of all perturbation functions that represent differ-
ences in sampling biometric data; we get∆t = {δ :
M → M such thatdist(w,δ(w)) ≤ t}. We next de-
fine a security game for weak adversaries with access
to public sketches and then proceed with a security
game for strong adversaries. Two security properties
for weak adversaries were defined in (Simoens et al.,
2009): sketch indistinguishability and irreversibility.

2-Indistinguishability game (Simoens et al., 2009):

1. The challenger chooses a random variableW∈M
and samples it to obtainw1 ∈M . The challenger
computesS1 = SS(w1) and givesS1 to A .

2. The challenger choosesb
R
← {0,1}. If b= 1, the

challenger choosesδ R
← ∆t and produces related

w2 = δ(w1). Otherwise, the challenger samplesW
to obtain a differentw2. The challenger computes
S2 = SS(w2) and givesS2 to A .

3. The adversaryA eventually produces a bitb′ and
wins if b′ = b.

A ’s advantage in this game is defined asAdvind
A

=

2
∣

∣Pr[b′ = b]− 1
2

∣

∣= 2
∣

∣Pr[b′ 6= b]− 1
2

∣

∣.

Definition 3 An (M ,m,m′, t)-secure fuzzy sketch
(SS, Rec) is ε-indistinguishable in∆t if for any ad-
versaryA it holds thatAdvind

A
≤ ε. The fuzzy sketch is

reusable whenε is negligible.

The irreversibility property of a fuzzy sketch scheme
means that an adversary who obtains access to multi-
ple sketches generated from the same noisy input us-
ing possibly different sketching functions is unable to
recover the original input. In the current version of
this work we do not treat irreversibility, since a fail-
ure to achieve the indistinguishability property alone
points out weaknesses of a fuzzy sketch scheme.

We now proceed with defining security games for
more powerful adversaries using what we termweak
biometric privacyand strong biometric privacy. In
both of them the adversary is allowed to query the
scheme a large number of times, but the difference is
that in the first the adversary obtains access only to the
public information, while in the second it also obtains
access to the key output by a fuzzy extractor. Thus,
we use the first definition for secure sketches and the
second one for fuzzy extractors.

The two security games below are roughly equiva-
lent to outsider and insider chosen perturbation secu-
rity in (Boyen, 2004), but are stronger than the respec-
tive definitions in (Boyen, 2004). In particular, in our
definition of weak biometric security we require the
adversary to only distinguish between two sketches,
while the adversary was required to recover the bio-
metric w in (Boyen, 2004). Furthermore, instead of
allowing the adversary to query fuzzy sketches for a
particular biometricw and then challenging the ad-
versary by asking it to distinguish between a sketch
for w and a sketch for a randomly chosen biometric,
we setup two biometricsw0 andw1 and allow the ad-
versary to query sketches for both. Then during the
challenge, the adversary is asked to determine which
biometric was used in producing the challenge sketch.
This can give the adversary advantage over the prior
formulation, especially in the computational setting
where different users will possess different keys.



As our schemes work in the computational setting,
we useκ to denote the security parameter. All algo-
rithms are assumed to be polynomial time inκ. Then
a functionε(κ) is negligible if for all positive polyno-
mials p(·) and sufficiently largeκ ε(κ)< 1/p(κ).
Weak biometric privacy:
1. (Preparation)A chooses a random variableW ∈
M and sends its specification to the challenger.

2. (Sampling) The challenger randomly samplesW
to obtainw0 ∈M andw1 ∈M and initializes two
usersU 0 andU 1, resp., using that information.

3. (Queries)A makes up toq possibly adaptive
sketching queries: to form queryi, A chooses
δi ∈ ∆t and sends it and a bitbi to the challenger.
The challenger computesSi ← SS(δi(wbi ); r i) us-
ing fresh randomnessr i and returnsSi to A .

4. (Challenge) The challenger chooses a bitb
R
←

{0,1} and δ R
← ∆t , and produces a biometric

w′ = δ(wb). The challenger then computesS←
SS(w′; r) using fresh randomr and givesS to A .

5. (More queries)A can run more queries up to the
boundq as specified in step 3.

6. (Response)A eventually produces a bitb′ and
wins if b′ = b.

A ’s advantage in this game is defined asAdv
wbp

A
(κ) =

2
∣

∣Pr[b′ = b]− 1
2

∣

∣= 2
∣

∣Pr[b′ 6= b]− 1
2

∣

∣.

Definition 4 An (M ,m,m′, t)-secure fuzzy sketch
(SS, Rec) has weak biometric privacy if for any prob-
abilistic polynomial-time (PPT) adversaryA it holds
thatAdvwbp

A
(κ)≤ ε(κ) for a negligibly smallε(κ).

Note that unlike previous definitions, we explicitly
specify the security parameterκ and define the ad-
versary’s advantage as a function of it.

The next definition corresponds to the strongest
version of the insider chosen perturbation security
definition in (Boyen, 2004). The adversary can query
the challenger to obtain sketches on both related and
unrelated biometrics and private key corresponding to
unrelated biometrics. This time we ask the adver-
sary to distinguish between the secret key output by
a fuzzy extractor on a related biometric and a ran-
domly chosen string. Note that we do not ask the ad-
versary to distinguish between biometric-derived keys
of two users because the adversary has the choice of
the sketch that it can use in the challenge. This means
that the adversary will trivially know for which user
the secret key will be produced. We, however, note
that in order to distinguish secret keys corresponding
to two users, the adversary need to be able to distin-
guish at least one of them from a random string. Thus,
our definition of security will imply the security in
the game with two users. Let∆ denote all perturba-

tion functions over spaceM , i.e.,∆ = {δ :M →M }
wheredist(w,δ(w)) can be greater thant.

Strong biometric privacy:
1. (Preparation)A choosesW ∈ M and gives its

specification to the challenger.
2. (Sampling) The challenger randomly samplesW

to obtainw∈M .
3. (Public queries)A makes up toq possibly adap-

tive generation queries: to form queryi, A
choosesδi ∈ ∆ and sends it to the challenger. The
challenger computes(Pi ,Ri)← Gen(δi(w); r i) us-
ing fresh randomr i and returns publicPi to A .

4. (Private queries)A makes up toq′ possibly adap-
tive reproduction queries that can be interspersed
with public queries as follows: to form queryi,
A choosesδ′i ∈ ∆ and a public dataP′i and sends
them to the challenger. The challenger computes
R′i ← Rep(δ′i(w);P′i ) and returnsR′i to A .

5. (Challenge)A chooses stringP∗ ∈ {P1, . . .,Pq}
from one of the strings returned by the challenger
in a public query such thatP∗ was produced using
a public queryδi with dist(w,δi(w))≤ t and in any
private query(δ′i ,P∗) the distancedist(w,δ′i(w))>
t. A sendsP∗ to the challenger. The challenger

chooses a bitb
R
← {0,1}. If b= 1, the challenger

computesR← Rep(w,P∗) and gives it toA . Oth-
erwise, ifb= 0, it chooses a random string of the
same length and gives it toA instead.

6. (More queries)A can run additional queries as
specified in steps 3 and 4 (up toq andq′ queries,
respectively) with the exception that any query
(δ,P∗) such thatdist(w,δ(w)) ≤ t is not allowed.

7. (Response)A eventually produces a bitb′ and
wins if b′ = b.

A ’s advantage in this game is defined asAdv
sbp

A
(κ) =

2
∣

∣Pr[b′ = b]− 1
2

∣

∣= 2
∣

∣Pr[b′ 6= b]− 1
2

∣

∣.

Definition 5 We say that an(M ,m,m′, t,ε)-secure
fuzzy extractor (Gen, Rep) has strong biometric pri-
vacy if for any PPT adversaryA it holds that
Adv

sbp

A
(κ)≤ ε(κ) for a negligibly smallε(κ).

3 ANALYSIS OF EXISTING
SCHEMES

Fuzzy vault. Before proceeding with the analysis, we
note that the basic idea for the strategy in attacking the
fuzzy vault scheme when two or more sketches are
available – computing the intersection of the points
– is straightforward and is not new. This attack ap-
peared in (Scheirer and Boult, 2007; Kholmatov and
Yanikoglu, 2008; Poon and Miri, 2009). We still an-
alyze the construction here because all previous pub-



lications assume that given sketches are related and
proceed with identifying original points. Our work,
however, assumes a significantly weaker (and perhaps
more realistic) adversary that would like to determine
if two given sketches are related or not, which is a
much more difficult task. Therefore, we present a
rigorous new analysis that shows weaknesses of the
scheme even in the presence of the weakest adversary.

The adversary receives two secure sketchesP1 =
{(x1,y1), . . .,(xr ,yr)} andP2 = {(x′1,y

′
1), . . ., (x

′
r ,y
′
r)},

and its goal is to determine the coin flip, i.e., whether
the biometricsw1 and w2 are related or not. Let
Px

1 and Px
2 denote projections ofP1 and P2, resp.,

on thex-coordinate, i.e.,Px
1 = {x1, . . .,xr} andPx

2 =
{x′1, . . .,x

′
r}. The basic attack idea is to compute the

intersection ofPx
1 andPx

2 and use its size to make a
distinction between related and unrelated biometrics.
Related sketches will overlap in at leasts− t orig-
inal biometric points, while unrelated sketches will
have fewer original biometric points overlap. In addi-
tion, a number of chaff points inPx

1 can collide with
chaff points inPx

2 or points inw2 \ (w1∩w2) (simi-
larly, points fromw1\(w1∩w2) can collide with chaff
points in Px

2). Thus, the size ofPx
1 ∩ Px

2 follows a
certain distribution, but the expected overlap size is
larger for related sketches. We first analyze the prop-
erties of such a distribution.

Let α = |w1∩w2| denote the number of biomet-
ric points in the intersection, i.e.,α≥ s− t for related
biometric samples andα ≤ s− t − 1 otherwise. Let
a= r−α andb= n−α, i.e.,a is the number of sketch
points that do not correspond to the overlapping bio-
metric points andb is the overall space for such
points. As customary in the literature, we assume that
the biometric points ofw are distributed uniformly in
the space; the chaff points are also drawn uniformly
at random from the remaining space. Then to de-
termine how many points fromP′1 = Px

1 \ (w1 ∩w2)
will collide with points fromP′2 =Px

2 \(w1∩w2), sup-
pose there areb= n−α bins and points fromP′1 oc-
cupya= r−α of them, i.e., there area random bins
with a ball in them. Then we throw anothera balls
(points fromP′2) into the bins without replacement and
count the number of bins with two balls in them (i.e.,
if a bin has two balls, it is removed, so that no bin
has more than two balls; this is dictated by the re-
quirement that allr points in a sketch are distinct).
The above can be modeled as hypergeometric experi-
ment. LetX be a random variable that corresponds to
the number of collisions inPx

1 andPx
2 (i.e, its size is

|(Px
1 ∩Px

2)\ (w1∩w2)|). We obtain:

Pr[X = k] =
(a

k

)(b−a
a−k

)

/
(b

a

)

whereX can range between 0 anda. This distribu-
tion’s mean value isE[X] = a · (a/b).

This analysis leads to the following attack strat-
egy: given sketchesP1 andP2, A computesPx

1, Px
2,

and c = |Px
1 ∩Px

2|. Let β denote the value(r − s+
t)2/(n− s+ t) rounded to the nearest integer. If
c≥ (s− t+β), output 1, otherwise, output 0.

Let αauth (αimp) denote a random variable cor-
responding to the distribution of|w1∩w2| whenw1
andw2 are related or authentic (unrelated or impos-
tor, resp.). AdversaryA has the smallest probabil-
ity of distinguishing between authentic and impostor
sketches when the values ofαauth and αimp are the
closest, i.e,αauth = s− t andαimp = s− t − 1. Ac-
cording to the indistinguishability definition, we have
Advind
A

= 2
∣

∣Pr[b′ = b]− 1
2

∣

∣. If we let X1 denote the
random variable distributed according to the hyper-
geometric distribution above withα1 = s− t andX2
denote a similar random variable withα2 = s− t−1,
we obtain thatA is successful with at least:

Pr[b′ = b] = Pr[b′ = 1|b= 1]Pr[b= 1]+

+ Pr[b′ = 0|b= 0]Pr[b= 0]≥

≥
1
2

(

Pr[X1≥ c−α1]+Pr[X2 < c−α2]
)

=
1
2

(

Pr[X1≥ β]+Pr[X2 < β+1]
)

=

=
1
2

( r−s+t

∑
i=β

(r−s+t
i

)( n−r
r−s+t−i

)

(n−s+t
r−s+t

) +

+
β

∑
i=0

(r−s+t+1
i

)( n−r
r−s+t+1−i

)

(n−s+t+1
r−s+t+1

)

)

.

This probability andAdvind
A

can be easily computed
for a given set of parametersn, r, s, and t. In re-
ality, each parameter above has limitations placed
on it by the behavior of the actual biometric data.
In particular, (Clancy et al., 2003) study applicabil-
ity of the fuzzy vault construction to fingerprint data
and determines optimal parameters to use to achieve
adequate resistance of the construction against brute
force search (when an adversary is given a sketch and
tries to determine sensitive information by searching
through polynomials). While the fuzzy vault con-
struction was not used exactly as a secure sketch
in (Clancy et al., 2003) and was generalized, we nev-
ertheless obtain information about the parameters that
would be used for fingerprint data. The fieldFp2,
for prime p, is used for representing fingerprint fea-
tures in 2-D and the value ofp is set to 251 giving us
n= 2512 = 63001 (this value ofn also provides many
choices for the decoding algorithm). The number of
biometric points in a fingerprint was empirically de-
termined on average to bes= 38 (it can vary based on
the equipment and quality of data, but generally is in
a similar range). For this value ofs, having 20 points
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Figure 1: Adversary advantageAdvind
A

with parametersn=

2512, s= 38, t = 20, and varyingr.

overlap would provide excellent distinguishing capa-
bility and low false acceptance rate (Pankanti et al.,
2002). Finally, the value ofr is constrained in that the
complexity of decoding for legitimate users can grow
as r increases (this is caused by spurious polynomi-
als introduced by the chaff points). In particular, at
the decoding time, when a legitimate user computes
w2∩S, whereS= SS(w1), the decoding complexity
can grow when points fromw2 \ (w2∩w1) coincide
with chaff points inS. Since |w2 \ (w2 ∩w1)| ≤ t
for legitimate users, the experiment now consists of
throwing t points in b = n− s+ t bins, wherea =
r − s+ t bins are already occupied. We wantr to be
such that the expected (integer-valued) number of col-
lisionst(a/b) is 0.

Figure 1 plots the adversary’s advantageAdvind
A

for the above parameters as a function ofr near the
suggested in (Clancy et al., 2003) value ofr ≈ 300.
As evident from the figure, the advantage is signifi-
cant even in the worst (for the adversary) case when
only one overlapping point separates authentic data
from impostor. The jumps in the plot correspond to
the places where the (integer-valued) mean of the dis-
tribution,E[X], increases by 1.

Improved fuzzy vault. An important observation in
designing an attack strategy for this construction is
that it is deterministic. This immediately implies that
the same biometric will always produce the same se-
cure sketch, giving the adversary the ability to distin-
guish sketches. Thus, as an important special case we
first consider the adversary’s ability to win the indis-
tinguishability game when no noise affects multiple
sketches of the samew (this arises in several applica-
tions, where multiple keys are issued using the same
copy of w). Thus, whenA obtains challengeS2, it
outputs 1 ifS2 = S1 and 0 otherwise. This means that
whenb= 1,A will always guess the bit correctly, but
whenb = 0 it might still sometimes output 1 if the
two sketches happened to be the same. The probabil-
ity of the latter, however, is small and can be bound

as follows. Recall that sketchS consists oft coeffi-
cients of a polynomialp(x) = xs+ cs−1xs−1 + . . .+
c1x+ c0, where forw = {w1, . . .,ws} cs−1 = ∑i wi ,
cs−2 = ∑i 6= j wiwj , . . . , cs−t = ∑C⊂[1,s],|C|=t(∏i∈C wi).
First, for an unrelated random biometric ˆw, the prob-
ability that∑i ŵi = cs−1 is 1

n (i.e., without any restric-
tions, there are∏s−1

i=0(n− i) choices fors elements
without repetitions from the set ofn elements, and
when the sum of the elements is fixed (inFn), the
number reduces to∏s−1

i=1(n− i)).
Now considercs−2. We start with a simpler func-

tion x1x2 = b in Fn for a fixed value ofb. Recall
that n = p2 for a prime p. We enumerate all pos-
sible solutionsx1 and x2 for this function such that
x1 6= x2 (since all points in a biometric are different).
Whenb is zero, there aren−1 unordered pairs(x1,x2)
with x1 6= x2 whose product equals tob (one value is
zero and the other can taken− 1 remaining values).
All elements other than zero form a cyclic multiplica-
tive group, and whenb 6= 0 there are eithern−1

2 or
n−1

2 −1 pairs(x1,x2) with distinctx1 andx2, whenb
is a quadratic non-residue or quadratic residue, resp..
Therefore, the number of pairs(x1,x2) satisfying the
congruence for anyb is at mostn−1 from the over-
all space ofn(n−1)

2 such pairs, giving us the fraction

(n−1)/ n(n−1)
2 = 2

n.
Now recall thatcs−2 is composed of a summa-

tion of productswiwj for eachi 6= j. When there is
only one productw1w2 (i.e., s= 2), we obtain that
it is equal to 0 more frequently than to other values.
When, however,s> 2 this is no longer the case. Be-
cause allwi have to be unique and eachwi appears
in a number of productswiwj , the value of the sum
tends to be distributed more evenly ass increases.
This means that the frequency of the most common
value of cs−2 approaches1n when s grows. To il-
lustrate this phenomenon, we plot empirical data for
small values ofn = p2. In particular, fors= 2, 4,
and 6 and all possiblew= (w1, . . .,ws) ∈ F

s
n we find

the value of the sum which occurs the highest num-
ber of times. Let it be denoted bycountmax and the
fraction of all biometricsw that results in such value
by fmax = countmax/

(n
s

)

. To evaluate how the value
of fmax compares to1

n, we plot their ratiofmax/
1
n in

Figure 2. Fors= 2, fmax =
2
n is constant; fors> 2 it

is clear thatfmax rapidly approaches1n from the above
even for very small values ofs. This means that2n is
a generous upper bound on the probability thatcs−2
of a randomly chosen ˆw will coincide with a specific
value of that coefficient for an unrelated biometricw.

Extending this analysis tocs−3 =∑wiwjwk, where
i, j, andk are pairwise distinct, we obtain that the
most frequently occurring value ofcs−3 is 0 and when
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s= 3 (i.e., only one product). In that case, the number
of possibilities that result in that product is(n−1)(n−2)

2

out of n(n−1)(n−2)
2·3 total choices (and the number of

possibilities when the product is non-zero is at most
n−3

2 ·
n−1

2 ). Thus, the fraction of triples that can result
in any given product is≤ 3

n. For cs−4, the maximum
fraction is≤ 4

n; for cs−5, it is≤ 5
n, etc. Therefore, the

adversarial error is at mostt!
nt , and in practice will be

close to 1
nt becauses> t. Both of these quantities are

very low even for small values oft (such as 2), and the
probability with which the adversary considers two
unrelated biometrics to be related is very small. Its
advantage in the 2-indistinguishability game is:

Advind
A

= 2
∣

∣

∣
Pr[b′ = b]−

1
2

∣

∣

∣
=

= 2
∣

∣Pr[b′ = 1|b= 1]Pr[b= 1]+

+ Pr[b′ = 0|b= 0]Pr[b= 0]−
1
2

∣

∣

∣
=

=
∣

∣

∣
2Pr[b′ = 1|b= 1]

1
2
+2Pr[b′ = 0|b= 0]

1
2
−1

∣

∣

∣

=
∣

∣Pr[b′ = 1|b= 1]+1−Pr[b′ = 1|b= 0]−1
∣

∣

=
∣

∣Pr[b′ = 1|b= 1]−Pr[b′ = 1|b= 0]
∣

∣> 1−
t!
nt .

The above analysis addresses an important special
case ofw= w′. We defer analysis of the more general
case of related sketches to the full version.

4 OUR CONSTRUCTIONS

In what follows, let(SS′,Rec′) denote any exist-
ing fuzzy sketch scheme (for any metric). The keyk
denotes the long-term user’s key of sizeκ, whereκ is
the security parameter. This keyk is not shared with
any parties. We first provide additional definitions.

Definition 6 Let F : {0,1}κ × {0,1}ℓ1(κ) →

{0,1}ℓ1(κ) be a family of functions. For k∈ {0,1}κ,

the function Fk : {0,1}ℓ1(κ) → {0,1}ℓ1(κ) is defined
as Fk(x) = F(k,x). F is said to be a family of
pseudo-random functions (PRF) if for every PPT
adversaryA with oracle access to a function Fk and
all sufficiently large κ, |Pr[A Fk(1κ) − Pr[A f (1κ)]|

is negligible in κ, where k
R
← {0,1}κ and f is a

function chosen at random from all possible functions
mappingℓ1(κ)-bit inputs toℓ1(κ)-bit outputs.

Definition 7 A family of functions h: {0,1}κ ×

{0,1}n→ {0,1}ℓ2(κ) is pairwise independent univer-
sal hash function if for all x,x′ ∈ {0,1}n, where x6= x,
Pr[hy(x) = hy(x′)] = 1/2ℓ2(κ) for y∈ {0,1}κ.

In the following secure sketch construction, it is re-
quired thatℓ1(κ) ≥ |SS′(w)|, where|a| is the length
of stringa. We discuss the choice of parameters later.

To computeSS(w,k):
1. Chooser1 ∈ {0,1}ℓ1(κ) at random.
2. OutputS= (S1,S2) = (r1,Fk(r1)⊕SS′(w)).

To computeRec(w′,k,S= (S1,S2)):
1. Computeu← Fk(S1).
2. Output whatRec′(w′,S2⊕u) outputs.

Theorem 1
Assuming that F is a family of PRFs, the above fuzzy
sketch scheme achieves weak biometric privacy.

We omit security proofs due to space constraints.
Note that in our construction deterministic

schemes for the underlyingSS′ are preferred because
they produce most concise sketches. So far we as-
sumed that the output length ofF , ℓ1(κ), is at least as
large as the output length of secure sketch|SS′(w)|.
While this will hold for many types of biometrics and
a reasonable choice of security parameterκ, in some
cases the representation ofSS′(w) can be longer. In-
stead of increasingκ, we suggest modifying the al-
gorithm to use more than one application ofF to
produce a longer pseudo-random sequence. For in-
stance, ifℓ1(κ) < |SS′(w)| ≤ 2ℓ1(κ), the sketch can
be produced as(r1,(Fk(r1)||Fk((r1 + 1) mod 2κ))⊕
SS′(w)), where|| denotes string concatenation. This
increases the number of random values on whichF is
evaluated and thus the probability of their collision.
However, as long as|SS′(w)|/ℓ1(κ) is a constant or
polynomial inκ, the security guarantees still hold.

In the fuzzy extractor construction below we split
the keyk into two keysk1 and k2. This is done to
simplify the analysis. In practice, the sub-keysk1 and
k2 can be computed by applying a PRF keyed withk
to two different inputs.

To computeGen(w,k1,k2):
1. ComputeS= SS(w,k1) using the fuzzy sketch

scheme above.



2. Chooser2
R
← {0,1}κ and computes← hr2(w).

3. OutputP= (S, r2) andR← Fk2(s).

To computeRep(w′,k1,k2,P= (P1,P2))
1. RunRec(w′,k2,P1) above to recoverw. If it fails,

output⊥.
2. Otherwise, reproduce the keyR asFk2(s

′), where
s′← hP2(w), and outputR.

When it is desirable that failures during reconstruc-
tion are not reported explicitly,Rep can be modified
to output a (wrong) private string, e.g., computed as
R= Fk2(hP2(w

′)).
We would like to explain the design choices made

in our construction. Because a PRF is a powerful
primitive, it by itself is sufficient to produce the pri-
vate stringR indistinguishable from random. For ex-
ample, settingR← Fk2(w||r) for randomr would sat-
isfy the security game requirements. The reason for
including the hash functionh in the construction is to
compress the biometricw without loosing the amount
of its unpredictability. That is, then-bit representation
of biometric is normally substantially longer than the
mbits of entropy it contains. For example, for iris the
standard values of these parameters aren= 2048 and
m= 256. Becausem∼ κ, we can use a hash function
h : {0,1}κ×{0,1}n→{0,1}m to reduce the size ofw
from n to m bits without loosing its entropy. In cases
when the value ofm exceeds the desired length of the
input to a PRF, the hash function output length can be
further reduced, i.e., in generalℓ2(κ)≤m.

We note that the generic conversion of a secure
sketch to a fuzzy extractor (in Section 2.1) uses a
strong extractor, which can be built using a univer-
sal hash function alone. The use of the hash function
in a strong extractor is, however, constrained in that
the output length of the extractor must necessarily be
smaller thanm to be able to meet the requirement of
the output being close to the uniform distribution. In
particular, at least 2 log(1

ε )−2 bits of entropy are lost,
where the parameterε determines the statistical dis-
tance between distribution of the output and the uni-
form distribution. In our case, no requirements on the
uniformity of the output must be met, and therefore
no reduction of the output length or entropy loss has
to take place.

Theorem 2
Assuming that F is a family of PRFs and h is a univer-
sal hash function, the above fuzzy extractor scheme
achieves strong biometric privacy.

We would like to note that certain constructions of
PRFs are known to produce uniformly distributed se-
quences. For example, (Shparlinski, 2001) shows that
PRF in (Naor and Reingold, 1997) has this property
for almost all values of parameters. For us this means

that the adversary does not obtain advantage in distin-
guishing pseudo-random strings from random.

We also note that similar results can be achieved
by using encryption instead of PRF, and such schemes
might be known or used in industry.

5 RELATED WORK

The overall literature on fuzzy sketches and ex-
tractors is extensive, and we therefore highlight the
most fundamental results and analysis related to this
work. (Davida et al., 1998) proposed the first off-
line biometric identification scheme, where error-
correcting codes were used to reconstruct a biometric
from its noisy readings. (Juels and Wattenberg, 1999)
developed a fuzzy commitment scheme, which be-
came the basis of the code-offset secure sketch for the
Hamming distance. (Juels and Sudan, 2002) proposed
a fuzzy vault scheme. (Dodis et al., 2004; Dodis et al.,
2008) formalized the notion of secure sketches and
fuzzy extractors in their seminal work, which gave a
generic conversion from a secure sketch to a fuzzy
extractor and developed a number of other schemes.

(Boyen et al., 2005) introduced robust fuzzy ex-
tractors secure against active adversaries, where the
reconstruction process fails if the sketch has been
tampered with. (Dodis et al., 2006) continue that line
of research and also study the keyed setting in the
bounded storage model. The use of the key in our set-
ting is fundamentally different from that work, where
two parties share a long-term secret key and use it to
generate a session key for data authentication. Our
constructions can potentially be applied to a robust
fuzzy extractor to improve reusability properties.

There are also publications that combine fuzzy
extractors with passwords to improve their security
properties such as (Ballard et al., 2008). This work
offers a simpler and more flexible construction.

Security requirements for adequate use of fuzzy
sketches and extractors in cryptographic applications
have been developing over time. (Boyen, 2004)
showed that a number of original constructions can-
not be safely applied multiple times to the same bio-
metric. That work developed improved constructions
using certain error-correcting codes and permutation
groups that satisfy the reusability requirements. Our
security definitions for the strong adversary were in-
fluenced by that work. Compared to (Boyen, 2004),
our solution leaks no information about the biomet-
ric data (while leakage is unavoidable in the setting
of (Boyen, 2004)) and works for all distance metrics
and all secure sketch schemes in the standard model
(while Boyen’s scheme is limited to special codes and



a particular metric in the random oracle model).
(Scheirer and Boult, 2007) proposed three classes

of attacks on secure sketches and fuzzy vault in partic-
ular, one of which is equivalent to sketch reusability.
It has been empirically evaluated in (Kholmatov and
Yanikoglu, 2008) on the fuzzy vault scheme using 200
matching pairs of fuzzy vault sketches. The authors
were able to unlock (i.e., reconstruct the polynomial)
118 out of 200 pairs within a short period of time. We
note that this evaluation was performed on a specific
set of parameters already knowing that two stored
sketches are related. Our analysis, on the other hand,
is more general and can be applied to a wide variety
of parameters. It is also does not assume prior knowl-
edge of related sketches, but rather helps to identify
those records. (Poon and Miri, 2009) also describe
collusion attacks on the fuzzy vault scheme assuming
that the sketches are related. Finally, (Simoens et al.,
2009) introduced the notions of indistinguishability
and irreversibility for reusable sketches and showed
weaknesses of code-offset and permutation groups
constructions. We analyze other constructions with
respect to the indistinguishability property. (Kelk-
boom, 2010) also analyzes certain schemes.

6 CONCLUSIONS

This work investigates the reusability properties
of secure sketch and fuzzy extractor constructions.
Through new analysis we show that, in addition to
the schemes that have been previously shown to have
security weaknesses, other existing schemes do not
meet our security expectations. To mitigate the prob-
lem, we propose to use the computational setting.
Maintenance of a single key for all uses of such
schemes results in solutions with remarkable secu-
rity and usability improvements which are not possi-
ble otherwise. In particular, our general construction
works with any existing secure sketch and mitigates
information leakage associated with biometrics in the
standard model under generic hardness assumptions.
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