
Secure Outsourced Computation of Iris Matching∗

Marina Blanton and Mehrdad Aliasgari

Department of Computer Science and Engineering

University of Notre Dame

{mblanton,maliasga}@cse.nd.edu

Abstract

Today biometric data propagate more heavily into our lives. With more ubiquitous use
of such data, computations over biometrics become more prevalent as well. While it is well
understood that privacy of biometric data must be protected, often computations over biometric
data involve untrusted participants or servers, let it be a cross check between different agencies
who are not permitted to share the data or a researcher testing a new biometric matching
algorithm on a large scale that forces the computation to be placed on a grid. Unarguably, it
would be desirable to secure computation over sensitive biometric data in such environments.
Currently, no secure techniques for outsourcing biometric comparisons or searching are readily
available, and this work makes the first step at designing solutions for secure outsourcing iris
identification to one or more untrusted servers. We develop new solutions for the single-server
(i.e., non-interactive) and multiple-server settings that use significantly different techniques.
Furthermore, we carry out extensive experimentation on a database of iris codes to both validate
the findings and achieve efficiency improvements.

1 Introduction

The need for individual privacy is widely recognized. With biometric authentication becoming
more reliable and readily available than before, the need to protect such information is apparent.
Furthermore, unlike other types of data used for authentication purposes (passwords, key material,
secure tokens, etc.), biometric data cannot be revoked and replaced with a new value, which calls
for even stricter protection of such data.

In recent years a significant amount of research effort has been dedicated to protecting biometric
data from the server that stores a database with biometric templates for authentication purposes.
The idea is, instead of storing the biometrics themselves, to store a function of each biometric such
that the value can be used for authentication purposes, but in the case of server compromise it
does not lead to compromise of the biometric data. Such solutions include work on fuzzy vault [54,
21, 22], secure sketches and fuzzy extractors [55, 35, 13, 36, 14, 34], shielding functions [61, 76, 73],
cancelable or revocable biometrics [68], and many other publications derived from them, especially
in the biometrics literature.

In this work we argue that concentrating on authentication alone is not enough, and there is
a need to protect sensitive biometric data in other environments and contexts where computation
over biometric data, normally for the purposes of identification, is involved. For instance, testing
new algorithms for extracting biometric features on large collections of biometric images requires
a massive amount of computation and has memory requirements beyond a single machine. This
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forces such computations to be placed on a grid and be conducted in a distributed manner [16].
Computers comprising the grid, however, are normally less trusted to preserve privacy of the data
than machines controlled by the researcher and thus it is necessary to secure the data used by
the machines connected to the grid while computing the task. Other apparent need for privacy
protection arises when the computation must be performed across data owned by different entities
and/or on outsourced data, e.g., circumstances when an investigator has the need to search bio-
metric databases collected by different agencies; when two organizations that do not completely
trust each other with their sensitive data or are prohibited from disclosing the data by law or other
provisions would like to carry out computation over their respective databases; when the biometrics
data is placed on an external server (for computational or other reasons) and there is a need to
compute over obfuscated data; etc.

In all of the above cases, given a particular biometric, the server is to search the database and
output information about matches. We wish both the biometric templates stored in the server
database and the biometric being searched for to stay hidden from the server performing the search
and at the same time not to place a significant computational burden on the client making the
query. Existing techniques on biometric-based authentication summarized above achieve secrecy
of the stored data from the server when an individual is to authenticate against her own record,
but cannot be extended to the case of identification, where the entire database is to be searched
for possible matches with the given biometric. This means that no existing tools or techniques are
readily available to carry out this task of practical significance. The problem of secure biometric
identification or matching with the aid of untrusted servers is thus the focus of this work.

In addressing this problem, we distinguish between the settings where only one untrusted server
can be utilized for secure biometric matching and when a larger number of such servers is available.
Providing solutions to this problem in either of the above settings presents challenges for the
following reasons. When only one untrusted server is available to carry out secure computation,
all computation must be performed over secured data in a non-interactive manner1 which is a
difficult task. In particular, it is known that secure non-interactive solutions are not possible for
certain types of problems [2]. In this work we show that even using recent powerful techniques,
only a limited functionality for biometric matching can be securely realized through non-interactive
computation and at a significant cost. This limited computation nevertheless closely approximates
the necessary computation and thus achieves the goal we put forward. The multi-server setting, on
the other hand, can be modeled as a special case of secure multi-party computation [78, 47], where
the participating parties contribute no input and receive no or very limited output. At the time
of this writing, no privacy-preserving protocol is known to perform the functionality we seek other
than general techniques that can evaluate any computable function. General solutions, however,
are known to bear unreasonably high overhead, especially when dealing with large amounts of data
(see Section 2.3). Furthermore, while custom privacy-preserving protocols are known for certain
types of operations that are more efficient than general techniques (e.g., scalar product [77, 46], set
intersection [42, 58], and others), they do not implement the functionality we seek.

Since biometric-based identification techniques heavily depend on the type of biometric used,
in this work we concentrate on iris-based matching. Iris is attractive due to a large amount of
uncertainty an individual biometric contains (some other types of biometric cannot be used for
identification due to high error rates and are only suitable for verification). Additionally, after

1Because the client is normally weak, it becomes infeasible for the client to perform work proportional to the size
of the biometric database, resulting in limited interaction between the client and the server. When, however, the
client is not weak and can carry out the work proportional to the database size, it can, depending on the security
requirements, either carry out the computation itself or assume the role of a computational server, resulting in a
multi-server setting.
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extracting features from an iris image, it is represented as a binary string, which makes it convenient
to work with. Our consecutive work will investigate other popular types of biometric such as faces
and fingerprints. Throughout this work, we will use biometric reading to denote raw biometric
data, and biometric representation or biometric template to denote processed biometric (i.e., after
feature extraction).

Organization. We start by describing the model, necessary computation, security requirements,
and our contributions in Section 2. Our solution for iris identification in the single-server case is
given in Section 3, and Section 4 describes our solution in presence of multiple helper servers. We
then discuss the use of approximations for the purposes of reducing computation cost in Section 5.
Experimental results performed on an iris database are reported in Section 6. Finally, we describe
prior work in Section 7 and conclude in Section 8.

2 Overview of the Model and Solution

2.1 Problem description

Let an iris biometric X be represented as an m-bit binary string. We use Xi to denote ith bit of
such a string. We assume that the database owner compiles a database D consisting of biometric
templates X. The database is stored at one or more servers, which do not obtain access to the
raw data (we specify security assumptions with respect to the servers’ behavior in Section 2.2). A
client has biometric Y and queries the server for identification purposes. The server (or a number
of servers) execute a secure protocol to find all biometric templates stored in the database that
match the queried biometric Y and send the result to the client.

For all of the protocols, we assume that there is an initialization phase, Setup, that consists of
initializing the system and populating the database and the actual query execution phase, Query,
during which a client forms a query, submits it to the server, and obtains information about matches
back from the server.

In iris-based recognition, after feature extraction, biometric matching is normally performed by
computing a Hamming distance between two biometric representations. Furthermore, the feature
extraction process is such that some bits of the extracted string X are unreliable and are ignored
during comparison. Information about such bits is stored in an additional m-bit string, called mask,
where its ith bit is set to 1 if the ith bit of X should be used in the matching process and is set to
0 otherwise. For biometric X, we will use M(X) to denote the mask associated with X. Often, a
predetermined number of bits (e.g., 25%) is considered unreliable in each biometric template. Thus,
to compare two biometric representations X and Y , their Hamming distance takes into account the
masks. That is, if the Hamming distance between two iris codes without masks is computed as:

HD(X,Y ) =
||X ⊕ Y ||

m
=

∑m
i=1(Xi ⊕ Yi)

m
,

the computation of the Hamming distance that uses masks becomes [31]:

HD(X,M(X), Y,M(Y )) =
||(X ⊕ Y ) ∩M(X) ∩M(Y )||

||M(X) ∩M(Y )||
=

∑m
i=1((Xi ⊕ Yi) ∧M(Xi) ∧M(Yi))

∑m
i=1(M(Xi) ∧M(Yi))

.

(1)
Throughout this work, we will assume that the latter formula is used and simplify the notation
to HD(X,Y ). Then the computed Hamming distance is compared with a specific threshold T ,
and the biometrics X and Y are considered to be a match if the distance is below the threshold,
and a mismatch otherwise. The threshold T is chosen based on the distributions of authentic and
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impostor data. (In the likely case of overlap of the two distributions, the threshold is set to achieve
the desired levels of false accept and false reject rates based on the security goals.)

Finally, two iris representations can be slightly misaligned, which is caused by head tilt during
image acquisition. To account for this, the matching process attempts to compensate for the error
and rotates the biometric representation by a fixed amount to determine the lowest distance. This
rotation corresponds to circular left and right shifts of the binary representation2 a small fixed
number of times, which we denote by c. The minimum Hamming distance across all runs is then
compared to the threshold. In other words, if we let LSj(·) (resp., RSj(·)) denote a circular left
(resp., right) shift of the argument by a fixed number of bits (2 bits in experiments conducted by
the biometrics group at our institution) j times, the matching process becomes:

min(HD(X, LSc(Y )), . . .,HD(X, LS1(Y )),HD(X,Y ),HD(X,RS1(Y )), . . .,HD(X,RSc(Y )))
?
< T
(2)

2.2 Security requirements

As with any cryptographic solution, we require completeness and soundness properties to hold.
Therefore, a secure biometric search scheme must meet the following requirements:

Correctness: The secure computation should be performed correctly, i.e., the computation identifies
and returns all values that correspond to authentic matches and a minimal number of false
matches (which would correspond to the false reject rate (FRR) of 0 and the minimum
achievable false accept rate (FAR)).

Security: The servers should not learn information about the data they store in the database D and
information about the data contained in the queries. We, however, allow the servers to learn
information about matches, i.e., the indices of the records that matched the query, which are
consequently returned to the client.

The correctness property requires secure computation to compute the same function as would be
computed without applying the privacy-preserving techniques. The error rates of the secure solution
then heavily depend on the error rates of the underlying iris codes, but, as we show in this work,
can be improved via rather simple means.

The security relaxation above that allows the servers to learn information about the records
that matched the client’s query (if any) is dictated by efficiency reasons (otherwise, the client’s
output is proportional to the database size). The indices are then communicated to the client, and
this information is considered to be sufficient for the purposes for which it will be used (i.e., for
the client it is crucial to know whether there is at least one match, and more information about
the matched individuals can be obtained through any other suitable mechanism using the indices it
receives). Using the terminology from work on searches over encrypted data, this notion of security
is match-revealing (as opposed to the match-concealing type).

In addition, we explicitly specify the efficiency constraints. Communication and computation
complexity of a client should be linear in the size of its input (i.e., biometric template) and the
output it receives (i.e., the number of matches). In other words, it is unreasonable to require the
client to perform computation proportional to the size of the database, which is securely outsourced
to the servers. Communication and computation complexity (including round complexity) of the

2More precisely, each biometric is represented as a two-dimensional array and during shifting a circular shift is
applied to each row. The explanation given so far, however, is sufficient, because if a biometric representation (even
in a scrambled form) can be partitioned into individual bits, necessary shifting can always be performed correctly.
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servers should be minimized if possible. In other words, when different realizations of a specific
functionality are possible, our goal is to build a solution with best performance.

As far as trust assumptions with respect to the servers’ behavior go, we can distinguish between
semi-honest (or passive) and malicious (or active) adversarial models. Semi-honest participants
might attempt to learn some information from the data they receive including intermediate results,
but will not deviate from the prescribed computation. Malicious participants, on the other hand,
can arbitrarily deviate from the computation by altering intermediate results, aborting participa-
tion, etc. in the attempt to gain any advantage. We first consider security against semi-honest
servers and then also treat the malicious model: we show that our multi-server solution can be made
secure against malicious servers using known techniques and we also show that it is impossible to
secure a single-server solution against a malicious server without requiring the client to perform
work proportional to the database size.

While our framework allows for alternative trust assumptions with respect to the database
owner and the client (i.e., they can be trusted parties (or even the same party) who outsource
the computation due to computational resources and infrastructure reasons or they can be mu-
tually distrustful parties who cannot reveal the data to each other), both the client’s and the
database owner’s data must be protected from the computational servers. The rapid emergence
of cloud computing services introduces a significant shift in the landscape of large-scale or dis-
tributed computing. Acquiring necessary computing power for on-demand custom computation is
readily available from several industrial providers at cheap cost. While a significant number of
prior publications already treat large institutional servers as semi-honest, e.g., [60, 38, 65] (and
even non-colluding, e.g., [74, 75]), in the current cloud computing paradigm service providers face
liability issues (in case of noncompliance with customer contracts, hosting illegal information, etc.).
This means that highly reputable and legally bound service providers are expected to guarantee
a reasonably high level of security. Therefore, it is realistic to assume that (at least some of)
the servers behave semi-honestly. The situation, however, can significantly change in the case of
so-called volunteer computing, where individuals or organizations donate their unused CPU cycles
toward large-scale computation. This can be common in biometric research where a new biometric
matching algorithm needs to be tested on large data sets to collect statistical information about its
performance [16]. In that case, techniques for ensuring security in presence of malicious participants
would be desirable. In what follows, we start with security in the semi-honest model.

We next formally define security using the standard definition in secure multi-party computation
for semi-honest adversaries. Since the helper servers do not contribute any data to the computation,
this should be interpreted as no private input to the function they are evaluating. Then for the
purposes of the security definition, all data the servers receive before or during the computation
(i.e., the database and user queries) will be considered to be a part of the function evaluation and
therefore must not leak any information. It, however, must be understood that the servers will
be pre-loaded with some data (the biometric database) before any computation takes place. We
denote “no data” by a special character ⊥. The output of each participant can include information
about query matches, but no other information.

Definition 1 Let parties P1, . . ., Pn engage in a protocol π that computes function f(in1, . . ., inn) =
(out1, . . ., outn), where ini and outi denote the input and output of party Pi, respectively. Let
VIEWπ(Pi) denote the view of participant Pi during the execution of protocol π. More precisely,
Pi’s view is formed by its input and internal random coin tosses ri, as well as messages m1, . . .,mt

passed between the parties during protocol execution:

VIEWπ(Pi) = (ini, ri,m1, . . .,mt).
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Let I = {Pi1 , Pi2 , . . ., Pit} denote a subset of the participants for t < n and VIEWπ(I) denote the
combined view of participants in I during the execution of protocol π (i.e., the union of the views
of the participants in I). We say that protocol π is t-private in presence of semi-honest adversaries
if for each coalition of size at most t there exists a probabilistic polynomial time simulator SI such
that

{SI(inI , f(in1, . . ., inn)} ≡ {VIEWπ(I), outI},

where inI =
⋃

Pi∈I
, outI =

⋃

Pi∈I
{outi}, and ≡ denotes computational indistinguishability.

This definition can be interpreted in different ways: when the database owner and the client can
trust each other with their data, the parties P1 through Pn above will correspond to computational
servers only who do not contribute any data. That is, for each computational server Pi we have
that ini =⊥. When, however, the client and the database owner are separate distrustful entities,
their data must be protected from each other3 which can be achieved by including them in the set
of n participants. In that case, the client’s input is ini = 〈Y,M(Y )〉 and the database’s owner input
is inj = D.

As a special case, we have that computation can involve only one server. In this case, the
security definition must hold as well. Note that in the case of multiple parties, the standard
definition of semi-honest participants allows them to combine their views (but the participants will
not arbitrarily deviate from the protocol or disrupt it). The security guarantees must hold as long
as the coalition size does not exceed a specific threshold t.

In our context, one or more participating parties compute the function f given in Equation 2,
where the values X and Y are treated as a part of the function f when the client and the database
owner are not among the participants. After evaluation of this function, the parties learn a bit
(i.e., whether the distance was below the threshold or not), and no other information including any
information about the inputs is available to the computational servers.

2.3 Our contributions

This work is the first to address the problem of secure outsourced biometric identification and
develop new techniques for securely comparing iris codes. Our solution depends on whether only
one untrusted server or several servers are available to carry out biometric search.

Single server secure biometric search SSSBS. The difficulty in building a non-interactive solu-
tion for the required computation securely lies in the fact that the computation involves operations
(XOR, addition, and comparison) that often require different techniques (and negative results exist
showing that some functionality is impossible to achieve securely in a non-interactive setting). Note
that a generic secure circuit evaluation cannot be used because it would require work proportional
to the database size from either the database owner or the client on each client query, resulting
in no benefit at all from using the helper server. Furthermore, the techniques for secure biometric
authentication (against the user’s own record) are inapplicable as well.

Our solution in the single-server setting is to employ predicate encryption. The most powerful
existing predicate encryption schemes permit only computation of scalar product computation.
Counter-intuitively, we were able to implement most of necessary operations including computation
of minimum and comparison using a scalar vector computation alone. The only operation that
cannot be carried out is the division. To address this, we use approximations for the division
operation and empirically show that the introduced error is very small. We prove security when

3We can also allow for one-sided security guarantees, when, for instance, the database must be protected from the
client, but the server can learn information about the client’s queries.
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the server follows the prescribed behavior, and we also show that if the server deviates from the
computation, correctness cannot be achieved with the desired complexity on the client’s (or database
owner’s) part.

This single-server solution is far from practical for large databases or biometric representations
of large size, but can be used as a proof-of-concept solution when only one server is available. Thus,
we next build a more practical multiple-server solution when more than one server is available.

Multiple server secure biometric search MSSBS. As mentioned in the introduction, this
setting can be modeled as a special case of secure multi-party computation [78, 47]. General
techniques for secure function evaluation are applicable, but are known to result in heavy overheads
in particular when dealing with massive amounts of data. Such a solution in our case would mean
that a new oblivious circuit must be generated for each client’s query (i.e., circuits cannot be
reused if the security guarantees are to be maintained). This means that, in addition to the circuit
evaluation itself, either the database owner must transfer all of the data by performing many public-
key operations or each participating server must perform such public-key operations. Our solution
avoids public-key cryptography altogether, and all computations involve much shorter numbers
(which is important since a lot of computation is carried out over bits).

In our solution, the database is shared among the servers in a split form, and biometric search
takes the form of a secure multi-party computation over shared data. We implement all operations
necessary for carrying out a search over iris codes. While the division operation requires the
most involved protocol, we restructure the computation to avoid the division operations, which
substantially improves performance of the solution. As designing the building blocks to be as
efficient as possible is an important aspect of this work, we perform careful analysis and evaluation
of the techniques. An interesting element of our solution is that the number of interactive operations
for comparing two iris codes of size m is only logarithmic in m, where the bulk of the computation
is carried out locally. In our solution the client incurs minimal overhead (i.e., only splits its
biometric query among the servers using a secret sharing scheme); the same holds for the database
owner as well. The solution is secure in both semi-honest and malicious models. We also suggest
approximations that further reduce the cost of the protocol.

Empirical validation. Unique empirical experiments and analysis using a database of iris codes
constitute a significant part of this work. We first develop two majority coding algorithms for iris
codes that take into account iris representations used in practice and apply them to sample data
to improve performance of the original biometric matching. The iris data is then used to evaluate
the accuracy of several approximation and optimization techniques. All of these techniques, as our
results suggest, introduce only a small error and thus have practical relevance.

3 Single-Server Solution

3.1 Preliminaries

For this setting, we utilize predicate encryption – a new type of encryption introduced in [56] –
which allows for fine-grained control over access to encrypted data. The first public-key predicate
encryption was given in [56], and a symmetric key predicate encryption with additional privacy
guarantees was introduced in [70]. As the privacy properties we seek cannot be achieved using
public-key encryption (see below), a brief description of predicate encryption we provide here will
be in the context of the symmetric key setting.

In a symmetric key predicate encryption scheme, the owner of the master key can create and
issue secret key tokens to others. Tokens correspond to some predicates and ciphertexts are as-
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sociated with attributes. Decryption of a ciphertext associated with attribute I using a token for
predicate f is successful if f evaluates to 1 on I. Predicate encryption must provide plaintext
privacy, where no information about the plaintext with attribute I can be learned using tokens for
predicates that evaluate to 0 on I. Additionally, we are interested in predicate privacy achieved
in [70], which ensures that, given a token for predicate f , no information about the predicate can be
discovered beyond the result of application of the token to encrypted data.4 The most powerful con-
structions of predicate encryption known to date (i.e., [56, 70]) support evaluation of inner products
(over ZN for a large integer N), which in turn enables construction of predicates corresponding to
disjunctions, polynomials, etc. These types of constructions can be used as predicate-only schemes,
with no messages included in a ciphertext, and this is the variant we use in our construction.

When we use a predicate encryption scheme, we refer to it by its four algorithms, namely:

• PESetup(1κ) which, on input security parameter κ, generates public parameters5 param and
the master key mk;

• PEEncrypt which, on input the master key mk and a plaintext attribute I, produces a cipher-
text CI ;

• PEGenToken which, on input the master key mk and a predicate f , produces a token Tf ;
• PEQuery which, on input parameters param, a token Tf for predicate f and a ciphertext CI

for plaintext I, outputs 0 or 1 which indicates the value of the predicate evaluated on the
underlying plaintext.

The security requirements are such that ciphertext CI does not reveal information about the cor-
responding plaintext I (plaintext privacy) and token Tf does not reveal information about the
corresponding predicate f (predicate privacy).

For the type of predicate encryption that supports evaluation of inner products, let attribute
I be represented as a vector of integers ~a = 〈a1, . . ., an〉 ∈ Z

n
N and predicate f be represented as

a vector ~b = 〈b1, . . ., bn〉 ∈ Z
n
N . The predicate f then evaluates to true on I if the inner product

~a⊙~b = a1b1 + . . .+ anbn mod N is equal to zero. In other words, f~b(~a) = 1 iff ~a⊙~b = 0. The inner
product functionality allows one to evaluate any polynomial p(x) = ctx

t+ . . .+c1x+c0 on a specific
point x0 by creating vectors ~a = 〈ct, . . ., c1, c0〉 and~b = 〈x

t
0, . . ., x0, 1〉, so that ~a⊙

~b = p(x0). Then we

can test whether a polynomial evaluates to a specific value d by setting I to be ~a′ = 〈ct, . . ., c1, c0,−d〉
and f to be ~b′ = 〈xt0, . . ., x0, 1, 1〉 (or vice versa). In this case, f(I) is true (and decryption is

successful) if and only if ~a′ ⊙ ~b′ = p(x0) − d = 0 or equivalently p(x0) = d. In general, the
polynomial p can be over any number of variables.

Boolean OR f1(I1)∨ f2(I2) can be computed by first representing the predicate computation as
(possibly multi-variate) polynomials p1 and p2 and then computing a new polynomial p3 = p1 · p2.
Polynomial p3 evaluates to 0 (which means that the predicate evaluates to true) if at least one of
p1 and p2 evaluates to 0.

The constructions of predicate encryption in [56, 70] use bilinear groups whose order is a prod-
uct of three distinct secret primes. Performing PEQuery in [70] involves 2n + 2 bilinear pairing
operations.

4Notice that in the public-key setting, an adversary can create any number of ciphertexts corresponding to at-
tributes I of its choice. The adversary can then evaluate a token for an unknown predicate f on these ciphertexts in
the attempt to learn as much information about the predicate as possible based on the success of the decryption. In
the symmetric-key setting, on the other hand, the owner of the key has control over what ciphertexts are available
to the adversary and therefore can mitigate information leakage.

5We note that the scheme in [70] was not specified to produce public parameters, but the group description is
necessary for evaluating predicates on ciphertexts, and we therefore explicitly include public parameters in the output
of the algorithm.
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3.2 Protocol

Recall that the functionality we would like to compute is given in equation 2. We use the templates
stored in the database to form ciphertexts (i.e., each template will be used to construct an attribute)
and user query data to form secret key token (to form predicates). Evaluation of the inner product
of the vector corresponding to an attribute and the vector corresponding to a predicate amounts
to testing whether the Hamming distance is below some threshold T . As the computation that can
be performed with a single invocation of a scalar product protocol is limited, we provide a solution
that computes an approximation of the computation of equation 2 and later estimate the error
introduced by the approximation.

Let Mi denote the ith bit of mask M(X) and M ′

i the ith bit of mask M(Y ). Then we can
compute ||(X ⊕ Y ) ∩ M(X) ∩ M(Y )|| using a scalar product of vectors ~x and ~y, where ~x =
〈x1, . . ., x2m〉 = 〈M1(1 − 2X1),M1X1,M2(1 − 2X2),M2X2, . . .,Mm(1 − 2Xm), MmXm〉 and ~y =
〈y1, . . ., y2m〉 = 〈M

′

1Y1,M
′

1,M
′

2Y2,M
′

2, . . ., M
′

mYm,M ′

m〉. That is, for each i = 1, . . .,m, 〈Mi(1 −
2Xi),MiXi〉 ⊙ 〈M

′

iYi,M
′

i〉 = Mi(1 − 2Xi)M
′

iYi +MiXiM
′

i = (Xi + Yi − 2XiYi) ·Mi ·M
′

i = (Xi ⊕
Yi) ∧Mi ∧M ′

i , and the scalar product of entire ~x and ~y produces the overall Hamming distance
HD(X,Y ) =

∑m
i=1 ((Xi ⊕ Yi) ∧Mi ∧M ′

i).
This computation can be represented as a polynomial p, where the xi’s serve the role of variables,

and the yi’s the role of coefficients (or vice versa). Then to find out whether the Hamming distance
falls below the threshold T , we form a new polynomial that allows the difference to be anywhere in
the range [0, T −1] as a new polynomial q = p(p−1) · · · (p− (T −1)). That is, q corresponds to the
Boolean OR of predicates testing whether the Hamming distance takes a specific value i between
0 and T − 1.

For the computation of the minimum among all shifts, since several comparisons cannot be
implemented directly within the scalar product, we have to restructure the computation to perform
the following: we form polynomials q−c, . . ., qc, where qi denotes polynomial q with i amount of
right shift in biometric Y , and compute their OR by taking their product. Thus, instead of directly
computing the minimum distance and testing whether it lies in the interval [0, T − 1], we test
whether some Hamming distance among all shifts lies in the interval [0, T − 1]. Then if at least one
Hamming distance is in the range [0, T − 1], the overall predicate will evaluate to true.

The given tools do not allow us to divide the computed distance by the size of the mask overlap
||M(X) ∩M(Y )||. Therefore, we experimentally compute this size and multiply the threshold T
according to that estimate. Additionally, we consider skipping the template rotation for efficiency
reasons. Since both of these changes can degrade the quality of the answer, we empirically evaluate
their impact and report it in Section 6.2. Our experiments indicate that such approximations can
result in a small error.

Protocol SSSBS

Setup:

1. The database owner runs PESetup using security parameter κ and obtains public parameters
param and master key mk.

2. For each 〈X,M(X) = M〉 ∈ D, represent the biometric as a vector of length 2m formed as
~x = 〈M1(1− 2X1),M1X1,M2(1 − 2X2),M2X2, . . .,Mm(1 − 2Xm),MmXm〉. Use ~x, T , and c
to form ciphertext CX (with no message) corresponding to the coefficients of QX =

∏c
i=−c qi,

where each qi is computed from ~x and T as described above, using PEEncrypt and master key
mk.

3. Store the ciphertexts CX for each X at the server.
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Setup:
• DB owner’s input is database D of biometrics 〈X,M(X)〉 and parameters c and T .
1. DB owner: (param,mk)← PESetup(1κ).
2. DB owner: CX ← PEEncrypt(mk, f1(X,M(X), T, c)) for all X ∈ D.

3. DB owner
param,{CX}∀X∈D

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Server
• DB owner’s output is mk, server’s output is param and D′ = {CX}∀X∈D.

Query:
• DB owner’s input is mk, c, T ; client’s input is 〈Y,M(Y )〉, server’s input is param and D′ =
{CX}∀X∈D.

1. Client
~y←f2(Y,M(Y ))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ DB owner

2. Client
TY←PEGenToken(mk,f3(~y,T,c))

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DB owner

3. Client
TY

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Server
4. Server: bX ← PEQuery(param, TY , CX) ∀CX ∈ D′.

5. Client
{index(X)}∀(CX∈D′∧bX=1)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Server
• Client’s output: indices of matched biometrics in D.

Figure 1: Summary of SSSBS protocol.

Query:

1. Given biometric representation Y with mask M(Y ) = M , the client forms a vector of length
2m as ~y = 〈M1Y1,M1,M2Y2,M2, . . .,MmYm,Mm〉 and sends it to the database owner.

2. The database owner ~y, T , and c to construct the predicate PY for the desired computation,
which is a vector of variables in ~y and their higher degrees such that the polynomial encoded
in QX could be evaluated on Y . The database owner then generates a token TY for PY by
executing PEGenToken(mk,PY ) and sends TY to the client.

3. The client sends TY to the server.

4. The server applies this token to each ciphertext in the database using PEQuery and returns
indices (if any) of templates which could be decrypted (i.e., on which the predicate evaluated
to 1).

Figure 1 summarizes the computation and interaction. For compactness, it slightly abuses the
notation by using ∀X ∈ D to mean ∀〈X,M(X)〉 ∈ D. Functions f1, f2, and f3 are detailed in the
full description. Each bit bX is set to the result of evaluating the predicate on the ciphertext, and
notation index(X) denotes position of X in D.

If template rotation is not used, as an alternative solution, each database entry can be stored
as T randomly permuted ciphertexts (each testing for a specific value between 0 and T − 1). The
benefit of this approach is that the query size is now at most 2m+1 group elements (and each record
stored at the database also has the same size), which significantly reduces the overhead associated
with the scheme and makes it significantly more practical (see analysis below). This modification,
however, slightly weakens the secrecy guarantees of the scheme, where the server would obtain the
value of the Hamming distance whenever it is below T .

3.3 Analysis

Theorem 1 Assuming that the predicate encryption scheme (PESetup,PEEncrypt,PEGenToken,PEQuery)
achieves ciphertext and predicate privacy, protocol SSSBS is secure in the presence of a semi-honest
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server.

Proof To show the security, we build a simulator S that, given the server’s input and output,
produces the server’s view which indistinguishable from the protocol execution. Recall that the
server learns bit bX for eachX inD as its output, and the server’s input consists only of computation
parameters m, T , and c.6

S first forms a vector ~IX for each X in D of the same length as used in real protocol execution.
This vector will be used as an attribute in forming a simulated ciphertext for X. S also forms
a predicate vector ~P of the same length, which would correspond to the simulated predicate for
Y . All ~IX and ~P can be chosen arbitrarily with the constraint that ~IX ⊙ ~P = 0 iff bX = 1 (this
particular means that the elements of ~IX and ~P can be from a different range than during the
real protocol execution, where many elements would correspond to a bit). The simulator executes
(param,mk) ← PESetup and then PEEncrypt(mk, ~IX) for each ~IX and obtains ciphertext CX

encoding the attribute. Similarly, S executes PEGenToken(mk, ~P ) to obtain token TY for ~P . S
simulates the Setup protocol by sending param and ciphertexts CX to the server. To simulate the
Query protocol, S sends TY to the server. Then the server participates in multiple Query protocols,
S can be modified to produce CX ’s and TY ’s for each query execution such that the output of
PEQuery matches the values of bX that the server obtains as a result of predicate evaluation on
each ciphertext.

We now analyze the server’s ability to distinguish this simulation from the real protocol execu-
tion. The value of param that the server receives during simulation is distributed identically to the
real protocol execution and therefore, the server is unable to tell the difference. The server is also
unable to distinguish the ciphertexts CX it receives during the simulation from the ciphertexts in
real execution due to the ciphertext privacy property of the predicate encryption scheme. Finally,
the server is unable to distinguish between the token(s) TY it receives during simulation and real
protocol execution because of the predicate privacy property of the encryption scheme. �

Correctness of the computation approximation is empirically evaluated in Section 6.2.
Before proceeding with complexity analysis of our solution, we discuss security in presence of

a fully malicious server. We next show that any protocol secure in the malicious model would
impose computation and communication requirements on the database owner and/or client which
exceed the efficiency requirements put forward in this work. In particular, recall that the purpose
of using an external computational server is to eliminate the need to the database owner or the
client to perform work proportional to the size of the biometric database D. Suppose that the
server is malicious. This means that even if the server performed comparisons with each record
in D honestly, it can always modify the result and return an incorrect set of indices to the client.
In order for the client to ensure that each returned index indeed resulted in a match and no
indices are missing from the set that the client receives, the client will need to verify the result of
comparison its Y with each record in D. This means that O(|D|) computation and communication
is unavoidable. This result is not specific to our solution. Any possible solution that guarantees
verifiable computation would have to impose the same complexity on the client (or the database
owner).

The overhead of the solution in Section 3.2 is determined by the size of the representation of
the templates and queries as polynomials for scalar product computation. As was shown earlier,
comparing a Hamming distance (for m-bit biometrics) with a fixed value produces vectors of size
2m+1 group elements. It might seem that constructing the polynomial q = p(p− 1) · · · (p−T +1)

6Note that the values of m, T , and c might not be explicitly given to the server, but the server will likely be able
to approximate them from the ciphertexts it stores. Because such values are a part of the algorithm, they normally
would not be considered secret and are included explicitly.
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to compare the distance to the threshold would result in vectors of size 2mT + 1 (and of size
2mT (2c + 1) + 1 with shifting and computation of minimum), but unfortunately for multivariate
polynomials the number of monomials will be P2m(T ) =

(2m+T
T

)

− 1 and
(P2m(T )+2c

2c+1

)

with shifting.
This means that after polynomial multiplications, the size of vectors exhibits exponential growth.
This solution therefore would be impractical in most settings (i.e., when m is significant and/or
the database size is large), but can be used as a proof of concept for a fully secure outsourcing of
biometric computation to a single server.

If we employ the alternative mechanism also outlined in Section 3.2, each query would indeed
consist of 2m+1 group elements and each template would be stored as T vectors of the same size,
resulting in a much more realistic solution. Furthermore, by allowing more servers to participate
in this computation, we can remove multiplicative dependence on T in the computation and make
other performance improvements making the solution efficient, as described next.

4 Multiple-Server Solution

4.1 Preliminaries

Notation. Given biometric representation X, we use Xi to denote its leftmost ith bit, 1 ≤ i ≤ m.
For a data item x, we use [x] to denote x secret shared among n parties using a linear secret sharing
scheme in a field F of size p. Throughout the discussion, we will assume that p is a prime (so that
the field is Zp) larger than the maximum value that will be secret-shared among the participants
and larger than the number of participants n. To achieve the best resilience against collusion, we
will assume that a (t, n) linear secret sharing scheme is used for the highest possible value of t (i.e.,
each value is secret shared among n parties and t + 1 shares are required to reconstruct it, while
t or fewer participants learn nothing). We use [x]j to denote the share held by party Pj . We also
use ℓ to denote the bitlength of the values on which operations are performed (note that ℓ may or
may not coincide with the bitlength of p).

Known techniques. We will assume that an information theoretically secure linear secret sharing
scheme is used, where each secret is represented by a polynomial of degree t and t < n

2 . Throughout
this work, we will use notation [x]← RSS(x) to denote creation of n random shares of x using the
secret sharing scheme. The properties of such schemes allow the parties to compute any linear
combination (including addition, subtraction, multiplication by a constant, etc.) of secret-shared
values without any interaction. For instance, computing [s]← [a]+[b] involves locally adding shares
of a and b (in F); computing [b]← [a]+ c amount to locally adding the (public) value c to the share
of a, and [b]← c[a] involves locally multiplying the share of a by c. Additionally, efficient protocols
for computing a product of two shared values exist for threshold linear secret sharing schemes; we
denote multiplication as [ab] ← Mult([a], [b]). Because the details of a multiplication protocol will
be relevant in the subsequent description, we will assume that the multiplication protocol from [45]
is used: To multiply [a] and [b], each participant first locally multiplies her shares of [a] and [b]
and then distributes random shares of the result to the remaining participants. Upon receipt of
messages from all parties, each participant computes her share of [ab] as a linear combination of
received values. The first multiplication step raises the degree of the polynomial representing ab to
2t and the subsequent steps re-randomize the resulting polynomial and reduce its degree back to
t through polynomial interpolation. What will be important to us is that in the first step instead
of a single multiplication, the parties can evaluate any multivariate polynomial of degree 2 locally
and then apply the (interactive) re-sharing and interpolation operations only once.

Following prior literature, we evaluate performance of our protocols in terms of interactive
operations – termed invocations – which dominate the overall cost. Such operations include mul-
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Source Rounds Complexity Security
[64] 15 279ℓ+ 5 perfect
[17] 2ℓ+ 10 24ℓ+ 5 perfect
[20] 4 4ℓ+ 1 statistical

Table 1: Known techniques for comparison of ℓ-bit values without the need for bit decomposition.

Source Rounds Complexity Security
Tree-based log k k − 1 perfect

[26] 5 6k perfect
[20] 3 5 log(k) + 2 statistical

Table 2: Known techniques for computing Boolean OR of k shared bits.

tiplication, share distribution, and reconstruction of a value from its shares. In addition to the
overall complexity measured in the total number of invocation, round complexity is an important
indicator of efficiency of a protocol. We therefore also measure round complexity, which is the
number of sequential interactive invocations.

In this work, we use some existing protocols as building blocks, which are:

LT : given two shared values [x] and [y], performs less-than and outputs shared bit b = (x
?
< y),

where b = 1 if x < y and 0 otherwise. The length l can take any value ≤ ℓ. The complexity
of this protocol is proportional to the bitlength ℓ of x and y. Comparison protocols received
a fair amount of attention in prior literature, but several techniques (e.g., [26, 43]) assume
that the operands will be available in the bitwise form (i.e., each bit of x and y is shared by
the participants). This means that expensive bit decomposition first needs to be applied to
both x and y. The techniques that perform comparison without the need to bit-decompose
the operands first provide a more efficient option in our case, and we list performance of
known solutions in Table 1. Because the recent solution of [20] is the most efficient, this is
what we adopt in our protocol. It, however, should be noted that the comparison protocols
in [20] provide statistical privacy and rely on the size of the field F to be substantially larger
than the size of the values. In particular, it needs to be κ bits longer than ℓ, where κ is a
statistical security parameter. This primarily affect computation rather than communication
complexity. We provide more detail about the comparison protocols from [20] in Appendix B.

OR : given a number of shared bits [x1], . . ., [xk], performs Boolean OR of all input bits and produces
a shared bit b (i.e., b is 1 iff at least one of x1, . . ., xk is 1). A straightforward implementation
of this function allows us to compute the OR of k bits in a binary tree fashion using k − 1
multiplications in ⌈log k⌉ rounds. Results from the literature also provide constant-round
protocols, which are reported in Table 2. In [26], the OR is computed as a symmetric Boolean
function using unbounded fan-in multiplication. And in [20] the computation cleverly uses
the fact that

∨k
i=1 ai = 0 iff

∑k
i=1 ai = 0, which can be tested using equality of a value of

length log k. As before, the computation in [20] is over a larger field.

4.2 Overall protocol

Before presenting the overall protocol, we note that the computation to be performed can be restruc-
tured to result in a more efficient solution. The most computation-intensive operation in equation 2
is the division operation. While in general the use of this operation can be unavoidable, in our case
the computation can be rewritten to avoid it. In particular, we change the computation in equation 2
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to the following, using the notationHD(X,Y ) = (||(X ⊕ Y ) ∩M(X) ∩M(Y )||) / (||M(X) ∩M(Y )||) =
D(X,Y )/M(X,Y ):

(

D(X, LSc(Y ))
?
< T ·M(X, LSc(Y ))

)

∧ · · · ∧

(

D(X,RSc(Y ))
?
< T ·M(X,RSc(Y ))

)

(3)

The above restructuring allows us to replace 2c + 1 division operations with the same number of
comparisons which can be carried out more efficiently. In the rest of this section we thus describe
our protocol corresponding to the computation in equation 3. Note that this type of computation
restructuring cannot be used to enable the exact computation in the single-server solution, as
predicate encryption allows us to only compare a computed value with a constant.

At high level, our MSSBS protocol follows the computation of equation 3. The database is stored
among the servers in an secret-shared form and the client also distributes shares of her query to
the servers. Because all computation must proceed on integer values, there is a need to discretize
the data. In particular, the threshold T needs to be represented as an integer using a desired level
of precision. That is, the floating point value of the threshold (where 0 < T < 1) is multiplied
by constant h which represents the level of precision. This also implies that once the Hamming
distance is computed on binary data, the result is multiplied by h. That is, the computation will

be performed as (D(X,Y ) ·h)
?
< ((T ·h) ·M(X,Y )) (and the conventional implementation that uses

division would compute ⌊(D(X,Y ) · h)/M(X,Y )⌋
?
< ⌊T · h⌋). In what follows, we will assume that

T already corresponds to its integer representation for the desired level of precision. The above
also means that the length of the numbers on which we operate is ℓ = ⌈log(m · h)⌉.

To minimize the interactive computation associated with computing D(X,Y ) and M(X,Y ),
both the database owner and the client communicate their data in a special form. In particular,
instead of sending bits Xi and M(Xi) to the servers, the database owner distributes Ai = Xi ∧
M(Xi) = XiM(Xi) and Bi = X i ∧M(Xi) = (1−Xi)M(Xi), after which the servers also compute
Ci = Ai+Bi = M(Xi). The client then also distributes its data Y and M(Y ) as Ui = YiM(Yi) and
Vi = (1 − Yi)M(Yi), after which the servers compute Wi = Ui + Vi = M(Yi). This representation
allows the servers to compute both D(X,Y ) and M(X,Y ) as two-degree polynomials over variables
Ai, Bi, Ci, Ui, Vi, and Wi, which would require only one invocation per D(X,Y ) and M(X,Y )
instead of O(m) invocations in other implementations. In more detail, M(X,Y ) is computed as
M(X,Y ) =

∑m
i=1CiWi =

∑m
i=1M(Xi)M(Yi) andD(X,Y ) is computed asD(X,Y ) =

∑m
i=1(AiVi+

BiUi) =
∑m

i=1(Xi(1 − Yi) + (1 −Xi)Yi)M(Xi)M(Yi) =
∑m

i=1(Xi ⊕ Yi) ∧M(Xi) ∧M(Yi). Both of
these functions can be represented as inner product computation (on C and W , and 〈A,B〉 and
〈V,U〉, respectively), and we define sub-protocol Inner that proceeds as follows:

Protocol [a]← Inner([x1]. . .[xk], [y1]. . .[yk]):

1. Each party Pj locally computes [a′]j =
∑k

i=1[xi]
j [yi]

j.

2. P1, . . ., Pn engage in re-sharing and polynomial interpolation steps of the multiplication pro-
tocol using their [a′]j ’s as input to produce a proper secret-shared inner product [a].

This protocol requires only one invocation in one round, which allows us to significantly reduce the
overhead of computing Hamming distances from linear in biometric size to a small constant. The
overall protocol for multi-server biometric search is given next.

Protocol MSSBS

Setup:
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1. For each biometric 〈X,M(X)〉 ∈ D, the database owner distributes information about it to
the parties P1, . . ., Pn as follows:

(a) for i = 1, . . .,m, the database owner executes [Ai] ← RSS(XiM(Xi)) and [Bi] ←
RSS((1−Xi)M(Xi)).

(b) for i = 1, . . .,m, the database owner communicates shares [Ai]
j and [Bi]

j to party Pj for
j = 1, . . ., n.

2. The database owner also executes [T ] ← RSS(T ) and sends c, h, and [T ]j to party Pj for
j = 1, . . . , n.

3. Upon receipt of [Ai]
j and [Bi]

j , each party Pj sets [Ci]
j = [Ai]

j + [Bi]
j for each i = 1, . . .,m

and each 〈X,M(X)〉 ∈ D. This results in sharing the value of Ci = M(Xi) among the parties.

As a result of this setup, let each shared biometric be denoted by 〈A,B,C〉 and the collection of
shared biometrics be denoted by D′.

Query:

1. The client computes [Ui]← RSS(YiM(Yi)) and [Vi]← RSS[(1−Yi)M(Y )i] for 1 ≤ i ≤ m, and
communicates [Ui]

j, [Vi]
j to Pj for 1 ≤ j ≤ n and 1 ≤ i ≤ m.

2. Each Pj locally sets [Wi]← [Ui] + [Vi] using its shares for i = 1, . . .,m.

3. For each 〈A,B,C〉 ∈ D′, run in parallel:

(a) For each k = −c, . . .c, run in parallel:

i. Each Pj locally performs a circular shift of its shares of U , V , and W according to
the value of k and the step size of the shift. Denote the resulting values as U ′, V ′,
and W ′.

ii. P1, . . ., Pn execute [a]← Inner(〈A,B〉, 〈V ′, U ′〉).

iii. P1, . . ., Pn execute [b]← Inner(C,W ′).

iv. P1, . . ., Pn execute [c]← Mult([b], [T ]).

v. P1, . . ., Pn execute [dk]← LT(h[a], [c]).

(b) P1, . . ., Pn execute [f ]← OR([d−c], . . ., [dc]) and reconstruct the value of f .

4. For each 〈A,B,C〉 ∈ D′ that returned 1, party Pj sends the index of the record in D′ to the
client.

In this protocol, the parties compute steps 3.a.ii and 3.a.iii in parallel and obtain shares of D(X,Y ′)
and M(X,Y ′), respectively, where Y ′ is the rotated biometric Y . This takes one round. In the
second round, the parties compute T · M(X,Y ′) (step 3(a).iv). Step 3.a.v involves comparing
D(X,Y ′) and T ·M(X,Y ′). Finally in step 3.b the parties compute the OR of the outcome of
the comparisons across all shifts of Y and recover the result. Figure 2 summarizes the interaction
between the database owner, the client, and the servers in the protocol, where g denotes the function
the servers compute in order to compare two biometrics.

This protocol assumes that the precision value h is a part of the algorithm and is public. If
this is not the case, the protocol can be easily modified to work with a split value. Then during
the setup, h will be distributed to the participants as [h]p, and during the query execution, local
computation h[a] will be replaced with interactive Mult([h], [a]) in the second round of the protocol.
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Setup:
• DB owner’s input is database D of biometrics 〈X,M(X)〉 and parameters c, h and T .
1. DB owner: AX ← 〈RSS(XiM(Xi))〉

m
i=1, BX ← 〈RSS((1 −Xi)M(Xi))〉

m
i=1 for all X ∈ D.

2. DB owner: [T ]← RSS(T ).

3. DB owner
〈[AX ],[BX ]〉∀X∈D ,[T ],c,h

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Servers
4. Servers: [CX ]← [AX ] + [BX ] for all X ∈ D.
• Servers’ output is D′ = 〈[AX ], [BX ], [CX ]〉∀X∈D, [T ], c, and h.

Query:
• Client’s input is 〈Y,M(Y )〉, servers’ input is [T ], c, h, and D′ = 〈[AX ], [BX ], [CX ]〉∀X∈D.
1. Client: [UY ]← 〈RSS(YiM(Yi))〉

m
i=1, [VY ]← 〈RSS((1− Yi)M(Yi))〉

m
i=1.

2. Client
[UY ],[VY ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Servers
3. Servers: [WY ]← [UY ] + [VY ].
4. Servers: fX ← g([AX ], [BX ], [CX ], [UY ], [VY ], [WY ], [T ], c, h) ∀X ∈ D.

5. Client
{index(X)}∀(X∈D∧fX=1)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Servers
• Client’s output: indices of matched biometrics in D.

Figure 2: Summary of MSSBS protocol interaction.

4.3 Analysis

Security. In our multi-party biometric search we utilize a number of sub-protocols which are known
to be secure in the semi-honest model and can also be shown to be secure in the fully malicious
model. A standard approach in showing that a protocol, which consists of secure building blocks,
is secure is to employ the composition theorem of [19]. It states that the composition of secure
protocols results in a secure overall protocol. Then security of the overall solution reduces to
ensuring that sub-protocols are secure. In what follows, we first show that our MSSBS protocol is
secure against semi-honest participants, and then extend its security to fully malicious participants
through the use of additional tools.

Theorem 2 Assuming security of the secret sharing scheme with t < n
2 and secure channels be-

tween the participants, the MSSBS protocol achieves security in presence of semi-honest servers.

Proof First, we note that the linear secret sharing scheme achieves perfect secrecy in presence
of collusions of size at most t (i.e., zero information can be learned about secret-shared values
by t or fewer parties). Similarly, the multiplication and inner product protocols do not reveal any
information, as the only information transmitted to the participants are the shares. This means that
we can build perfect simulators for Mult and Inner, where the simulators can use arbitrary values
at intermediate stages of the protocol (as long as they messages comply with expected output) and
the view of a coalition of size at most t will be identically distributed to the real protocol execution.
Similarly, due to security of LT and OR protocols from [20], we will invoke their corresponding
simulators to build the simulator for the overall protocol.7

A simulator S for MSSBS (which will simulate the view of a coalition of up to t servers) is then
given m, c, and h as the input and bit f for each record in D′ as the output. S first constructs T ,
arbitrary tuples 〈XiM(Xi)〉

m
i=1, 〈(1 −Xi)M(Xi)〉

m
i=1 for each record in D and arbitrary tuples for

client queries 〈YiM(Yi)〉
m
i=1, 〈(1− Yi)M(Yi)〉

m
i=1 such that the result of comparing X and Y using c

7If the tree-based OR protocol is used, its computation consists of a combination of multiplications and linear
combinations of shares without revealing any information beyond secret shared values, and therefore this protocol
also achieves perfect secrecy and has a corresponding simulator.
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and h would produce the desired output bit f . S distributes the shares of T and database records
to the servers, followed by the shares of client biometric Y . As there is no interaction in the Setup

phase, S does not need to generate any additional view information for the servers. To simulate
the servers’ view in the Query phase, S uses simulators for sub-protocols Inner, Mult, LT, and OR.
As these simulators are secure (up to t colluding servers cannot learn additional information and
the servers cannot distinguish simulation from real execution) and there are no additional messages
that the servers receive, we arrive at security of the overall protocol. �

The above result shows that the computational servers cannot learn additional information about
the database owner’s and client’s data. The result, however, can be easily extended to also show
security against both the database owner and the client. That is, the database owner does not
learn any information about clients’ queries and the client does not learn any information about
the database beyond what it can conclude from information about matches that it learns as its
output. The security follows from the fact that neither the database owner nor the client receive
any intermediate results, and therefore the database owner/client colluding with at most t servers
gains no information.

To show security in presence of malicious adversaries, we need to ensure that (i) all participants
prove that each step of their computation was performed correctly and that (ii) if some dishonest
participants quit, others will be able to reconstruct their shares and proceed with the rest of the
computation. The above is normally achieved using a verifiable secret sharing scheme (VSS), and
a large number of results have been developed over the years (e.g., [45, 23, 48, 49, 6, 29, 27, 28] and
many others). In particular, because any linear combination of shares is computed locally, each
participant is required to prove that it performed each multiplication correctly on its shares. Such
results normally work for t < n

3 in the information theoretic or computational setting with different
communication overhead and under a variety of assumptions about the communication channels.
Additional proofs associated with robust multi-party computation might include proofs that shares
of a private value were distributed correctly among the participants (when the dealer is dishonest)
and proofs of proper reconstruction of a value from its shares (when not already implied by other
techniques). In addition, if at any point of the computation the participants are required to input
values of a specific form, they would have to prove that the values they supplied are well formed.

Security of our MSSBS protocol against active adversaries can be shown as follows. First of
all, we note that the efficiency of the protocols from [20] is in part due to its use of Pseudorandom
Replicated Secret Sharing [24] (PRSS) which allows the parties to generate shares of random values
without any interaction (and thus reduce communication), after which the shares are converted to
shares in a regular linear secret sharing scheme. If the PRSS-based random value generation is
replaced with a traditional interactive version,8 standard VSS techniques can be applied to achieve
security against active adversaries. In this case, the (interactive) complexity of the protocol would
increase, as well as the number of rounds (we detail that below). In addition, because VSS tech-
niques perform verification for each multiplication operation, the need to verify multiplications in
Inner would result in that protocol executed as regular multiplication operations followed by a local
sum. Finally, one building block in both LT and OR (namely, PRandInt, see Appendix B) requires
the parties to input random values of a particular length. To ensure that the malicious participants
comply with the length requirements, a range check proof should be used. Several techniques from
the literature can be used for that purpose (in combination with VSS) with techniques from [67, 66]
being among the most recent. To summarize, security in the malicious model can be achieved by

8In this case, each participant Pi chooses a random secret ri and distributes its shares to other participants. The
resulting random value r is computed as the sum of individual random values ri, and its shares are obtained by
adding all of the received shares.
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using standard VSS techniques, e.g., [45, 25], in combination with a range proof, e.g., [67], where
PRSS-based random generation is replaced with regular share generation. These VSS techniques
would also work with a malicious database owner and/or client, who would need to prove that they
generate legitimate shares of their data.

In addition to achieving security as described above, Cramer et al. [24] shows how security
against active adversaries can be built using PRSS in two rounds of communication. This, however,
requires representing the computation as a polynomial of degree 3 using a generic conversion proce-
dure, which would compromise the efficiency of the protocol. This would also require t < n/5 [24].
In this case, the techniques of [30] should be used for the range proof (where [30] also utilizes
PRSS).

Complexity. In our analysis we distinguish between overhead of the client and computational
servers per execution of Query protocol. For the client, communication consists of sending the
shares of the biometric Y to the servers and therefore is 2nm field elements. The communication
received as a result of the computation is proportional to the number of matches (and therefore is
small, if non-zero).

For each participating server, processing each record in the database requires 2 invocations and
one round for steps 3.a.ii and 3.a.iii, one invocation and one round for step 3.a.iv, and additional 3
rounds and 4ℓ+1 invocations for step 3.a.v (one round of LT can be carried out in parallel with the
previous steps as it is input-independent, see [20] for more detail). In addition, the constant-round
OR protocol from [20] adds two more rounds and 5 log(c) + 2 invocations in step 3.b (like in the
case with LT, one round can be carried out in parallel with the previous steps). We obtain the
overall complexity of (2c+ 1)(4ℓ+ 4) + 5 log(c) + 2 invocations in 7 rounds, which is very low and
independent of the length m of biometric representations. The typical values for c and ℓ are c = 10
and ℓ ≈ 20, resulting in about 1,800 invocations overall.

If the shifting can be skipped when computing the Hamming distance (which is a realistic
assumption, see Section 6), this reduces to 4ℓ+ 4 invocations in 5 rounds, which would give fewer
than 100 invocations overall for typical ℓ.

If the PRSS-based random value generation is not used (e.g., for the purposes of using standard
VSS techniques in the malicious model), the complexities of LT and OR protocols, and thus the
overall MSSBS protocol, change. In Appendix B we provide a detailed analysis of the new com-
plexities, and obtain 10ℓ+ 6 invocations for LT in 7 rounds and 10 log(c) + 5 invocations for OR in
7 rounds. This would change the overall complexity of MSSBS to (2c+ 1)(10ℓ+ 9) + 10 log(c) + 5
invocations in 11 rounds, which is still low.

Performance. To further investigate the performance of our solution in practice, we implement the
multiplication protocol, the most basic building block of the solution, and evaluate the performance
of the MSSBS protocol. The execution time of the protocol will heavily depend (i) on the
computational power of the participating servers and, perhaps more importantly, (ii) on the speed
of the networks connecting them. Recall that a multiplication protocol requires a participant to
send one message to each other participating party and wait for a reply from all of them. Because
communication between each pair of participants requires a secure channel, multiplication can be
viewed as the most expensive type of a single invocation with n−1 encryptions and n−1 decryptions
per participant (reconstructing a value from its shares, for instance, requires no encryption, but is
also counted as one invocation).

In our implementation we used a LAN with n = 5. While this configuration has low latency and
permits a large number of rounds within a given time frame than slower networks, participants on
a WAN will be able to utilize a higher degree of parallelism per round of communication. Because
our protocol involves a significantly larger number of invocations than the number of rounds,
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and additional parallelism can be gained by simultaneous processing of multiple X from D, both
configurations are suitable for the protocol. In general, the computational servers are assumed to
have sufficiently high-speed connections available, but reside on different networks.

In our setup, commodity 1GHz Sun workstations with dual core AMD Opteron processors 180
and 1214 running Red Hat Linux were used for running the experiments on a 100Mbps switched
LAN. The timings were gathered and averaged over five hundred executions. We obtain that the
communication overhead per multiplication was near 3ms, which means that on a LAN all rounds
of the protocol can be finished in about 20ms. Due to technical reasons with out setup, we were
unable to obtain reliable measurements for the delay with a varying number of participants n.
We, however, note that all necessary information is already available in prior literature, and our
result for n = 5 is in agreement with it. In particular, Geisler [44, Section 4.5] reports on the
results of performing multiplication with n between 4 and 31 using slightly faster machines and
network. The times range between 0.7ms with n = 4 and t = 1 and 9.5ms for n = 31 and t = 10.
While communication in the multiplication protocol is linear in n for each party, multiplication
time exhibits faster than linear growth with quadratic function f(x) = 0.799 − 0.006x + 0.0009x2

resulting in the best fit. This is due to the fact that during multiplication re-sharing the computed
value requires n − 1 evaluations of a polynomial of degree t, which results in quadratic number of
operations overall (assuming that t = O(n)). We note that [44] also provides performance results
for multiplication in presence of active adversaries, and the online portion of the multiplication
techniques implemented in [44] exhibits only linear in n growth. This is due to the fact that each
multiplication (after pre-processing step) involves two linear-time reconstructions plus constant
work.

When the servers reside on different networks, the communication delay increases and the round
trip time between well-connected machines would be in the range of 50–80 ms across a large country
(e.g., between East and West Coasts in the US). In that case, the round complexity of the solution
will result in communication delay under 0.5 second (with the ability to process a very large number
of records in the database in parallel).

As far as the ability to parallelize multiple executions of the multiplication protocol goes, an-
other (optimized) secure multi-party implementation, Sharemind [1], achieves more than a million
multiplications per second with n = 3 on a fast network. While the underlying protocol used for
multiplication in Sharemind is different from what we utilize, for small values of n the compu-
tational overhead will be dominated by encryption/decryption operations and therefore would be
comparable. This in particular means that with our MSSBS protocol on the order of 1000 biomet-
ric records can be securely compared in a second with that setup, but the degree of parallelism
would decrease for a larger n or slower connections. Furthermore, AES hardware implementations
such as that of Tillich and Großschädl [72] allow for about 5-fold speedup as compared to conven-
tional software implementations. Since in our application the helper servers would mostly execute
multiplication protocols, it would be logical to assume that they will be able to use optimized hard-
ware implementations of AES with possibly extended instruction set for improved performance.
Thus, the estimated value above can be further reduced and can used as the upper bound on the
computational costs.

5 Using Approximations to Reduce Cost

As efficiency is one of our goals, it seems natural to apply approximation algorithms to improve
the computation or communication used per comparison with a database record. In particular, the
protocols we described in the previous sections examine all m bits of each biometric and compute
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all operations whenever possible, while an approximation might involve only a fraction of that work
at the expense of some error in the computation. Here our goal is not to use an approximation
algorithm to replace all of the computation, but rather have a faster way to filter out most of
records that definitely constitute a mismatch. In other words, the computation can be performed
in two stages:

1. Run an approximation algorithm to filter out the majority of records;

2. Run the exact algorithm to filter out mismatches within the error of the approximation
algorithm.

This two-stage matching process might allow us to tolerate a larger error with more coarse and
faster approximations than using a solely good approximation algorithm. If the approximation is
fast enough on the majority of the records, the average time spent per record has the potential
to significantly go down. Recall that we are interested in the FRR of 0 and in as low a FAR as
possible (i.e., return all authentic records that matched and as few mismatches as possible).

In recent years, several results appeared that permit private evaluation of approximations with
provable bounds of the error [40, 41, 52]. There are two main reasons, however, why prior solutions
cannot be directly applied here. First, they assume that, in two-party computation, one party
holds one database and the other party holds another database, and the computation produces an
approximation of the distance between the databases. In our case, no party has access to either
string being compared, which rules out some of the approaches used (in particular, the sublinear
hashing scheme of [40, 41]). Second, such approximation (more precisely, sampling) algorithms
result in savings only when the size of the string is very large. In our case, the size of the data
stringm is rather small (12800 bits in our database, commercial software produces iris codes of 2048
bits), and even setting the error bounds to generous values results in the number of sampled bits
to be significantly larger than m. Thus, we chose to depart from the theoretical bounds and, as the
initial step, empirically evaluate the sampling technique on smaller values. We report the results
of experiments in Section 6.2.3 and leave more involved approximation algorithms as a direction
for future work.

6 Experimental Validation

In this section we report on the experiments we conducted to estimate the accuracy of the tech-
niques. As is evident from the prior description, some of our techniques introduce errors in the
matching process, and we are interested in estimating and minimizing the errors they introduce.
All data reported in this section should be treated as an initial study that gains insight into the
impact of approximations on the performance of biometric matching and corresponding error rates.
It would be desirable to know if the magnitude of robustness to approximations using averaged
images as described in this section would be maintained on data sets gathered under different
conditions, of different quality, etc.

For the purposes of this work, the experiments were run on biometric data from 170 subjects,
each having about 50–100 biometric samples. Authentic data were gathered using multiple bio-
metric templates for each individual, and impostor data were gathered by pairwise comparisons
between different individuals. Thus, the volume of impostor comparisons significantly exceeds the
data collected for authentic comparisons.
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Authentic Impostor FAR FRR EER
Min Max Avg St dev Min Max Avg St dev (%) (%) (%)

Original 0.002 0.553 0.289 0.123 0.083 0.744 0.374 0.080 17.6 46.6 33.8
MC-5 0.121 0.492 0.311 0.092 0.233 0.5670 0.422 0.044 9.0 28.6 20.7
MC-9 0.119 0.479 0.281 0.075 0.241 0.5720 0.421 0.043 7.1 15.3 11.8
MC-13 0.126 0.386 0.243 0.062 0.263 0.5580 0.422 0.044 3.5 5.4 4.6
MC-17 0.108 0.348 0.224 0.052 0.257 0.5700 0.422 0.043 1.6 2.0 1.9
MC-21 0.108 0.326 0.215 0.051 0.250 0.5610 0.422 0.044 1.3 1.6 1.5
MC-25 0.116 0.319 0.204 0.049 0.242 0.5630 0.421 0.044 0.9 1.0 1.0
MC-29 0.104 0.297 0.188 0.047 0.266 0.5590 0.423 0.044 0.5 0.5 0.5
MC-33 0.103 0.299 0.172 0.046 0.228 0.5500 0.422 0.044 0.3 0.3 0.3

Table 3: Performance of Any-Support-Alg majority algorithm on authentic and impostor data.

6.1 Widening the gap between authentic and impostor distributions

As a first step in the experimentation, we attempt to increase the gap between authentic and im-
postor distributions by using repeated sampling and majority encoding for each bit in the biometric
representation, as suggested in [32] (i.e., acquire multiple biometric readings and set bit Xi in bio-
metric representation using the majority from the readings). The goal is to have a gap between
the authentic and impostor distributions so that the errors introduced by approximations will fall
within the gap rather than cause larger overlap of such distributions. This technique was theoreti-
cally evaluated (in [32]) on a different number of samples used for majority encoding (assuming an
error rate of 10% for authentic data). Such analysis implies that the noise is uniformly distributed
over the code, which is not true for biometric data, i.e., some bits are more likely to stay consistent
over multiple acquisitions than others. To the best of our knowledge, this is the first work that
empirically evaluates effectiveness of this technique (as far as we know, this rather simple technique
is not used (or even known) in the biometric community).

While the idea of this technique is very simple, applying it to iris codes is less straightforward
than it might seem due to usage of masks and template rotation in the matching process. In
particular, given a number of templates, only a subset of them can have any particular bit marked
as reliable (this also implies that, given an odd number of templates, it is no longer guaranteed
that the majority for each bit will be computed using an odd number of samples). Furthermore,
it might be desirable to pre-align the biometric representations used in computing the majority
template prior to performing majority encoding.

For the purposes of this work, we designed two algorithms for computing majority codes, which
we describe next. Suppose we are given k iris codes (for an odd k) and would like to compute a
majority code using them. For each jth bit of the biometric representations (1 ≤ j ≤ m), let bij
denote the jth biometric bit from the ith code and bj the computed majority bit. Similarly, we use
mij to denote the jth mask bit of the ith code and mj the corresponding mask bit in the majority
code. The first algorithm, to which we refer as Any-Support-Alg, sets the mask bit mj to 1 if a least
one bit among the mij ’s (1 ≤ i ≤ k) is equal to 1. The bit bj is then set to the majority of the bij ’s
that had the corresponding mask bit set to 1 (when their number is even and there is no majority,
it is set to 0). The second algorithm, to which we refer as Threshold-Support-Alg, sets the mask bit
mj to 1 only if the number of templates that have this mask bit set is above a certain threshold
(which we set to k/4). Furthermore, if the number of templates with the set mask bit exceeds the
threshold, but there is no majority among such bij ’s, mj is also set to 0. We provide pseudo-code
for these algorithms in Appendix A.

Tables 3 and 4 show the results of the distance computation (i.e., as in equation 1) on the
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Authentic Impostor FAR FRR EER
Min Max Avg St dev Min Max Avg St dev (%) (%) (%)

Original 0.002 0.605 0.295 0.135 0.015 0.654 0.375 0.082 15.9 50.5 35.6
MC-5 0.019 0.521 0.243 0.116 0.148 0.609 0.398 0.063 10.0 26.0 19.3
MC-9 0.068 0.478 0.242 0.090 0.186 0.585 0.407 0.055 8.1 16.3 12.8
MC-13 0.077 0.416 0.217 0.078 0.202 0.579 0.408 0.053 5.3 8.8 7.2
MC-17 0.085 0.470 0.194 0.070 0.191 0.571 0.411 0.051 2.9 4.3 3.6
MC-21 0.076 0.354 0.188 0.061 0.220 0.576 0.414 0.050 1.8 2.3 2.1
MC-25 0.062 0.301 0.182 0.054 0.213 0.572 0.414 0.050 1.2 1.3 1.3
MC-29 0.046 0.303 0.171 0.054 0.234 0.566 0.416 0.049 0.8 0.9 0.9
MC-33 0.067 0.321 0.166 0.054 0.211 0.558 0.416 0.048 0.7 0.8 0.7

Table 4: Performance of Threshold-Support-Alg majority algorithm on authentic and impostor data.
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Figure 4: Impostor comparisons with
Any-Support-Alg.

data produced using these algorithms, as well as the original data.9 In the tables, MC-k stands
for majority code computed from k iris codes. We also illustrate performance of Any-Support-Alg
in figures 3 and 4. As is evident from the tables and figures, applying either majority algorithm
enlarges the distance between the authentic and impostor distributions and also decreases the
variance of both distributions. Both of these outcomes are expected. What is also very important
for our application is that the maximum error for authentic comparisons drops significantly and
takes values significantly lower than most values for impostor error.

In addition to providing distribution information in the tables, for each experiment we also list
(i) the FAR and FRR in percent that minimizes the overall number of errors and (ii) the equal
error rate (EER) in percent at which FAR = FRR. Note that unlike all other numbers provided in
this section, these error rates are computed based on the distributions’ characteristics (i.e., average
and standard deviations of authentic and impostor data) rather than obtained experimentally
and can therefore slightly differ from other error rates that we list. This information will allow
to more effectively compare performance of biometric identification under different computation
approximations. As can be seen from the tables, the original data in our experiments is of rather
poor quality and has large error rates.

To gain better understanding how these findings align with theoretical analysis (which assumes

9The exact numbers for the original data can slightly differ between the tables as they were produced using two
randomly chosen biometrics for each subject to be comparable with other experiments that used two majority codes
per subject.
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uniformly distributed noise), we provide theoretical expectations for the value of 0.29 (the original
average distance between two authentic biometrics in our data sample). The theoretically expected
error rate for the majority code would then be:

MC-5 MC-9 MC-13 MC-17 MC-21 MC-25 MC-29 MC-33
0.150 0.087 0.053 0.033 0.021 0.013 0.008 0.005

which is clearly very different from the actual data we observe. For instance, for MC-13 the distance
according to the theoretical analysis is expected to be 5.3%, while in Tables 3 and 4 the average
distance is above 20%.

Threshold-Support-Alg provides slightly better separation between the means of authentic and
impostor data than Any-Support-Alg, but has a higher variance. Also, Any-Support-Alg stabilized
the impostor data very quickly (with virtually no changes as the number of templates used during
the computation of the majority codes increases), but did not appear to have significant effect
on the authentic data when a small number of templates were used to form majority codes. One
advantage of Any-Support-Alg is that it produces biometric codes with a much higher number of
mask bits set than in the original biometric representations. This allows us to approximate division
with high precision as we show in the next section.

6.2 Validating accuracy of approximation algorithms

We now proceed with the empirical evaluation of different types of approximations described in
this work on the iris codes computed using the majority algorithms. Recall that the single-server
solution does not implement the division operation, and this is what we evaluate next. We also
investigate the effect of skipping the template rotation, as well as report the results of applying
sampling techniques on the majority iris codes in order to reduce computational cost of biometric
search solutions.

6.2.1 Division

As was mentioned above, the Any-Support-Alg majority algorithm produces codes with very high
percentage of mask bits set (i.e., much higher than 75% in the original codes). The small variance
in the mask size thus makes it ideal for approximating the division operation. That is, instead of
dividing the distance between two codes by the mask overlap size, we multiply the threshold T ,
with which the hamming distance is compared, by a constant that corresponds to the average mask
overlap size. Since the distribution of mask overlap sizes for authentic comparisons differ from the
distribution of impostor comparisons, we consider averaging the means and using that value in
approximating the division.

Table 5 shows the distribution of mask overlap sizes produced on authentic and impostor com-
parisons that used majority codes (generated by Any-Support-Alg majority algorithm), from the
total of m = 12800 bits. As can be seen from the table, the variance reduces dramatically as the
number of templates k used to create majority codes increases. As the benefits of such majority
algorithms are most pronounced on larger values of k (and can bear very small advantage oth-
erwise), if such algorithms are deployed, we expect that rather high values of k to be used (e.g.,
20 and above). In such cases, the spread of mask overlap values is minimal: e.g., when k = 21
the mask overlap sizes range from 12620 to 12800 across all of impostor and authentic compar-
isons. This means that the maximum error that division approximation can produce is bounded
by 180/12800 or 1.4%. Furthermore, for most comparisons the error will be even lower due to the
uneven distribution of the mask overlap sizes, which are higher concentrated near the upper bound.
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Authentic Impostor
Min Max Avg St dev Min Max Avg St dev

Original 0.148 0.740 0.484 0.121 0.125 0.838 0.469 0.167
MC-5 0.911 1.272 1.153 0.078 0.816 1.272 1.090 0.108
MC-9 1.131 1.280 1.246 0.029 1.139 1.280 1.218 0.037
MC-13 1.238 1.280 1.267 0.011 1.212 1.280 1.251 0.018
MC-17 1.258 1.280 1.271 0.006 1.240 1.280 1.263 0.011
MC-21 1.267 1.280 1.275 0.004 1.262 1.280 1.271 0.005
MC-25 1.268 1.280 1.276 0.004 1.261 1.280 1.271 0.006
MC-29 1.273 1.280 1.277 0.002 1.268 1.280 1.275 0.004
MC-33 1.273 1.280 1.277 0.002 1.271 1.280 1.276 0.003

Table 5: Mask overlap size of comparisons of iris codes (in 104 bits) with Any-Support-Alg.
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Figure 5: Distribution of mask overlap size for impostor comparisons with Any-Support-Alg.

Figure 5 illustrates mask overlap size distribution for select cases. We chose to plot mask overlap
sizes corresponding to impostor data because they have larger spread than values of authentic data.

6.2.2 No shifting

The next type of experiments we performed is to estimate the error introduced by skipping the shift-
ing and minimum operations. As the iris codes in our database are rather well-aligned (i.e., finding
the minimum value among all shifts for authentic data often results in choosing the original code
with no shifting), the expected error is small. Table 6 shows the results of such an approximation.

If we compare these results with the data reported in Table 3, it is clear that the difference is
small. The average distance for impostor data increased by over 4% in all cases (and significantly
higher when no majority coding is used), while it increased by about 2% for authentic data (except
when no majority coding is used). This tells us that (i) the effect of shifting is higher on the
original data than when majority coding is used and (ii) with majority coding, the effect of shifting
is higher on impostor data than authentic data (i.e., shifting is more likely to accidently lower
the Hamming distance of impostor data than bring authentic codes closer by aligning them). The
variance, however, is larger in all cases in Table 3 than in Table 6, but not significantly larger.

Finally, to obtain the full picture of the performance of the optimized SSSBS protocol, we com-
bined approximations for division with skipping the shifting. Table 7 shows statistics for authentic
and impostor comparisons when mask overlap size was approximated by a constant during division
and no shifting was used during the computation of Hamming distance. As can be seen from the
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Authentic Impostor FAR FRR EER
Min Max Avg St dev Min Max Avg St dev (%) (%) (%)

Original 0.027 0.691 0.360 0.161 0.103 0.867 0.477 0.111 19.1 45.0 33.3
MC-5 0.121 0.584 0.332 0.099 0.253 0.720 0.473 0.060 11.2 24.6 18.8
MC-9 0.119 0.484 0.302 0.077 0.256 0.680 0.466 0.058 8.9 13.2 11.2
MC-13 0.136 0.436 0.269 0.069 0.254 0.689 0.466 0.059 5.5 6.8 6.2
MC-17 0.108 0.453 0.238 0.066 0.267 0.696 0.467 0.060 3.2 3.6 3.5
MC-21 0.108 0.373 0.222 0.058 0.251 0.686 0.467 0.060 1.9 1.9 1.9
MC-25 0.119 0.311 0.210 0.050 0.256 0.713 0.467 0.060 1.1 0.9 1.0
MC-29 0.104 0.318 0.198 0.050 0.265 0.657 0.468 0.060 0.8 0.6 0.7
MC-33 0.103 0.330 0.192 0.054 0.253 0.676 0.468 0.060 0.8 0.7 0.8

Table 6: Performance of Any-Support-Alg on authentic and impostor data when no shifting is used
during computation of Hamming distance.

Authentic Impostor FAR FRR EER
Min Max Avg St dev Min Max Avg St dev (%) (%) (%)

Original 0.021 0.992 0.373 0.193 0.028 1.068 0.459 0.152 24.2 54.2 40.2
MC-5 0.108 0.620 0.343 0.106 0.192 0.805 0.490 0.068 12.6 25.7 19.9
MC-9 0.124 0.495 0.306 0.081 0.278 0.699 0.477 0.060 8.8 13.4 11.3
MC-13 0.138 0.444 0.272 0.069 0.244 0.695 0.472 0.059 5.3 6.5 5.9
MC-17 0.109 0.453 0.240 0.067 0.275 0.681 0.470 0.059 3.1 3.6 3.4
MC-21 0.108 0.375 0.223 0.058 0.256 0.687 0.469 0.060 1.9 1.8 1.8
MC-25 0.120 0.312 0.215 0.051 0.273 0.687 0.469 0.060 1.2 1.0 1.1
MC-29 0.105 0.319 0.200 0.051 0.267 0.690 0.468 0.059 0.8 0.7 0.7
MC-33 0.104 0.331 0.192 0.054 0.262 0.678 0.468 0.060 0.8 0.7 0.8

Table 7: Performance of Any-Support-Alg on authentic and impostor data when no division and no
shifting is used during computation of Hamming distance.

table, we obtain that even by applying both of these approximation to the majority codes, the
results still significantly outperform the performance of original data (with no majority coding)
using the precise computation. When these approximations are used on the original data, however,
the performance is very poor (due to the large effect of approximating division and removal of
minimum computation on such data). Thus, we conclude that such approximations are feasible not
only for the single-server case, but can also be used to significantly reduce the computation cost of
the multi-server solution.

6.2.3 Sampling

The purpose of this last section is to gain insights on how reducing the number of bits used in the
computation of the Hamming distance reduces the accuracy of the matching. These experiments
were run on different values for the sample size s < m. Given s, during each comparison, a random
subset of size s was chosen from the m bits, while the rest of the computation proceeded unchanged.
As an interesting implementation issue, the care must be taken when such a subset is chosen not to
interfere with the circular shifts. Our biometric representations are stored as 20 × 640 bit arrays,
and we draw s/20 columns at random during each comparison. Doing so does not disrupt the
row-wise shifting. Also, since an excessive amount of shifting reduces impostor distance more than
authentic, in our experiments the amount of shifting c was scaled down with the size of the sample
set (e.g., c = 2 for s = m/10 and c = 1 for s = m/20).

Table 8 presents the results of applying the sampling technique to iris data with the sample
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Authentic Impostor FAR FRR EER
Min Max Avg St dev Min Max Avg St dev (%) (%) (%)

Original 0.000 0.720 0.379 0.183 0.068 0.955 0.474 0.123 18.5 53.3 37.8
MC-5 0.101 0.591 0.339 0.108 0.150 0.777 0.471 0.069 13.9 29.8 22.8
MC-9 0.105 0.541 0.291 0.080 0.146 0.747 0.465 0.065 9.8 13.1 11.5
MC-13 0.119 0.446 0.262 0.074 0.150 0.696 0.464 0.065 6.7 7.9 7.3
MC-17 0.085 0.350 0.228 0.061 0.159 0.681 0.463 0.066 3.4 3.1 3.2
MC-21 0.092 0.365 0.215 0.066 0.123 0.700 0.465 0.066 2.9 2.9 2.9
MC-25 0.115 0.320 0.208 0.056 0.242 0.696 0.467 0.067 1.9 1.6 1.8
MC-29 0.104 0.296 0.192 0.054 0.262 0.695 0.469 0.066 1.2 0.9 1.0
MC-33 0.073 0.288 0.178 0.054 0.250 0.677 0.468 0.066 1.0 0.8 0.9

Table 8: Performance of Any-Support-Alg with the sample size s = 260.

Setting
Optimization type

No division No shifting Sampling

SSSBS required ≈
2Tc
∏

i=1
(1 + 2m

T+i) ≈
(2m+T (2c+1)

T (2c+1)

)

/
(2αm+αT (2c′+1)

αT (2c′+1)

)

MSSBS ≈ 1 ≈ 2c+ 1 ≈ 2c+1
2c′+1

log(mh)
log(αmh)

Conventional computation ≈ 1.25 ≈ 2c+ 1 ≈ 1
α(2c + 1)/(2c′ + 1)

Table 9: Performance improvement, as compared to the full computation, of the solution in different
settings when approximation techniques are used.

size of 2% of the original bitlength m, s = 260. As the data suggest, while the original biometric
templates were significantly affected by this approximations, the templates computed using majority
coding still exhibited a very stable behavior. To evaluate the overhead of the two-stage search
process described in Section 5, we experimentally obtain the overlap of the authentic and impostor
distributions as the percent of impostor comparisons that fall below the maximum value of authentic
Hamming distances. The table below shows such numbers for different values of the sample set s
using majority codes with good performance.

Sample size MC-21 MC-25 MC-29 MC-33
s = 12800 2.01% 1.36% 0.28% 0.36%
s = 640 7.00% 1.50% 1.20% 0.18%
s = 260 6.50% 1.26% 0.50% 0.48%

Given the above, it is clear that a small sample size can be used to filter out a great majority of false
matches, after which a rigorous comparison can be conducted on the remaining records. This would
result in significant computational savings of the SSSBS protocol and noticeable computational
savings of the MSSBS protocol.

6.3 Performance summary of approximations

To determine the effect of the proposed approximation techniques on the system, we evaluate their
impact on both the accuracy of biometric matching and performance of the computation in different
settings. Table 9 lists multiplicative speedup factors by which performance improves in SSSBS and
MSSBS protocols as well as with conventional computation (no security) for each approximation

as compared to the full computation in the respective setting. In the table, we use ≈
(2m+T (2c+1)

T (2c+1)

)

for regular SSSBS computation (with no division), since the amount of computation is determined
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by the vector sizes. The computation becomes ≈
(2m+T

T

)

and ≈
(2αm+αT (2c′+1)

αT (2c′+1)

)

for no shifting and

sampling, respectively, where α = s/m is the fraction of the biometric being sampled and c′ < c
(e.g., we used c′ = 4αc for some of the experiments). The computational speedup for SSSBS is
enormous for both no shifting and sampling approximations for typical values of m, T , and c.

In MSSBS, the overhead is dominated by interactive operations. Then since we replace the
division operation by a multiplication, it has cost 1, and its removal has minimal effect on the overall
performance. In case of no shifting, on the other hand, the work is reduced by a factor ≈ 2c+1 and
for the same reason the work is reduced by the factor ≈ (2c+ 1)/(2c′ + 1) for sampling. Note that
using only α fraction of the biometric for sampling affects mostly local (rather than interactive)
computation, but since the biometric size effects the length of values used in interactive operations,
we obtain the additional speedup factor of log(mh)/ log(αmh) when sampling is used, where h
denotes the desired precision for the threshold T .

The last setting corresponds to computation on a conventional architecture with no crypto-
graphic techniques. In this case, the computation is dominated by the number of operations linear
in m(2c + 1) for the original formula. That is, with a conventional architecture, the computation
is the fastest when each Xi, Yi, M(Xi), and M(Yi) are stored as separate variables. In this case
computing a single D(X,Y ) involves 4m operations and computing each M(X,Y ) involves addi-
tional m operations. This allows us to achieve the speedup factors listed in Table 9 for all three
approximation types.

To summarize, we obtain that in all cases except when skipping division from the computation
in the MSSBS case the computational speedup is substantial. The accuracy of biometric matching,
on the other hand, has minimal degradation with majority encoding when this approximations are
introduced. In particular, the accuracy of the baseline full computation is given in Table 3, while
the cases of no shifting, no shifting and no division, and 2% sampling are given in Tables 6, 7, and
8, respectively. Note that Table 7 combines no shifting with no division to show the worst-case
scenario when two approximations are combined together. As can be seen from the tables, the
largest increase in EER from all possible cases is by 2.7% in case of using only 2% of a biometric
template, and the average increase across all cases is 0.6%.

7 Comparison with Prior Work

A lot of relevant literature is cited throughout this work, and in this section we compare our result
with other related publications. We would like to note that prior work does not allow one to perform
all of the computation realized in this work. In particular, outsourcing the computation to a single
server is a very challenging task, and even the use of a very recent and powerful notion of predicate
encryption utilized in this work provides only a limited solution to the problem. Other techniques
from secure multi-party computation such as general Boolean circuit evaluation and customized
privacy-preserving protocols are interactive and require knowledge of inputs. Literature on secure
computation outsourcing (see, e.g., [63, 57, 18, 7, 59, 51, 53, 39, 50, 33]) is mostly concerned with
outsourcing modular exponentiations, which are normally the most computation-expensive part of a
cryptographic scheme. The goal of this work, on the other hand, is to use (untrusted) servers for the
entire computation, which is not based on modular exponentiations. Other results related to secure
computational outsourcing [37, 4, 3, 9] do not treat biometric computations or operations used in
such computations. The only publication that treats secure outsourcing of biometric computations
is the recent work [11], which is primarily concerned with verifying the results of computation
returned by (untrusted) computational servers rather securing it. It also considers only standard
distance metrics instead of the exact computations used in biometric comparisons.
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Our multiple-server setting is closer to the traditional secure multi-party computation setting,
with the exception that no inputs are known to any single participant (which might render some
tools inapplicable). While general Boolean circuits can theoretically be built to evaluate any func-
tion in a secure manner, their performance is particularly poor when dealing with large volumes
of data and would incur several orders of magnitude larger overheads on the client and database
owner than in our protocol.10 Additionally, other custom privacy-preserving tools cannot be readily
adapted to perform the required computation. In particular, solutions for computing the hamming
distance [37, 15] do not extend to the computation used in iris matching, set intersection proto-
cols [42, 58] do not achieve the functionality we seek and are not composable (i.e., cannot be used
as a sub-protocol). We build our solution on general tools with attractive characteristics, i.e., secret
sharing is more suitable in this context than secure computation techniques based on homomorphic
encryption due to the small size of the numbers we manipulate and the computational overhead
associated with public-key cryptography. Finally, literature on searches on encrypted data (see,
e.g., [12, 71] among many others) treats exact, wildcard, or range matching and cannot support
the computation used in iris comparisons (predicate encryption used here is conceptually close to
such schemes).

In parallel with this work, secure two-party protocols for comparing certain biometric have been
developed [38, 69, 65, 5, 10]. The results include comparison of faces [38, 69, 65], a special type
fingerprint representation called FingerCode [5, 10], and iris codes [10]. All of these publications
are designed to work in a two-party setting that differs from the setting of this work: in a two-party
setup, each party has access to its biometric(s) in the clear, and the parties run a secure two-party
protocol to compare their respective data. They utilize different techniques from those employed in
our work and certain cases and rely on access to the data in the clear form that can aid efficiency
and/or functionality.

8 Conclusions

This work motivates the problem of secure computation (or outsourcing) of biometric matching
when neither the database nor the biometric value being searched for is available in the clear to
the server. We introduce first solutions to the problem for iris codes, where we distinguish between
a single-server solution, SSSBS, and a multiple-server solution, MSSBS. Our results show that (i)
a close approximation of the necessary computation is possible in the non-interactive single-server
case; and (ii) the exact secure computation can be carried out more efficiently in the setting of
multiple servers. We also introduce majority coding algorithms for iris codes and implement them
using a sample iris database, which noticeably widens the gap between distributions of authentic and
impostor data. Finally, we study various types of approximation techniques and achieve favorable
results.

As this is the first work in this direction, many interesting problems remain. For example,
other types of approximation algorithms beyond simple sampling are worth exploring. This work
concentrated on iris codes, but many other types of biometric data remain. Finally, it would be
desirable to conduct the experimentations performed in this work on other data sets to confirm
the findings of this work and further explore the effect of applying different majority algorithms to
biometric data.

10In addition, any computation that uses division might be infeasible to carry out by such means. For example, [8]
reports that building a Boolean circuit for division using existing tools such as Fairplay [62] already requires resources
beyond an ordinary workstation in the two-party setting, while this work is concerned with more involved multi-party
setup.

28



9 Acknowledgments

This work benefited from useful discussion with Keith Frikken at its early stages. We also would like
to acknowledge the help of Patrick Flynn, Tanya Peters, and Karen Hollingsworth with conducting
our experiments on biometric data, and anonymous reviewers for their valuable feedback. This
work was partially supported by the grant FA9550-09-1-0223 from the Air Force Office of Scientific
Research.

References

[1] Sharemind. http://sharemind.cyber.ee/.

[2] M. Abadi, J. Feigenbaum, and J. Killian. On hiding information from an oracle. Journal of
Computer and System Sciences, 39:21–50, 1989.

[3] M. Atallah and J. Li. Secure outsourcing of sequence comparisons. International Journal of
Information Security, 4(4):277–287, 2005.

[4] M. Atallah, K. Pantazopoulos, J. Rice, and E. Spafford. Secure outsourcing of scientific
computations. Advances in Computers, 54(6):215–272, 2001.

[5] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Labati, P. Failla, D. Fiore,
R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva. Privacy-preserving fingercode authentication.
In ACM Workshop on Multimedia and Security (MM&Sec), pages 231–240, 2010.
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Any-Support-Alg:

1. n0 := 0
2. n1 := 0
3. for (i from 1 to k) {
4. if (mi = 1) then

5. if (bi = 0) then n0 := n0 + 1
6. else n1 := n1 + 1
7. }
8. if (n1 = 0 and n0 = 0) {
9. m := 0
10. b := 0
11. }
12. else {
13. m := 1
14. if (n1 > n0) then b := 1
15. else b := 0
16. }

Threshold-Support-Alg:

1. c :=
∑k

i=1mi

2. if (c ≤ ⌊k4⌋) then {
3. m := 0
4. b := 0
5. }
6. else {
7. n0 := 0
8. n1 := 0
9. for (i from 1 to k) {
10. if (mi = 1) then

11. if (bi = 0) then n0 := n0 + 1
12. else n1 := n1 + 1
13. }
14. if (n0 = n1) then {
15. m := 0
16. b := 0
17. }
18. else {
19. m := 1
20. if (n0 > n1) then b := 0

21. else b := 1

22. }
23. }

Figure 6: Algorithms for computing majority codes.

A Majority Algorithms

Let b1, . . ., bk denote the ith bit of biometric representations used in forming the template, and
m1, . . .,mk denote the ith mask bit in the corresponding representations. The algorithms for
forming ith biometric bit b of the template and its corresponding mask bit m are given in Figure 6.

Any-Support-Alg is a simple algorithm that sets the mask bit to 0 if at least one mask bit mi

is set. The biometric bit is set according to the majority of bits marked as reliable and to 0 is
no majority exists. In Threshold-Support-Alg, when sufficient evidence of bit reliability cannot be
gathered, the mask bit is set to 0. In both algorithms, for simplicity we set b to 0 if m = 0. If,
however, all biometric bits are used in some computation or analysis regardless of the mask bit
value (e.g., to evaluate the distribution of bits in templates), it is more accurate to set the bit in
the same way as in the case when the bit is considered to be sufficiently reliable.

B Review of Secure Protocols from [20]

B.1 Secure comparison protocol

In this section we review the secure comparison protocol of [20] which can be performed without
decomposing the operands into their bitwise representation. This protocol is used in our multiple-
server MSSBS solution, and the description given in this section will be used to analyze the security
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of our protocol.
To compare two values [a] and [b] of bitlength k, a protocol for determining whether a shared

integer is less than zero, LTZ, is used: LTZ([a], k) computes 1 if a < 0 and 0 otherwise. Then
comparison of [a] and [b] is reduced to LTZ as follows:

(a
?
< b) = LT(a, b) = LTZ(a− b) (a

?
≤ b) = LE(a, b) = 1− LTZ(b− a)

(a
?
> b) = GT(a, b) = LTZ(b− a) (a

?
≥ b) = GE(a, b) = 1− LTZ(a− b)

To be able to represent negative values, the size of the field needs to be at least twice as large as
the range of the integers to be represented (of bitlength k). The protocols in [20], however, achieve
only statistical security, which means that the size of the field q must be at least as large as 2k+κ,
where κ is a security parameter for statistical privacy. This implies that the field size will always
be sufficiently large for the correctness of the protocol.

Then the functionality of LTZ([a], k) is implemented using the following observation: if a < 0,
then ⌊a/2k−1⌋ = −1; and if a ≥ 0, then ⌊a/2k−1⌋ = 0. Therefore, the sign of [a] is determined by
computing [s] = −Trunc(a, k, k − 1), where the truncation function Trunc([a], k,m) computes (the
shares of) ⌊a/2m⌋. The protocols for LTZ and Trunc are given next.

Protocol B.1. [s]← LTZ([a], k)

1. [s]← −Trunc([a], k, k − 1);
2. return [s];

Protocol B.2. [d]← Trunc([a], k,m)

1. [a′]← Mod2m([a], k,m);
2. [d]← ([a]− [a′])(2−m mod q);
3. return [d];

As one can see from the above, the protocol Truncmakes a use of additional protocolMod2m([a], k,m)
that computes [a′] = [a mod 2m]. Protocol Mod2m in turn utilizes three additional building blocks
defined as follows:

• Output([a]) corresponds to the participants broadcasting their shares and reconstructing the
value of a.

• PRandM(k,m) allows the parties to generate a partially decomposed random value. The
parties produce [r′′] and [r′] along with bit decomposition of [r′], where r′′ is of length k+κ−m
and r′ has length m. This ensures that only the minimum necessary number of random bits
has been generated.

• BitLT(a, ([bk], . . ., [b1])) corresponds to the comparison (less-than) operation where the first
operand is public and the second one is available in the bit-decomposed form. The protocol
outputs a bit [s] which is equal to 1 iff a < b.

A precise description of Mod2m and its building block PRandM(k,m) is given next:

Protocol B.3. [a′]← Mod2m([a], k,m)

1. ([r′′], [r′], [r′m−1], . . ., [r
′

0])← PRandM(k,m);
2. c← Output(2k−1 + [a] + 2m[r′′] + [r′]);
3. c′ ← c mod 2m;
4. [u]← BitLT(c′, ([r′m−1, . . ., [r

′

0]));
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c← [a]b; c← [a] + b 0 0
[c]← [a] + [b] 0 0
[c]← [a][b] 1 1
a← Output([a]) 1 1
[r]← PRandFld(F) 0 0
[r]← PRandInt(k) 0 0
c← MulPub([a], [b]) 1 1

Table 10: Complexity of core protocols.

5. [a′]← c′ − [r′] + 2m[u];
6. return [a′];

Protocol B.4. ([r′′], [r′], [bm−1], . . ., [b0])← PRandM(k,m)

1. [r′′]← PRandInt(k + κ−m);
2. for i = 0 to m− 1 do [bi]← PRandBit(q);
3. [r′]←

∑m−1
i=0 2i[bi];

4. return [r′′], [r′], [bm−1], . . ., [b0];

As can be seen from the above, in addition to local operations, PRandMmakes calls to two primitives
that allows parties to produce shares of random values: PRandInt(k) that allows the parties to
compute shares of a random k-bit value and PRandBit that allows the parties to compute shares of
a random bit. PRandInt is a basic primitive that allows the parties to agree on shares of a random
value without any communication (followed some initial setup). We refer the reader to [20] for
more information. RRandBit, on the other hand, is more complex and is presented below. In the
PRandBit protocol, PRandFld allows the parties to generate shares of a random element of the field
(Zq) with no communication, and MulPub([a], [b]) corresponds to a protocol for multiplies a and b
and opening the result. MulPub is represented as a single primitive rather than two operations of
multiplication and opening because it can be achieved with one invocation and, more importantly,
in one round (instead of two invocations that require two rounds). Table 10 lists core protocols and
their cost. We note that the last three protocols – PRandFld, PRandInt, and MulPub – can achieve
lower than usual performance due to the use of Pseudorandom Replicated Secret Sharing (PRSS)
in [20], where the parties generate PRSS shares of random values without any interaction and then
convert them to shares in the linear secret sharing scheme.

Protocol B.5. [b]← PRandBit()

1. [r]← PRandFld(Zq);
2. u← MulPub([r], [r]);
3. v ← u−(q+1)/4 mod q;
4. [b]← (v[r] + 1)(2−1 mod q);
5. return [b];

As can be seen from the above, PRandBit requires one invocation in one round, which means that
PRandM requires m invocations in one round (since the interactive steps 1 and 2 can be carried
out in parallel). To complete the description of the comparison operation, we present protocol
BitLT and its building blocks next. Note that [20] provides alternative implementations of this
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functionality which run in constant and logarithmic number of rounds. The log-round protocol,
BitLTL, achieves perfect privacy in which most operations can be performed over a small field. For
simplicity of presentation and consecutive analysis, we, however, present only the constant-round
version BitLTC.

Protocol B.6. [u]← BitLTC(a, [bk], . . ., [b1])

1. for i = 1 to k do [di]← ai + [bi]− 2ai[bi];
2. ([pk], . . ., [p1])← PreMulC([dk] + 1, . . ., [d1] + 1);
3. for i = 1 to k − 1 do [si]← [pi]− [pi+1];
4. [sk]← [pk]− 1;
5. [s]←

∑k
i=1[si](1− ai);

6. [u] = Mod2([s], k);
7. return [u];

All operations in BitLTC are local, except for protocols Mod2 and PreMulC which are presented
next. Mod2([a], k) computes [a mod 2], and PreMulC([a1], . . ., [ak]) computes prefix-AND or prefix
multiplications of its input bits in constant round and outputs [p1], . . ., [pk], where [pi] =

∏i
j=1[aj].

Protocol B.7. [a0]← Mod2([a], k)

1. ([r′′], [r′], [r′0])← PRandM(k, 1);
2. c0 ← Output(2k−1 + [a] + 2[r′′] + [r′0]);
3. [a0]← c0 − [r′0] + 2c0[r

′

0];
4. return [a0];

Protocol B.8. [p1], . . ., [pk]← PreMulC([a1], . . ., [ak])

1. for i = 1 to k do in parallel
2. [ri]← PRandFld(F);
3. [si]← PRandFld(F);
4. ui ← MulPub([ri], [si]);
5. for i = 1 to k − 1 do in parallel [vi]← [ri+1][si];
6. [w1]← [r1];
7. for i = 2 to k do [wi]← [vi−1](u

−1
i−1 mod q);

8. for i = 1 to k do [zi]← [si](u
−1
i mod q);

9. for i = 1 to k do in parallel mi ← MulPub([wi], [ai]);
10. [p1]← [a1];
11. for i = 2 to k do [pi]← [zi](

∏i
j=1mj);

12. return ([p1], . . ., [pk]);

This completes the presentation of all protocols and we obtain that the complexity of BitLTC

is 3k + 1 invocations in 3 rounds (i.e., two more invocations and one more rounds than that of
PreMulC due to a call to Mod2). The overall complexity of (constant-round) Mod2m is thus 4m+1
invocations in 4 rounds, and this is the overall complexity of the constant-round version of the
comparison protocol LTZ.

B.2 Secure OR protocol
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Protocol B.9. [b]← OR([a1], . . ., [ak])

1. m← ⌈log(k)⌉;
2. ([r′′], [r′], [r′m−1 . . ., [r

′

0])← PRandM(k,m);

3. c← Output(2m[r′′] + [r′] +
∑k

i=1[ai]);
4. (cm, . . ., c1)← Bits(c,m);
5. for i = 1 to m do [di]← ci + [r′i]− 2ci[r

′

i];
6. [e]← OR-SF([d1], . . ., [dm]);
7. return [e];

OR-SF denotes a protocol in which OR is evaluated as a symmetric function using the approach of
Damg̊ard et al. [26]. The cost of any symmetric function evaluation [f(a1, . . ., ak)]← f([a1], . . ., [ak])
is the cost of one unbounded fan-in multiplication ([a1], . . ., [a1a2· · ·ak])← Mul∗([a1], . . ., [ak]). The
latter can be implemented as follows:

Protocol B.10. [a1], . . ., [a1a2 · · · ak]← Mul∗([a1], . . ., [ak])

1. for i = 0 to k do [bi], [b
−1
i ]← PRandFldInv();

2. for i = 1 to k do [ci]← [bi][ai];
3. for i = 1 to k do di ← MulPub([ci], [b

−1
i ]);

4. for i = 1 to k do [a1,i]← (
∏i

j=1 dj)[b
−1
0 ][bi];

5. return [a1,1], . . ., [a1,k];

The above protocol uses notation ai1,i2 =
∏i2

i=i1
ai. It in turn makes calls to PRandFldInv procedure

that generates a random (invertible) field element together with its multiplicative inverse at the
cost of one round and one invocation, as described next:

Protocol B.11. [a], [a−1]← PRandFldInv()

1. [a]← PRandFld();
2. [b]← PRandFld();
3. c← MulPub([a], [b]);
4. if (c = 0) abort;
5. [a−1]← c−1[a];
6. return [a], [a−1];

We thus obtain that the overall complexity of Mul∗ is 4k + 1 invocations in 2 rounds (where the
interactive parts of steps 1 and 2 and steps 3 and 4 can be carried out in parallel). Recall that in
our case Mul∗ is called on m = log k arguments, which gives us 3 rounds and 5m+2 = 5 log(k) + 2
invocations for the OR protocol.

B.3 Performance of protocols without PRSS

Here we analyze the complexity of LT and OR protocols if the PRSS is not used. This is relevant
for carrying out the MSSBS protocol in the malicious model. In this case, the complexity of the
last three protocols in Table 10 change to the values listed in Table 11. This gives us that the
complexity of PRandBit changes to 3 invocations in 3 rounds (all can be precomputed), complexity
of PRandM changes to 3m+1 invocations in 3 rounds (all can be precomputed), complexity of Mod2

changes to 5 invocations in 4 rounds (3 can be precomputed), complexity of PreMulC changes to
7k − 1 invocations in 4 rounds (2 can be precomputed), complexity of BitLTC changes to 7k + 4
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[r]← PRandFld(F) 1 1
[r]← PRandInt(k) 1 1
c← MulPub([a], [b]) 2 2

Table 11: Modified complexity of core protocols without PRSS.

invocations in 5 rounds (2 can be precomputed), and complexity of Mod2m changes to 10k + 6
invocations in 7 rounds (3 can be precomputed). We include values for input-independent rounds
that can be precomputed, which means that for any given protocol those rounds can be run in
parallel with computation preceding the protocol. We obtain that the complexity of LT is that of
Mod2m and is 10k + 6 invocations in 7 rounds.

Also, the complexity of PRandFldInv becomes 3 invocations in 3 rounds (all can be precomputed),
that of Mul∗ becomes 7k + 3 invocations in 5 rounds (2 can be precomputed), and therefore the
complexity of OR becomes 10 log(k) + 5 invocations in 7 rounds (3 can be precomputed).
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