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ABSTRACT
Biometric authentication eliminates the need for users to remember

secrets and serves as a convenient mechanism for user authenti-

cation. Traditional implementations of biometric-based authenti-

cation store sensitive user biometry on the server and the server

becomes an attractive target of attack and a source of large-scale

unintended disclosure of biometric data. To mitigate the problem,

we can resort to privacy-preserving computation and store only

protected biometrics on the server. While a variety of secure com-

putation techniques is available, our analysis of privacy-preserving

biometric authentication constructions revealed that available solu-

tions fall short of addressing the challenges of privacy-preserving

biometric authentication. Thus, in this work we put forward new

constructions to address the challenges.

Our solutions employ a helper server and use strong threat mod-

els, where a client is always assumed to be malicious, while the

helper server can be semi-honest or malicious. We also determined

that standard secure multi-party computation definitions are insuffi-

cient to properly demonstrate security in the two-phase (enrollment

and authentication) entity authentication application. We thus ex-

tend the model and formally show security in the multi-phase

setting, where information can flow from one phase to another

and the set of participants can change between the phases. We

implement our constructions and show that they exhibit practical

performance for authentication in real time.
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• Security and privacy→ Privacy-preserving protocols; Bio-
metrics.
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1 INTRODUCTION
Biometric-based authentication provides a convenient user authen-

tication mechanism which does not require users to remember

passwords or maintain other secrets. Biometric-based authentica-

tion is also now more easily accessible than before to the average

user for a variety of application due to proliferation of smartphones

equipped with sufficient sensors. Biometric data, however, requires

strong protection because, unlike password-based authentication,

biometry cannot be replaced if the data becomes compromised.

Enhancing protection of biometric data used in biometric-based

authentication is the focus of this work.

We consider the problem of privacy-preserving biometric authen-

tication in a system where users authenticate to a server using their

biometric data, but the authentication server does not have access

to the users’ biometric data in the clear. If the information stored on

the server does not allow one to recover user’s biometric samples,

user biometric data cannot be easily abused by insiders or through

computer break-ins. Large-scale leakage of sensitive biometric data

is of growing concern due to increasing availability of large-scale

biometric data sets. Thus, this work targets designing a robust and

practical solution to privacy-preserving biometric-based authentica-

tion which can be employed in place of traditional biometric-based

authentication mechanisms and which makes abuse of sensitive

biometric data more difficult.

In the context of privacy-preserving biometric-based authenti-

cation, we can consider two types of solutions: (i) those based on

secure sketches and fuzzy extractors and (ii) solutions based on

secure multi-party computation (SMPC). The former has a disad-

vantage that it discloses partial information about each biometric

sample, the implications of which are hard to quantify, and we

focus on the latter that can guarantee that no biometric-related

information of a user is disclosed to any party.

Now if we consider secure two-party computation between a

user and an authentication server, we can distinguish between two

types based on the amount of interaction: (i) interactive two-party

computation where the user carries the full burden of participating

in secure evaluation of biometric matching and (ii) non-interactive

computation on encrypted data. Note that in the context of user

authentication, we must assume that a user can act maliciously

in the attempt to circumvent the authentication mechanism and

obtain access to the system at any cost. This means that when mod-

eling SMPC, we must provide security in the presence of malicious

users, which increases the protocols’ cost. This is undesirable for

clients operating from computationally-limited battery-powered

https://doi.org/10.1145/3626232.3653269
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devices and thus may present usability concerns. On the other hand,

non-interactive computation that employs fully homomorphic en-

cryption (HE) permits comparing an encrypted biometric sample

provided by the user at authentication time and the encrypted sam-

ple captured at the enrollment time. A concern with this solution

is that, in order for the user biometric data to stay private from

the server, the decryption key must be available only to the client.

This means that it is not possible for a client to enroll once and

later be able to authenticate from any computer or device because

each device has to have the user’s private decryption key. This

nullifies the advantages of biometric-based authentication which

permits authentication without the need to remember passwords

or maintain secret keys and brings us back to requiring the user to

use secrets together with their biometry.

To mitigate these issues, our approach is to introduce a helper

server. This is not a new idea by itself, but it makes a significant dif-

ference for this application. The helper server does not contribute

any inputs and does not learn any information about user biometric

data or the result of user authentication, but rather contributes its

computational power and can store protected biometric data. Mul-

tiple authentication servers can use the same helper server. This

setup improves both usability and efficiency, as we demonstrate in

this work. In particular, that expands the set of techniques we can

use for privacy-preserving biometric matching and authentication

and consequently aids efficiency. It also permits minimal involve-

ment of users and removes the need for storing any keys or other

secrets on user devices. This improves usability and enables a user

to authenticate from different devices and a variety of platforms

including weak battery-powered devices.

An interesting aspect of this work is that we found that employ-

ing traditional SMPC security definitions for (privacy-preserving)

authentication is insufficient and there is a need for new defini-

tions. In particular, SMPC is concerned with a single evaluation of

a function, during which the set of participants does not change.

In the context of authentication, on the other hand, we deal with

two phases: enrollment and authentication. Furthermore, the par-

ticipants themselves can change because a malicious user might

attempt to impersonate another user during authentication (while

enrollment was carried out by the authentic user). While we can

use traditional security definitions to ensure that the participants

do not learn unauthorized information during a given phase, there

is still a need to link the two phases together and ensure that no

biometric-based information is available to the participants as a

result of information flow from one phase to another. This is be-

cause the servers will obtain certain output after the enrollment

phrase, but the output of function evaluation is never protected

under the standard definition and is not treated as leakage. Thus,

in this application we need to consider the overall view of the two-

step process, conceptually treating the output of the first stage as

an intermediate result (which must reveal no information) and not

as the target output (which is allowed to reveal information). This

will also permit us to demonstrate that a malicious user is unable

to learn sensitive biometric data of any enrolled user.

We determined that a few prior publications that treat the topic

of biometric-based authentication [1, 3, 21] use a two-phase model;

however, the definitions have custom interfaces and are not applica-

ble to other functionalities. We provide a more detailed comparison

in the related work section.

Our solution is based on garbled circuit evaluation (GCE) [36]

and we use two strong threat models, in both of which the client

is malicious and can behave arbitrary. In the weaker model, the

servers are semi-honest (follow the prescribed protocols) and do

not collude with each other or the clients. In the stronger model,

the helper server can act maliciously and can additionally collude

with clients. When building our constructions, we introduce a vari-

ant of oblivious transfer (OT), termed oblivious transfer with bit

operations (OTB), which may be of independent interest, and con-

sider over-the-threshold cosine similarity and Euclidean distance

as the basis for biometric matching. We formally prove security

of our solutions under standard security definitions, expanded as

discussed above to accommodate multi-phase computation where

the participants can change between the phases. We also implement

and empirically evaluate performance of our solutions and show

that they are well suited for authentication in real time.

Related Work. The first line of work that employ cryptography to

protect confidentiality of biometric data during matching uses se-

cure sketches and fuzzy extractors, e.g., [10, 24, 28, 30, 35], some of

which make use of an additional secret or password to improve the

properties of the solution. The second line of research – closer to

this work – uses SMPC or secure outsourcing. Constructions for dif-

ferent biometric modalities have been developed. For instance, they

include face [15, 20, 31, 33], iris [11, 12], fingerprints [7, 12, 14, 19],

voice [4], and others. The computation itself widely differs in the

complexity, ranging from simple Hamming or Euclidean distance

over integers to hidden Markov model evaluation on floating-point

values. A variety of techniques have been used including GCE,

secret sharing, encryption with special properties (e.g., HE and

predicate encryption), and a combination thereof. Most results

above above focused on privacy-preserving biometric matching or

identification in the semi-honest security setting. Authentication,

however, demands a stronger security model in which clients must

be assumed to be malicious.

Publications that treat privacy-preserving biometric authentica-

tion in the presence of a malicious client include [1, 2, 17, 22, 34]
1
.

Several of them use HE to perform a simple distance computation

and disclose it to one of the parties. For instance, in [16, 17, 22] the

server computes dist · 𝑟0 +𝑟1, where dist is (Hamming or Euclidean)

distance between the enrollment and current biometric samples and

𝑟0, 𝑟1 are large random values. The use of the randomizing values

prevents a malicious client from making meaningful changes to the

distance prior to sending it to the server. This structure has two

disadvantages: (i) each client has to maintain a secret key on each

device he/she wants to use for authentication (which our solution

is set to mitigate) and (ii) the computed distance is revealed to one

of the parties, commonly the server who can compile distributions

of this information for each user over time or, worse, to the (mali-

cious) client who can use the distance as the guide for improving

1
In addition, [29, 37] are also said to provide privacy-preserving authentication. How-

ever, in the solution of [37] an authority obtains cleartext access to user biometrics

and thus does not achieve privacy, while in [29] the client is considered fully trusted

and consequently the construction does not correspond to authentication.
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its strategy for impersonating the authentic user. [34] employs HE

in their semi-honest protocol and GCE when the client can be ma-

licious. In both cases, the client has to maintain a secret key or

another state. Further, none of these solutions connect enrollment

and authentication to protect enrollment data from malicious users.

HE together with digital signatures, GCE, and zero-knowledge

proofs are used in [2] for evaluating cosine similarity as a distance

metric. While it does treat malicious adversaries, active tampering

is limited to client devices only, and the remaining participants are

semi-honest. Specifically, these participants are service providers

and terminals, where a terminal is an external device outside client

control which obtains the authentication phase biometric. This

setting is equivalent to our weaker (non-colluding) security model.

Both secret keys and encoded templates are stored on the devices,

which can reveal non-revocable template information to adversaries

with access to the device. Two of their constructions also leak the

computed distance. [1] uses the same set of primitives in a more

general construction proven UC-secure, where multiple devices

need to interact to authenticate the client. However, secret keys

are distributed across devices such that an adversary controlling

enough of them gains the secret key along with non-revocable

enrollment templates. The protocol is for cosine similarity and

proved secure in the random oracle model. [25] is a general-purpose

SMPC compiler which can support a similar structure but cannot

handle collusion between active adversaries and does not consider

participants which may change between phases. A recent work [21]

proposed a dynamic and multi-phase protocol based on functional

encryption. It, however, still requires the client to store secrets and

the performance is slower than ours, despite not taking network

communication time into account as we do.

As far as definitional differences go, [3] provides custom inter-

faces, algorithms, and security properties and does not use standard

SMPC definitions. [2] uses the real-ideal paradigm, but does not

discuss the possibility of the enrollment and matching phases being

carried out by different parties. [1] considers the UC framework,

but does not provide general SMPC definitions.

There are publications that modify conventional matching for

a biometric modality to be more amenable for use with privacy-

preserving techniques. A notable example is SCiFI [31] that de-

signed a new face identification mechanism and built a correspond-

ing privacy-preserving protocol. Fingerprints are another example

where conventional minutiae-based matching is complex, and thus

privacy-preserving solutions initially focused on simple but inaccu-

rate FingerCode matching [7], and eventually grew to support con-

ventional minutiae-based matching [8]. A more attractive approach

is to develop a new feature representation and matching algorithm

of high accuracy, as was done in DeepPrint [18]. That work showed

that it is possible to represent fingerprints as fixed-length vectors

and use simple Euclidean distance or cosine similarity for biometric

matching, while achieving nearly identical accuracy to that of top

performing variable-length minutiae-based matching algorithms.

We built on [18] and use it as a basis for biometric matching in

secure authentication protocols we develop. For potential deploy-

ment at scale, [27] provides an efficient virtual memory manager for

secure computation and may facilitate efficient batching of many

authentication sessions in parallel.

2 PRELIMINARIES
2.1 Problem Statement
We consider a setting where a client 𝐶 uses a service that employs

biometric data for entity authentication. At the enrollment time,

the client registers with the service, which involves 𝐶 capturing

its biometric sample, extracting features to produce representation

𝐵, and storing the result in a privacy-preserving way with the

service. At the time of authentication, the client captures a new

biometric sample and produces representation 𝐵, after which the

client and the service engage in a protocol. As a result, the client

is either authenticated and gains access to the service or is denied

access. The computation involves performing biometric matching

by first computing the distance between the enrollment and current

biometric samples, 𝑑 = dist(𝐵, 𝐵), and consequently comparing the

distance to a predefined threshold 𝑡 .

Because we utilize a helper server for usability and efficiency rea-

sons, we denote the main authentication server as 𝑆1 and a helper

server as 𝑆2 (recall that the same helper server can be employed by

different services). Security requirements are such that 𝑆1 has no

access to sensitive biometric information about any user𝐶 and only

determines the outcome of each authentication (i.e., whether the

supplied biometric was a close match and is considered authentic us-

ing the over-the-threshold computation described above). 𝑆2 learns

no information about any biometrics and no information about

authentication outcomes, i.e., its purpose is to improve efficiency

and usability of the protocols for the client and the service.

Because we work with authentication, we must assume that the

client is malicious, i.e., it will try all means at its disposal in the

attempt to successfully authenticate without sufficient credentials.

The servers, on the other hand, can be more trustworthy and can

be expected to follow the prescribed computation. In particular,

because 𝑆1 is the authentication server, it must properly enforce

access control and correctly perform the computation (as otherwise

no meaningful guarantees can be maintained in the presence of a

malicious client). However, someone with access to the server (e.g.,

a dishonest insider or in the case of a computer break-in) might be

interested in extracting biometric information about the users from

the information that the server handles. This includes information

stored at the server and the server’s view during all registration and

authentication protocols. For that reason, we begin with a model

of the servers being semi-honest and non-colluding.

In addition, because the helper server 𝑆2 is not controlled by the

service and may not be as trustworthy, we consider the possibility

of 𝑆2 behaving maliciously. For that reason, we consider a stronger

security model, in which 𝑆1 remains to be semi-honest and non-

colluding with other parties, while 𝑆2 can be malicious and possibly

colluding with clients 𝐶 (who are always assumed to be malicious).

This stronger model has implications on the cost of the protocols

in order to maintain security.

2.2 Security Definitions
We use the standard formulation of security that relies on the

real/ideal paradigm in the presence of malicious adversaries and

guarantees correctness and no unintended information disclosure.

The definition requires that the view of any adversary in real pro-

tocol execution is computationally indistinguishable from its view
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in an ideal world execution, where an ideal functionality produces

the output and parties not controlled by the adversary are not

participating in the computation.

In a general setup, let parties 𝑃1, . . ., 𝑃𝑛 engage in a secure multi-

party protocol Π that computes function 𝑓 . We specify 𝑓 as tak-

ing 𝑛 inputs x1, . . ., x𝑛 and producing 𝑛 outputs y
1
, . . ., y𝑛 , i.e.,

𝑓 (x1, . . ., x𝑛) = (y
1
, . . ., y𝑛). Each x𝑖 and y𝑖 is treated as a vec-

tor to permit entering and receiving multiple values, but some

participants may not provide any inputs and/or receive no output

(in which case the corresponding x𝑖 and/or y𝑖 is empty).

Adversary A is permitted to corrupt one or more participants

based on the threat model. The remaining parties are honest and

denoted byH . We let VIEWΠ,A denote the view of adversary A
after an execution of Π. The view is the union of the views of the

parties controlled by A, which include their inputs, randomness

used during the computation, and all messages received during

the computation from other participants. We also let OUTΠ,H de-

note the output of the honest parties after the execution, i.e., the

produced y𝑖 that correspond to the honest parties. Let 𝜅 denote a

security parameter and define

REALΠ,A (1𝜅 , {x𝑖 }𝑛𝑖=1)
def

= VIEWΠ,A ∪ OUTΠ,H
In the ideal world, there is no protocol execution and instead a

probabilistic polynomial time (PPT) simulator S interacts with

A. The simulator is able to query an ideal functionality F which

computes function 𝑓 on behalf of the participants and the goal is to

simulate Π’s execution without access to the data of non-corrupt

participants. As before, the view of A corresponds to the inputs,

random choices, and the messages received by the parties controlled

by A during the simulation, which we denote by VIEW 𝑓 ,A .
The ideal functionality evaluates function 𝑓 on behalf of the

participants. It uses inputs of honest participants and obtains inputs

of corrupt participants from S. When A is semi-honest, S obtains

access to inputs of the corrupt parties controlled byA and supplies

them to F . When A is malicious, it can instruct the parties it

controls to deviate from the prescribed computation and enter their

inputs into the computation in a different form. Thus, it is S’s
task to extract the corrupt parties’ inputs the way they are entered

into the computation and communicate the inputs to F , who will

evaluate the function using the supplied inputs. Note that S or

F can abort if either of them obtain empty or malformed inputs

or messages. If the evaluation is successful, the parties obtain the

output of 𝑓 , and we denote the output of honest parties by OUT 𝑓 ,H .
Similar to the real execution, we define

IDEAL𝑓 ,S(A) (1𝜅 , {x𝑖 }𝑛𝑖=1)
def

= VIEW 𝑓 ,A ∪𝑂𝑈𝑇𝑓 ,H
Given the above, we formulate the security definition as:

Definition 1. An 𝑛-party protocol Π between 𝑃1, . . . , 𝑃𝑛 securely
evaluates function 𝑓 if for all PPT adversaries A controlling a subset
of the participants, all input vectors x𝑖 , and 𝜅 ∈ Z, there exists a PPT
simulator S such that

REALΠ,A (1𝜅 , {x𝑖 }𝑛𝑖=1)
𝑐≈ IDEAL𝑓 ,S(A) (1𝜅 , {x𝑖 }𝑛𝑖=1)

where
𝑐≈ denotes computational indistinguishability.

Because in our context information produced in one phase of

the computation is used as input into another phase, we extend

the standard definition to support multi-stage computation. For

simplicity, we consider computation consisting of two phases, but

the concept easily generalizes to any number of phases. To accom-

plish this, we define the outputs of the first phase to be additional,

auxiliary inputs u𝑖 (which may be empty) into the second phase.

Conceptually, this can be pictured as we pause after the first phase,

save the output as the current state, and resume the computation

once the inputs into the second phase are received. Note that each

phase receives inputs from the parties and the second phase ad-

ditionally receives the outputs from the first phase in the form of

auxiliary inputs.

It is important to take into account that the participating par-

ties might change between the phases of the computation. This is

the case for authentication applications, where a malicious user

(imposter) might attempt to authenticate impersonating another

user who previously enrolled in the system (authentic user). For

that reason, we define two different, overlapping sets of partici-

pants 𝑃
(1)
1

, 𝑃
(1)
2

, . . . , 𝑃
(1)
𝑛1

and 𝑃
(2)
1

, 𝑃
(2)
2

, . . . , 𝑃
(2)
𝑛2

. Here superscript

( 𝑗) denote data associated with phase 𝑗 and 𝑛1 (respectively, 𝑛2)

denote the number of participants in the first (resp., second) phase.

If 𝑃
(1)
𝑖

= 𝑃
(2)
𝑗

for some 𝑖 and 𝑗 , i.e., the party is involved in both

phases, then it will have an auxiliary input for the second phase.

The remaining participants, i.e., those who are involved only in one

of the phases, contribute their input and receive the output as in

the conventional formulation of an execution.

The more complex participant structure requires that we also

carefully specify adversarial corruptions. If a party is controlled by

an adversary, the adversary controls it in both stages of the com-

putation. If an adversary controls multiple conspiring participants,

it will control them in all phases in which the parties are active

protocol participants.

Let 𝑓 denote the multi-phase functionality and 𝑓 (1) and 𝑓 (2)

denoted the functions we evaluate in phases 1 and 2, respectively.

The auxiliary input is set for each 𝑃
(2)
𝑖

as u(2)
𝑖

= y(1)
𝑗

if 𝑃
(2)
𝑖

=

𝑃
(1)
𝑗

for some 𝑗 and u(2)
𝑖

is empty if 𝑃
(2)
𝑖

was not a protocol par-

ticipant in phase 1. Given this, we define real and ideal views

in the second (or any subsequent) phase of the computation as

REALΠ (2) ,A (1𝜅 , {x
(2)
𝑖

, u(2)
𝑖
}𝑛2

𝑖=1
) def= VIEWΠ (2) ,A ∪ OUTΠ (2) ,H and

IDEAL𝑓 (2) ,S(A) (1𝜅 , {x
(2)
𝑖

, u(2)
𝑖
}𝑛2

𝑖=1
) def= VIEW 𝑓 (2) ,A ∪ OUT 𝑓 (2) ,H .

Definition 2. A sequence of two protocols Π (1) and Π (2) , ex-
ecuted by parties 𝑃 (1)

1
, . . . , 𝑃

(1)
𝑛1

and 𝑃 (2)
1

, . . . , 𝑃
(2)
𝑛2

, respectively, se-
curely evaluates the sequence of functions 𝑓 (1) and 𝑓 (2) if for all PPT
adversaries A controlling a subset of the parties, all input vectors
x(1)
𝑖

, 1 ≤ 𝑖 ≤ 𝑛1, and x(2)
𝑖

, 1 ≤ 𝑖 ≤ 𝑛2, all auxiliary input vectors

u(2)
𝑖

= y(1)
𝑗

subject to 𝑃
(2)
𝑖

= 𝑃
(1)
𝑗

, and 𝜅 ∈ Z+, there exists PPT
simulator S such that

REALΠ (1) ,A (1
𝜅 , {x(1)

𝑖
}𝑛1

𝑖=1
) 𝑐≈ IDEAL𝑓 (1) ,S(A) (1

𝜅 , {x(1)
𝑖
}𝑛1

𝑖=1
) and

REALΠ (2) ,A (1
𝜅 , {x(2)

𝑖
, u(2)

𝑖
}𝑛2

𝑖=1
) 𝑐≈

IDEAL𝑓 (2) ,S(A) (1
𝜅 , {x(2)

𝑖
, u(2)

𝑖
}𝑛2

𝑖=1
).
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For the purposes of this work, the computation participants are

𝐶 , 𝑆1, and 𝑆2, i.e., we are dealing with three-party computation. As

described earlier, we consider two threat models:

(1) The minimal meaningful security model that treats 𝐶 as

malicious and 𝑆1 and 𝑆2 as semi-honest and non-colluding.

For the purposes of showing security, this means that A
can corrupt one party at a time with the specified semi-

honest/malicious abilities and our solutions need to be secure

for each instantiation of A.

(2) A stronger security model in which, in addition to malicious

client𝐶 , helper server 𝑆2 can behave maliciously and collude

with some clients. Recall that it is not meaningful to assume

that 𝑆1 is malicious in the context of this application, and

𝑆1 also does not collude with other parties. This means that

A has two instantiations: semi-honest 𝑆1 and malicious and

colluding 𝐶 and 𝑆2.

The user who participates in the registration is called authentic

𝐶auth. The same or a different user might attempt to authenticate

later by engaging in the authentication protocol. If the user does

not change, the parties 𝑆1, 𝑆2,𝐶auth participate in both phases of

the protocol. Otherwise, the second phase is a three-party protocol

executed by 𝑆1, 𝑆2, and an imposter client, denoted as 𝐶imp.

2.3 Building Blocks
In this work, we use the following cryptographic primitives:

• Oblivious Transfer (OT) is a protocol between two parties,

sender 𝑆 and receiver 𝑅. In 1-out-of-2 OT, OT
2

1
, the sender

holds two strings,𝑚0 and𝑚1, while the receiver holds bit 𝑏

and learns𝑚𝑏 . The security requirements are that the sender

learn nothing about 𝑏, while the receiver learns nothing

about the remaining string𝑚
1−𝑏 .

Additionally, we employ a new (to the best of our knowl-

edge) generalization of OT, which we refer to as Oblivious
Transfer with Bit Operations (OTB). In this setting, the sender

additionally holds an input bit 𝑐 , and the receiver obtains

𝑚𝑏⊙𝑐 , where ⊙ is a previously agreed upon boolean binary

function. Details are provided in Section 2.3.1.

OT extensions are commonly used for efficiency when mul-

tiple calls to OT are needed. OT and OT extensions take a

computational security parameter 𝜅, and constructions se-

cure in the malicious model can also rely on a statistical

security parameter 𝜌 .

• Garbled circuit (GC) evaluation is a secure two-party protocol
parameterized by computational security parameter 𝜅 that

evaluates some function 𝑓 , represented as a boolean circuit,

on private inputs. One party, garbler𝐺 , chooses two random

labels ℓ0
𝑖
, ℓ1
𝑖
to represent each (boolean) wire 𝑖 in the circuit.

For each binary gate of the circuit, 𝐺 derives an encryption

key from each of the four possible input wire label pairs and

uses these to encrypt the label of the corresponding output

wire. This collection of per-gate tables constitutes the garbled

circuitG𝑓 . The other party, evaluator 𝐸, receives from𝐺 both

G𝑓 and the set of input wire labels corresponding to𝐺 ’s input

values (which are required to not reveal anything about the

input they represent). 𝐸 then engages in an OT
2

1
protocol

with 𝐺 to obtain the wire labels corresponding to 𝐸’s input

values. Finally, 𝐸 evaluates the circuit gates beginning with

the input labels and obtains the final output label(s). At the

end of the protocol, 𝐸 sends the corresponding output label(s)

to 𝐺 (which necessarily reveals the actual output to 𝐺). For

the construction to comply with the security definition, it

must be the case that

– 𝐺 and 𝐸 learn nothing about each others’ input and

– 𝐺 learns the function output.

The literature contains a number of well known optimiza-

tions to the original Yao construction [36]. This includes the

use of the “free XOR” gates introduced in [26] which imposes

a certain relationship between the two labels corresponding

to a wire, namely, that ℓ1
𝑖
⊕ ℓ0

𝑖
= Δ for each wire 𝑖 . The labels

are also commonly generated as pseudorandom strings. In

our implementation discussed in Section 4, we use garbling

as in the JustGarble work [9].

The conventional variant of GCE for semi-honest adversaries

provides resilience against malicious evaluators, as long as

the appropriate variant of OT is used. We do not require a

strengthened variant secure against malicious adversaries,

since within our protocols it is possible to arrange for the

circuit garbler to be semi-honest.

• A commitment scheme is parameterized by a security pa-

rameter 𝜅 and characterized by two algorithms, commit and

open. The commit algorithm is randomized and denoted by

𝑐 = com(𝑥, 𝑟 ), where 𝑥 is the value being committed and

𝑟 is randomness specified explicitly. We call 𝑐 to be a com-

mitment to 𝑥 . Commitment 𝑐 can later be opened (typically

by revealing 𝑥 and 𝑟 ), which exposes the value of 𝑥 . The

security requirements are hiding and biding properties of

the commitment scheme. Namely, hiding requires that the re-

lease of 𝑐 does not disclose information about 𝑥 and binding

requires that it is infeasible to open a commitment 𝑐 to any

value other than the value 𝑥 used to produce the commit-

ment. The security guarantees can be information-theoretic

or computational.

2.3.1 Oblivious Transfer with Bit Operations. This generalization
of OT works with any already proven secure OT scheme. Here,

the parties agree upon a binary boolean function, denoted as ⊙ :

F2×F2 → F2. In addition to the sender holdingmessages𝑚0 and𝑚1

and the receiver holding bit 𝑏, the sender now also holds an input

bit 𝑐 . Then the receiver obtains𝑚𝑏⊙𝑐 without learning anything

else, while the sender learns nothing about receiver’s input 𝑏.

This operation is realized using regular OT, where instead of

entering (𝑚0,𝑚1), the sender enters (𝑚0,𝑚1) specified as follows

for the three most common binary boolean operations:

• AND: the sender sets𝑚0 =𝑚0 and𝑚1 =𝑚𝑐

• OR: the sender sets𝑚0 =𝑚𝑐 and𝑚1 =𝑚1

• XOR: the sender sets𝑚0 =𝑚𝑐 and𝑚1 =𝑚¬𝑐

In terms of correctness, notice that in the case of AND, if the sender

holds 𝑐 = 0, then the receiver obtains𝑚0 regardless of their input

(𝑏∧0 = 0), and𝑚𝑏 otherwise (𝑏∧1 = 𝑏). Similarly, in the case of OR,

if the sender holds 𝑐 = 1, then the receiver obtains𝑚1 regardless of

their input and𝑚𝑏 otherwise. And in the case of XOR, 𝑏 ⊕ 𝑐 = 𝑐 if

and only if 𝑏 = 0, while 𝑏 ⊕ 𝑐 = ¬𝑐 = 𝑐 ⊕ 1 if and only if 𝑏 = 1.
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In terms of security, nothing in this modification allows the

sender to learn 𝑏 if the OT being used already prevents this (al-

though the sender may know which string the receiver gets; this

is a function of the sender’s input). Similarly, the receiver receives

exactly one string𝑚𝑏⊙𝑐 without learning𝑚¬(𝑏⊙𝑐 ) and does not

learn anything about 𝑐 (but the receiver may know they are getting

𝑚𝑏 based on their input and the function ⊙ being computed).

We will be using this OT variant while transferring GC labels

that correspond to an XOR-share of the clients’ private biometric

data and denote it as OTB.

2.4 DeepPrint Fingerprint Matching
We are interested in supporting authentication based on popular

biometric modalities with good distinguishing properties such as

fingerprints and iris codes. Iris codes are represented as binary

strings and their matching is based on the Hamming distance. As a

result, iris matching does not introduce significant complexity. On

the other hand, conventional minutiae-based comparison of finger-

prints is complex and not well suited for use in secure computation.

For that reason, DeepPrint [18] that uses deep neural network for

fingerprint feature selection with excellent discriminating proper-

ties is of interest to us. The resulting fingerprint representations

are fixed length and can be compared using simple conventional

distance metrics, making it easier to use the representation with

cryptographic tools.

DeepPrint encodes a fingerprint biometric as a vector of 192

single-precision floating-point values, which is normalized to be

unit length. A unit-length vector is defined as having its 𝐿2 norm, de-

noted by ∥𝐵∥ for a biometric vector 𝐵, be equal to 1. Concretely, for

vector 𝐵 = (𝐵 [𝑖])𝑤
𝑖=1

, it is required that ∥𝐵∥ =
√︃∑𝑤

𝑖=1 𝐵 [𝑖]2 = 1.
2

Then the distance between two unit-length DeepPrint representa-

tions 𝐵 and 𝐵 can be determined using the cosine similarity between

the two vectors, defined as the dot product of the vectors divided by

the product of their 𝐿2 norms (∑𝑤
𝑖=1 𝐵 [𝑖]𝐵 [𝑖])/(∥𝐵∥∥𝐵∥). Of course,

when normalizing to unit length, this division is unnecessary.

The range of values the cosine similarity distance metric may

take on normalized inputs is [−1, 1], with 1 representing an exact

match. Thus, to determine if two representations are within a close

distance, treated as a “match,” it suffices to determine if their dot

product is within the range (1− 𝑡, 1] for a desired threshold value 𝑡 .
The authors of [18] also used Euclidean distance as a distance

function. For two unit-length vectors 𝐵 and 𝐵, Euclidean distance

defined as

√︃∑𝑤
𝑖=1 (𝐵 [𝑖] − 𝐵 [𝑖])2 yields values in the range [0, 2],

with 0 representing an exact match. Thus, a match is determined

by checking if the distance is within [0, 𝑡) for some threshold 𝑡 . For

performance reasons, we work with squared Euclidean distance, in

which case the threshold 𝑡 needs to be adjusted accordingly. We

use notation 𝑑 ∼ 𝑡 to denote the result of comparing the distance 𝑑

to threshold 𝑡 , where the exact operation depends on the distance

metric (i.e., checking 1−𝑡 < 𝑑 ≤ 1 for cosine similarity and𝑑 < 𝑡 for

Euclidean distance); dist(𝐵, 𝐵) denotes the distance computation.

DeepPrint representation requires 768 bytes of storage for 192

32-bit (single precision) floating-point values, but can be com-

pressed to 200 bytes. This is accomplished in [18] by compressing

2
For performance reasons, we can instead check the square of the norm against 1.

a floating-point vector element to an 8-bit integer using min-max

normalization as follows: Given DeepPrint floating-point vector

𝐵 = (𝐵 [1], . . . , 𝐵 [192]), define ℎ𝐵 = max𝑖 {𝐵 [𝑖]}, ℓ𝐵 = min𝑖 {𝐵 [𝑖]}
and compute

𝐵 [𝑖] =
⌊
255(𝐵 [𝑖] − ℓ𝐵)

ℎ𝐵 − ℓ𝐵

⌋
(1)

for 𝑖 ∈ [1, 192]. The compressed representation stores 192 8-bit inte-

gers 𝐵 [𝑖] and two 32-bit floating point values ℎ𝐵 and ℓ𝐵 . Matching

of two compressed representations is performed by decompress-

ing the representations and computing the distance on floats. The

compression has a minimal impact on the matching accuracy [18].

2.5 Vector Normalization in Adversarial
Settings

Normalization of DeepPrint biometric representations is assumed

to be performed as part of feature extraction after biometric sam-

pling. Its presence has a direct impact on how the threshold 𝑡 that

determines a match of two biometric representations is chosen:

scaling normalization will result in scaling the threshold 𝑡 as well.

This is of interest for us because in the context of this work

a biometric sample comes from a user who can act maliciously

and construct a biometric representation that deviates from the

expectations including normalization. Thus, it becomes important

to enforce proper normalization of a biometric representation a

user submits. If normalization is not enforced, a malicious user

can succeed with authentication without a matching biometric by

manipulating vector normalization. As a specific example, consider

that squared Euclidean distance is used for distance computation

and biometric vectors 𝐵 are assumed to be unit-length normal-

ized (i.e., ∥𝐵∥ = ∥𝐵∥2 = 1). For two vectors 𝐵 and 𝐵, the squared

Euclidean distance is ∥𝐵 − 𝐵∥2. By the triangle inequality, we have

∥𝐵 − 𝐵∥2 ≤ (∥𝐵∥ + ∥𝐵∥)2 = ∥𝐵∥2 + 2∥𝐵∥∥𝐵∥ + ∥𝐵∥2

Now if the distance between vectors 𝐵 and 𝐵 is compared to a

predetermined threshold 𝑡 and the client is at liberty to normalize

both 𝐵 and 𝐵 to any value 𝑁 they wish, then choosing 𝑁 < 1

2

√
𝑡 for

both 𝐵 and 𝐵 will result in successful authentication independent

of the actual vectors (i.e., in such cases, ∥𝐵 − 𝐵∥2 < 𝑡 is always

true). Even when the adversary tampers with (normalization of)

one of the vectors, it is still possible to deviate from the intended

authentication rules. For this reason, we enforce proper length

normalization of all biometrics and include measures to verify that

client submitted biometrics are of the correct form. While there

may be input formats and distance metrics which prevent abuse

when only the enrollment biometric is properly normalized, we

conservatively enforce proper normalization at both enrollment

and authentication time.

3 SOLUTIONS BASED ON GARBLED CIRCUIT
EVALUATION

Recall that we consider two threat models: (i) semi-honest servers 𝑆1
and 𝑆2 and malicious client and𝐶 (ii) semi-honest 𝑆1 and malicious

and colluding 𝑆2 and 𝐶 . We label the first model as SH and the

second as MAL. We start with our solution secure in the first

model.
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Functionality F
reg-sh

(1) F
reg-sh receives input 𝐵 ∈ {0, 1}𝑚 from 𝐶 .

(2) F
reg-sh samples 𝑟

𝑅← {0, 1}𝑚 and defines 𝐵1 = 𝑟 and 𝐵2 =

𝑟 ⊕ 𝐵.
(3) F

reg-sh computes 𝑏 = (∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1).
(4) F

reg-sh outputs 𝑏 to 𝑆1.

(5) If 𝑏 = 1, then F
reg-sh outputs 𝐵1 to 𝑆1, 𝐵2 to 𝑆2 and accept

to 𝐶 and 𝑆2.

(6) Otherwise, F
reg-sh outputs ⊥ to 𝑆1 and 𝑆2 and reject to 𝐶

and 𝑆2.

Figure 1: Ideal registration functionality with semi-honest
servers.

In our solution, the client’s involvement is minimal and its task

primarily consists of splitting its biometric into two XOR shares and

communicating the respective shares to the servers 𝑆1 and 𝑆2. This

will take place both at registration and authentication. At registra-

tion time, the servers perform the normalization check on the user’s

private biometric using OTB and GBC. In this computation, 𝑆1 acts

as the garbler and 𝑆2 as the evaluator. If the normalization check

succeeds, the servers accept and store the biometric. The authen-

tication phase proceeds similarly, where in addition to checking

whether the submitted biometric meets the normalization criteria,

the servers also compute the distance between the registered and

newly received biometrics and determine if the distance is within

the desired threshold.

When 𝑆2 can be malicious (the second, stronger model), addi-

tional information is stored at registration time. In addition to

storing shares of user biometric 𝐵, the servers obtain and check

a one-way function of 𝐵 that allows the servers to verify correct

share reconstruction within the garbled circuit without obtaining

any information about 𝐵. That additional information is used dur-

ing the authentication phase to ensure that 𝑆2 did not tamper with

its values, and we additionally employ stronger tools such as OT

resilient to malicious behavior.

In the rest of the paper, we assume a fixed-length biometric

representation of𝑚 bits (representing𝑤 elements of 𝐵). Notation

𝑥
𝑅← 𝑋 means that variable 𝑥 is sampled uniformly at random

from the set 𝑋 . When working with GCs, we let 𝑛 denote the

total number of wires, where the wires with the lowest indices

correspond to the inputs and the wires with the highest indices

correspond to the output. The parties hold security parameter 𝜅 and

agree on the realizations of the building blocks. All protocols assume

the existence of secure channels between each pair of parties for

sending sensitive information such as shares and keys.

3.1 Malicious 𝐶, semi-honest 𝑆1 and 𝑆2

We start the description of our first solution with the expected

functionalities for registration and authentication, which are listed

in Figures 1 and 2, respectively.

At registration time, the client (which may be corrupt) supplies

its biometric 𝐵, from which it generates two XOR shares 𝐵1 and

𝐵2. The ideal functionality performs the normalization check for

𝐵, the output of which is bit 𝑏, which is communicated to 𝑆1. If

Functionality F
auth-sh

(1) F
auth-sh receives 𝐵1 ∈ {0, 1}𝑚 from 𝑆1, 𝐵2 ∈ {0, 1}𝑚 from

𝑆2, and 𝐵 ∈ {0, 1}𝑚 from 𝐶 .

(2) F
auth-sh computes (𝑏1, 𝑏2) = (dist(𝐵1 ⊕ 𝐵2, 𝐵) ?∼ 𝑡 ,∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1).
(3) F

auth-sh outputs (𝑏1, 𝑏2) to 𝑆1.
(4) If (𝑏1, 𝑏2) = (1, 1), then Fauth-sh outputs accept to 𝐶 , other-

wise F
auth-sh outputs reject to 𝐶 .

(5) F
auth-sh sends terminate to 𝑆2.

Figure 2: Ideal authentication functionality with semi-honest
servers.

the check succeeds, the ideal functionality outputs accept to all

parties and shares 𝐵1 and 𝐵2 to 𝑆1 and 𝑆2, respectively. Otherwise,

the parties receive reject and 𝑆1 and 𝑆2 receive empty string ⊥ in

place of shares.

During authentication, servers 𝑆1 and 𝑆2 contribute the shares

𝐵1 and 𝐵2 they received during registration, while the client con-

tributes biometric 𝐵. The functionality performs two checks:

(1) normalization check for 𝐵: 𝑏1 = (
∑𝑤
𝑖=1 (𝐵 [𝑖])

2
?

= 1)
(2) comparison of the distance between enrollment and authen-

tication biometrics 𝐵 and 𝐵 to threshold 𝑡 : 𝑏2 = (dist(𝐵1 ⊕
𝐵2, 𝐵) ?∼ 𝑡).

The resulting bits 𝑏1, 𝑏2 are communicated to 𝑆1 who then notifies

the client of the accept (if both checks pass) or reject decision. Note

that we could output a single bit 𝑏1 ∧ 𝑏2 to 𝑆1 to indicate success,

but it may be beneficial to differentiate between rejection based on

the distance and rejection based on the normalization failure. The

former may be the result of authentic user authentication failure,

while the latter indicates malfeasance by the client.

The registration and authentication protocols in this model are

given as Protocol 1, Reg-SH, and Protocol 2, Auth-SH, respectively.
In Protocol 1, client 𝐶 samples a fresh biometric vector 𝐵 for en-

rollment, splits it into XOR shares 𝐵1 and 𝐵2, and sends the shares

𝐵1 and 𝐵2 to 𝑆1 and 𝑆2, respectively. The two servers engage in

GC evaluation to determine whether or not the received biometric

vector 𝐵 is unit-length normalized, with 𝑆1 serving the role of the

garbler and 𝑆2 the role of the evaluator.

Instead of entering 𝐵1 and 𝐵2 as inputs into GC evaluation, the

servers utilize𝑚 instances of OTB
2

1
to enter 𝐵1 ⊕ 𝐵2 directly using

the first 𝑚 wires. The boolean operation of OTB allows for the

computation of 𝐵1 [𝑖] ⊕ 𝐵2 [𝑖] outside the GC and is realized as

follows. With regular OT, 𝑆1 would supply labels ℓ
0

𝑖
and ℓ1

𝑖
, while 𝑆2

would supply 𝐵2 [𝑖] and receive ℓ
𝐵2 [𝑖 ]
𝑖

. In our protocol, 𝑆1 instead

supplies labels ℓ
𝐵1 [𝑖 ]
𝑖

and ℓ
𝐵1 [𝑖 ]⊕1
𝑖

. As a result, when 𝑆1’s share

𝐵1 [𝑖] = 0, the labels are supplied as usual. However, when 𝐵1 [𝑖] = 1,

the supplied labels are swapped relative to usual OT operation. The

outcome is that the receiver obtains labels representing the XOR of

share bits 𝐵1 [𝑖] and 𝐵2 [𝑖], or 𝐵 [𝑖]. We can use an OT extension in

the implementation.

After circuit evaluation, 𝑆2 obtains the output label ℓ
𝑏
𝑛 that repre-

sents the outcome of the normalization check and indicates whether
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Protocol 1 Registration Reg-SH
Input: 𝐶 holds biometric 𝐵.

Output: 𝑆1 receives bit 𝑏 and biometric share 𝐵1; 𝑆2 receives

accept or reject and biometric share 𝐵2; 𝐶 receives accept or reject.

Common Input: Computational security parameter 𝜅.

Protocol steps:

(1) 𝐶 generates𝑚-bit random value 𝑟
𝑅← {0, 1}𝑚 , sets 𝐵1 = 𝑟 ,

computes 𝐵2 = 𝐵1 ⊕ 𝐵, and securely communicates 𝐵1 to 𝑆1
and 𝐵2 to 𝑆2. If the receiving server determines that 𝐵1 or

𝐵2 is not an𝑚-bit string, it signals abort.

(2) 𝑆1 generates labels ℓ
𝑗
𝑖
for 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ {0, 1}, computes

garbled gates G𝑓 for the normalization check computation,

and sends G𝑓 to 𝑆2.

(3) 𝑆1 and 𝑆2 engage in𝑚 instances of OTB
2

1
to communicate

to 𝑆2 labels ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑖

for 𝑖 ∈ [1,𝑚]: 𝑆1 enters labels ℓ𝐵1 [𝑖 ]
𝑖

and ℓ
𝐵1 [𝑖 ]⊕1
𝑖

into OT, 𝑆2 enters bit 𝐵2 [𝑖] and learns label

ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑖

= ℓ
𝐵 [𝑖 ]
𝑖

.

(4) 𝑆2 evaluates the circuit and sends the computed label of the

output wire ℓ𝑏𝑛 to 𝑆1.

(5) If ℓ𝑏𝑛 = ℓ0𝑛 , 𝑆1 signals rejection to 𝐶 and 𝑆2; 𝑆1 and 𝑆2 output

⊥.
(6) Otherwise, 𝑆1 signals acceptance to 𝐶 and 𝑆2; 𝑆1 outputs 𝐵1

and 𝑆2 outputs 𝐵2.

registration was successful. 𝑆1 interprets the result and communi-

cates the decision to the other parties.

Protocol 2 proceeds similar to Protocol 1. This time, the parties

use 2𝑚 instances of OTB to communicate GC labels corresponding

to inputs 𝐵 = 𝐵1 ⊕ 𝐵2 and 𝐵 = 𝐵1 ⊕ 𝐵2 to 𝑆2. The output wires

with indices 𝑛 − 1 and 𝑛 correspond to the decision bits 𝑏2 and 𝑏1,

respectively. If both checks succeed, the client obtain the accept

decision and otherwise, it learns that the protocol did not succeed.

Our first security result is as follows:

Theorem 1. The sequence of Protocols 1 and 2 executed by par-
ticipants 𝑆1, 𝑆2,𝐶auth is secure in the presence of semi-honest 𝑆1 and
𝑆2 and malicious 𝐶auth according to Definition 2, given supplemental
functionalities with security guarantees as discussed in Section 2.3.

Theorem 2. The sequence of Protocols 1 and 2, where Protocol 1
is executed by participants 𝑆1, 𝑆2,𝐶auth and Protocol 2 is executed by
participants 𝑆1, 𝑆2,𝐶imp, is secure in the presence of semi-honest 𝑆1
and 𝑆2 and malicious 𝐶auth or 𝐶imp according to Definition 2, given
supplemental functionalities with security guarantees as discussed in
Section 2.3.

The proofs of all theorems can be found in the full version [13].

3.2 Malicious and colluding 𝐶 and 𝑆2,
semi-honest 𝑆1

We now consider a stronger threat model in which the helper server

𝑆2 can act maliciously and collude with clients 𝐶 .

When 𝑆2 is not guaranteed to follow the prescribed behavior,

it can deviate from the prescribed computation during a protocol

execution, but also modify the biometric share 𝐵2 that it receives as

Protocol 2 Authentication Auth-SH

Input: 𝐶 holds biometric 𝐵, 𝑆1 holds biometric share 𝐵1, 𝑆2 holds

biometric share 𝐵2.

Output: 𝑆1 receives bits 𝑏1 and 𝑏2; 𝐶 receives accept or reject.

Common Input: Computational security parameter 𝜅 and

threshold 𝑡 .

Protocol steps:

(1) 𝐶 generates 𝑚-bit random value 𝐵2
𝑅← {0, 1}𝑚 , sets 𝐵1 =

𝐵2 ⊕ 𝐵, and sends 𝐵2 to 𝑆2 and 𝐵1 to 𝑆1. If the received 𝐵1 or
𝐵2 is not an𝑚-bit string, the corresponding server signals

abort.

(2) 𝑆1 generates labels ℓ
𝑗
𝑖
for 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ {0, 1}, computes

garbled gates G𝑓 for the over-the-threshold distance compu-

tation and normalization check, and sends G𝑓 to 𝑆2.

(3) 𝑆1 and 𝑆2 engage in 2𝑚 instances of OTB
2

1
to communicate

to 𝑆2 labels ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑖

and ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑚+𝑖 for 𝑖 ∈ [1,𝑚]:

(a) 𝑆1 enters labels ℓ
𝐵1 [𝑖 ]
𝑖

and ℓ
𝐵1 [𝑖 ]⊕1
𝑖

into OT, 𝑆2 enters bit

𝐵2 [𝑖] and learns label ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑖

= ℓ
𝐵 [𝑖 ]
𝑖

.

(b) 𝑆1 enters labels ℓ
𝐵1 [𝑖 ]
𝑚+𝑖 and ℓ

𝐵1 [𝑖 ]⊕1
𝑚+𝑖 into OT, 𝑆2 enters bit

𝐵2 [𝑖] and learns label ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑚+𝑖 = ℓ

𝐵 [𝑖 ]
𝑚+𝑖 .

(4) 𝑆2 evaluates the circuit and sends the computed labels of the

output wires ℓ
𝑏2
𝑛−1 and ℓ

𝑏1
𝑛 to 𝑆1.

(5) If ℓ
𝑏2
𝑛−1 = ℓ1

𝑛−1 and ℓ
𝑏1
𝑛 = ℓ1𝑛 , 𝑆1 sends accept to 𝐶 and termi-

nate to 𝑆2.
(6) Otherwise, 𝑆1 sends reject to 𝐶 and terminate to 𝑆2.

Functionality F
reg-mal

(1) F
reg-mal

receives input 𝐵 ∈ {0, 1}𝑚 , 𝑐 , and 𝑣 from 𝐶 .

(2) F
reg-mal

samples 𝑟
𝑅← {0, 1}𝑚 and defines 𝐵1 = 𝑟 and 𝐵2 =

𝑟 ⊕ 𝐵.
(3) F

reg-mal
computes (𝑏1, 𝑏2) = (

∑𝑚
𝑖=1 𝐵 [𝑖]2

?

= 1, com(𝐵, 𝑣) ?

=

𝑐).
(4) F

auth−mal
outputs (𝑏1, 𝑏2) and (𝐵1, 𝑐) to 𝑆1 and (𝐵2, 𝑣) to 𝑆2.

(5) In addition, if (𝑏1, 𝑏2) = (1, 1), Freg-mal
outputs accept to 𝐶

and 𝑆2; otherwise, it outputs reject to 𝐶 and 𝑆2.

Figure 3: Ideal registration functionality with malicious and
colluding 𝑆2 and 𝐶.

part of registration when entering it in the authentication protocol.

For that reason, we need to be able to detect this kind of misbe-

havior in addition to detecting client’s misbehavior when it does

not use a normalized biometric. Deviations from the prescribed

behavior during the protocol execution can be addressed by em-

ploying techniques resilient to malicious behavior, while changes

to 𝐵2 between protocol executions require a new solution.

Our solution to this problem is to modify the registration phase

to enable 𝑆1 to learn a function of 𝑆2’s share 𝐵2, which is later used

during the authentication to verify that the share that 𝑆2 inputs

matches 𝑆1’s verification token. We use a commitment scheme for

this purpose: the client is instructed to compute a commitment 𝑐



Privacy Preserving Biometric Authentication for Fingerprints and Beyond CODASPY ’24, June 19–21, 2024, Porto, Portugal.

Functionality F
auth-mal

(1) F
auth-mal

receives 𝐵1 ∈ {0, 1}𝑚 and 𝑐 from 𝑆1, 𝐵2 ∈ {0, 1}𝑚
and 𝑣 from 𝑆2, and 𝐵 ∈ {0, 1}𝑚 from 𝐶 .

(2) F
auth-mal

computes (𝑏1, 𝑏2, 𝑏3) = (dist(𝐵1 ⊕ 𝐵2, 𝐵) ?∼
𝑡,

∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1, com(𝐵1 ⊕ 𝐵2, 𝑣)
?

= 𝑐).
(3) F

auth-mal
outputs (𝑏1, 𝑏2, 𝑏3) to 𝑆1.

(4) If (𝑏1, 𝑏2, 𝑏3) = (1, 1, 1), then Fauth-mal
outputs accept to 𝐶

and terminate to 𝑆2.
(5) Otherwise if 𝑏1 = 0 or 𝑏2 = 0, then F

auth-mal
outputs reject

to 𝐶 and terminate to 𝑆2.
(6) Otherwise F

auth-mal
signals abort.

Figure 4: Ideal authentication functionality with malicious
and colluding 𝑆2 and 𝐶.

to its enrollment biometric 𝐵 and the commitment 𝑐 is given to

𝑆1. The binding property of the commitment ensures that it is not

feasible for 𝑆2 (or 𝑆2 in collusion with 𝐶) to later enter a different

biometric 𝐵′ ≠ 𝐵 that matches commitment 𝑐 . The random choices

𝑣 used in producing commitment 𝑐 = com(𝐵, 𝑣) cannot be disclosed
to 𝑆1 because they permit the opening of the commitment (and

thus disclosure of 𝐵) and for that reason, 𝑣 is known only to 𝑆2.

Note that commitments are used an unconventional way in a three-

party setting, but their properties allow us to achieve security in a

multi-phase execution.

The ideal functionality for registration in this stronger security

model is given in Figure 3. In addition to producing shares 𝐵1 and

𝐵2 of enrollment biometric 𝐵, the computation includes two checks:

(1) normalization check for 𝐵: 𝑏1 = (
∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1)
(2) check that commitment 𝑐 matches biometric 𝐵: 𝑏2 = (com(𝐵,

𝑣) ?

= 𝑐).
If registration is successful, 𝑆1 obtains and stores 𝐵1 and 𝑐 , while

𝑆2 obtains and stores 𝐵2 and 𝑣 .

At authentication time, the servers contribute their shares of

𝐵 and 𝐵 as before, but also the remaining values (𝑐 and 𝑣) that

they received at registration time. This time the authentication

functionality computes three checks:

(1) comparison of the distance between enrollment and authen-

tication biometrics 𝐵 and 𝐵 to threshold 𝑡 : 𝑏2 = (dist(𝐵1 ⊕
𝐵2, 𝐵) ?∼ 𝑡)

(2) normalization check for 𝐵: 𝑏1 = (
∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1)
(3) check that commitment 𝑐 matches submitted biometric 𝐵:

𝑏3 = (com(𝐵1 ⊕ 𝐵2, 𝑣)
?

= 𝑐).
𝑆1 receives these three bits, which allows it to determine the reason

for failure (and address it outside the protocol). If at least one bit is

0, authentication fails. Figure 4 specifies the ideal functionality.

As can be seen from the figure, the ideal functionality is written

to differentiate between two authentication failure modes: commu-

nicating a reject decision to the client and sending an abort signal.

The reason is that when the last check fails (𝑏3 = 0), we know

that the failure is due to 𝑆2’s misbehavior and the client receives

a message that the operation did not go through (as opposed to

successfully finished with a negative result). It is also possible for

Protocol 3 Registration Reg-MAL
Input: 𝐶 holds biometric 𝐵.

Output: 𝑆1 receives bits 𝑏1 and 𝑏2, biometric share 𝐵1, and

verification token 𝑐; 𝑆2 receives accept or reject, biometric share

𝐵2, and verification supplement 𝑣 ; 𝐶 receives accept or reject.

Common Input: Computational security parameter 𝜅 and

statistical security parameter 𝜌 .

Protocol steps:

(1) 𝐶 generates𝑚-bit random value 𝑟
𝑅← {0, 1}𝑚 , sets 𝐵1 = 𝑟

and 𝐵2 = 𝐵1 ⊕ 𝐵, and computes 𝑐 = com(𝐵, 𝑣) using freshly
generated randomness 𝑣 .

(2) 𝐶 securely communicates (𝐵1, 𝑐) to 𝑆1 and (𝐵2, 𝑣) to 𝑆2. If

any communicated value is malformed, the corresponding

server signals abort.

(3) 𝑆1 generates labels ℓ
𝑗
𝑖
and garbled gates G𝑓 for the normal-

ization and commitment checks and sends G𝑓 to 𝑆2.

(4) 𝑆1 and 𝑆2 engage in𝑚 instances of maliciously secure OTB

to communicate to 𝑆2 labels ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑖

for 𝑖 ∈ [1,𝑚] as in
prior protocols and 𝜅1 instances of conventional maliciously

secure OT to communicate to 𝑆2 labels ℓ
𝑣 [𝑖 ]
𝑚+𝑖 for 𝑖 ∈ [1, 𝜅1].

𝑆1 also sends labels ℓ
𝑐 [𝑖 ]
𝑚+𝜅1+𝑖 for 𝑖 ∈ [1, 𝜅2] to 𝑆2.

(5) 𝑆2 evaluates the circuit and communicates the output labels

ℓ
𝑏2
𝑛−1 and ℓ

𝑏1
𝑛 to 𝑆1.

(6) 𝑆1 performs the following:

(a) If ℓ
𝑏2
𝑛−1 = ℓ1

𝑛−1 and ℓ
𝑏1
𝑛 = ℓ1𝑛 , 𝑆1 broadcasts accept. 𝑆1 stores

(𝐵1, 𝑐) and 𝑆2 stores (𝐵2, 𝑣).
(b) Otherwise, 𝑆1 sends reject to all parties.

other checks to fail due to 𝑆2’s misbehavior, but they can also be a

result of the client submitting a biometric which is not normalized

or not within the desired distance from the enrollment biometric.

The registration protocol for this setting is called Reg-MAL and

is given as Protocol 3. It proceeds by the client generating shares

and a commitment, and the servers verifying that they received

consistent values and properly normalized input. Similar to the

normalization check, the commitment check takes place within

the garbled circuit. For concreteness, let |𝑣 | = 𝜅1, |𝑐 | = 𝜅2, and the

inputs being entered into the GC evaluation as 𝐵, 𝑣 , and 𝑐 . Secret-

shared 𝐵 is entered into GC evaluation via OTB as before, while 𝑣 is

entered using conventional OT. We have to resort to a maliciously

secure variant of OT to guarantee correct execution. Recall that

GC evaluation itself is resilient to malicious behavior. At the end

of GC evaluation, 𝑆2 obtains the output labels ℓ
𝑏2
𝑛−1 and ℓ

𝑏1
𝑛 that it

communicates to 𝑆1. Note that 𝑆2 can tamper with them prior to

sending. If the received labels correspond to bits 1, 𝑆1 announces

successful completion. If at least one of the labels is invalid, 𝑆1
aborts. Otherwise, it sends a reject signal.

Authentication is termed Auth-MAL and is given as Protocol 4.

The changes to the previous authentication protocol include: (i) the

addition of commitment inputs (𝑐, 𝑣), (ii) the use of OT for entering

𝑣 , (iii) changes to the circuit to perform commitment verification,

(iv) the use of maliciously secure OT, and (v) different handling of

the results of function evaluation by 𝑆1. We assume that the circuit

wires are allocated to the inputs in the following order: 𝐵 (𝑚 bits),
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Protocol 4 Authentication Auth-MAL

Input: 𝐶 holds biometric 𝐵, 𝑆1 holds biometric share 𝐵1 and

verification token 𝑐; 𝑆2 holds biometric share 𝐵2 and verification

supplement 𝑣 .

Output: 𝑆1 receives bits 𝑏1, 𝑏2, and 𝑏3; 𝐶 receives accept or reject.

Common Input: Computational security parameter 𝜅, statistical

security parameter 𝜌 , and threshold 𝑡 .

Protocol steps:

(1) 𝐶 generates 𝑚-bit random value 𝐵2
𝑅← {0, 1}𝑚 , sets 𝐵1 =

𝐵2 ⊕𝐵, and sends 𝐵1 to 𝑆1 and 𝐵2 to 𝑆2. If any received value
is malformed, then the corresponding server signals abort.

(2) 𝑆1 generates labels ℓ
𝑗
𝑖
, computes garbled gates G𝑓 for

the over-the-threshold distance computation, normalization

check, and commitment verification, and sends G𝑓 to 𝑆2.

(3) 𝑆1 and 𝑆2 engage in 2𝑚 instances of maliciously secure OTB

to communicate to 𝑆2 labels ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑖

and ℓ
𝐵1 [𝑖 ]⊕𝐵2 [𝑖 ]
𝑚+𝑖

for 𝑖 ∈ [1,𝑚] and 𝜅1 instances of conventional maliciously

secure OT to communicate to 𝑆2 labels ℓ
𝑣 [𝑖 ]
2𝑚+𝑖 for 𝑖 ∈ [1, 𝜅1].

𝑆1 also sends labels ℓ
𝑐 [𝑖 ]
2𝑚+𝜅1+𝑖 for 𝑖 ∈ [1, 𝜅2] to 𝑆2.

(4) 𝑆2 evaluates the circuit and sends the computed output labels

ℓ
𝑏3
𝑛−2, ℓ

𝑏2
𝑛−1, and ℓ

𝑏1
𝑛 to 𝑆1.

(5) 𝑆1 performs the following:

(a) If ℓ
𝑏3
𝑛−2 = ℓ1

𝑛−2, ℓ
𝑏2
𝑛−1 = ℓ1

𝑛−1, and ℓ
𝑏1
𝑛 = ℓ1𝑛 , 𝑆1 sends accept

to 𝐶 and terminate to 𝑆2.
(b) If ℓ

𝑏2
𝑛−1 = ℓ0

𝑛−1 or ℓ
𝑏1
𝑛 = ℓ0𝑛 , 𝑆1 ends reject to 𝐶 and termi-

nate to 𝑆2.
(c) Otherwise, 𝑆1 signals abort to 𝐶 and 𝑆2.

𝐵 (𝑚 bits), 𝑣 (𝜅1 bits), and 𝑐 (𝜅2 bits). As before, the circuit size is

denoted by 𝑛, while the output wires this time are 𝑛 − 2, 𝑛 − 1, 𝑛.
Authentication is successful when all output bits are 1 (i.e., all

three checks pass). Any malformed output labels and the failure of

the commitment check point to 𝑆2’s misbehavior and result in abort,

while failures of the normalization check and a large difference

between 𝐵 and 𝐵 can be due to 𝐶 or 𝑆2 and result in reject.

Theorem 3. The sequence of Protocols 3 and 4 executed by par-
ticipants 𝑆1, 𝑆2,𝐶auth is secure in the presence of semi-honest 𝑆1, and
malicious and colluding 𝑆2 and𝐶auth, according to Definition 2, given
supplemental functionalities with security guarantees as discussed in
Section 2.3.

Theorem 4. The sequence of Protocols 3 and 4, where Protocol 3
is executed by participants 𝑆1, 𝑆2,𝐶auth and Protocol 4 is executed by
participants 𝑆1, 𝑆2,𝐶imp, is secure in the presence of semi-honest 𝑆1,
and malicious and colluding 𝑆2 and (𝐶auth or𝐶imp), according to Def-
inition 2, given supplemental functionalities with security guarantees
as discussed in Section 2.3.

4 IMPLEMENTATION AND EVALUATION
4.1 Working with Compressed DeepPrint

Representation
The use of GCs permits implementing any desired functionality and

we realize DeepPrint’s matching using compressed representation

to lower the cost of the computation. Recall that the main benefit

of compressed DeepPrint representation is to lower its storage cost,

as the value is uncompressed size during the matching. However,

in the context of this work, shorter bitlength representation and

the use of integer instead of floating-point values can aid efficiency

of the computation itself. Thus, we would like to compute as much

as possible using the compressed form in a manner which is not

lossy with respect to this compression heuristic.

To this end, suppose that we are comparing two DeepPrint

representations 𝑋 and 𝑌 consisting of 𝑤 (=192) elements. Recall

that the compressed representation of 𝑋 uses ℎ𝑋 , ℓ𝑋 together

with 8-bit integers 𝑋 [𝑖] defined in equation 1. We also define

Δ𝑋 = (ℎ𝑋 − ℓ𝑋 )/255 > 0, represent a compressed biometric as

𝑋
def
= (Δ𝑋 , ℓ𝑋 , {𝑋 [𝑖]}𝑖 ), and define its decompressed 32-bit (sin-

gle precision) floating point biometric as 𝑋 = {𝑋 [𝑖]}𝑖 , where
𝑋 [𝑖] def

= 𝑋 [𝑖]Δ𝑋 + ℓ𝑋 . When using cosine similarity comparing

normalized vectors which have been compressed and subsequently

decompressed, as is done in [18], it suffices to compare the dot

product 𝑋 ·𝑌 against a threshold value. With this in mind, we have

𝑋 · 𝑌 =

𝑤∑︁
𝑖=1

𝑋 [𝑖]𝑌 [𝑖] =
𝑤∑︁
𝑖=1

(𝑋 [𝑖]Δ𝑋 + ℓ𝑋 ) (𝑋 [𝑖]Δ𝑌 + ℓ𝑌 )

=

(
Δ𝑋Δ𝑌

𝑤∑︁
𝑖=1

𝑋 [𝑖]𝑌 [𝑖]
)
+

(
ℓ𝑋Δ𝑌

𝑤∑︁
𝑖=1

𝑌 [𝑖]
)

+
(
ℓ𝑌Δ𝑋

𝑤∑︁
𝑖=1

𝑋 [𝑖]
)
+𝑤ℓ𝑋 ℓ𝑌

In the final line of this equation, there are𝑤 8-bit multiplications,

which are much cheaper than floating-point or even 32-bit integer

operations. The summations then require 8 + ⌈log
2
(𝑤)⌉ bits to

represent the

∑𝑤
𝑖=1 𝑋 [𝑖] and

∑𝑤
𝑖=1 𝑌 [𝑖] terms, and 16+⌈log

2
(𝑤)⌉ bits

for the

∑𝑤
𝑖=1 𝑋 [𝑖]𝑌 [𝑖] term. Once the computation is performed on

short values, we convert the sums to floating-point representation

and compute the remaining operations using regular floating-point

arithmetic. This adds 3 conversions, 8 single-precision floating-

point multiplications and 3 32-bit floating-point additions.

Conversion to a floating-point value involves locating the index

of the most significant non-zero bit, shifting the mantissa by this

value, and adjusting the exponent by that value as well. Other

operations such as floating-point addition involve shifting by an

oblivious value as well.

Euclidean distance can be computed over compressed values as

𝑤∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖 )2 =
𝑤∑︁
𝑖=1

(𝑋 [𝑖]Δ𝑋 − 𝑌 [𝑖]Δ𝑌 + ℓ𝑋 − ℓ𝑌 )2

=

(
Δ2

𝑋

𝑤∑︁
𝑖=1

𝑋 [𝑖]2
)
+

(
Δ2

𝑌

𝑤∑︁
𝑖=1

𝑌 [𝑖]2
)

−
(
2Δ𝑋Δ𝑌

𝑤∑︁
𝑖=1

𝑋 [𝑖]𝑌 [𝑖]
)
+

(
2(ℓ𝑋 − ℓ𝑌 )Δ𝑋

𝑤∑︁
𝑖=1

𝑋 [𝑖]
)

−
(
2(ℓ𝑋 − ℓ𝑌 )Δ𝑌

𝑤∑︁
𝑖=1

𝑌 [𝑖]
)
+𝑤 (ℓ𝑋 − ℓ𝑌 )2
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which shows an increase in the number of short integer, floating-

point, and integer to floating-point conversion operations.

These operations need to be implemented within GCs. Our GC

implementation was built to maximize efficiency starting from the

low level such as the use of constant publicly known values, optimiz-

ing AND, OR, and XOR gates when at least one input is constant, by

flagging each constant wire as special and systematically eliminat-

ing the need to evaluate gates whenever possible. Such optimization

can, for example, cut in half the number of gates needed to eval-

uate multiplication when compared to the built-in multiplication

in JustGarble [9] (specifically, by not processing gates to add bits

known to be zero).

The above together with efficient shifting by an oblivious value

allowed us to generate very efficient floating-point circuits. We are

aware of only one other work [32] that built garbled circuits for

floating-point operations, and our circuits compare very favorably.

In particular, our single-precision floating-point addition uses 2030

gates vs. 7052 gates in that work; our multiplication has 3690 gates

vs. 7701 gates in that work, and comparison is efficient at 300 gates

(not tested in [32]). There can be differences in the treatment of

exceptions (e.g., we treat infinity as non-a-number NaN which

improves performance), but we expect that even with full IEEE 754

standard treatment, our circuits will compare favorably.

4.2 Experimental Evaluation
Our implementation uses the GC instantiation from [9] with the

free-XOR and row reduction optimizations. The OT extension is

from [5] for the protocols with semi-honest 𝑆2, and from [6] for

the protocols with malicious 𝑆2. Both of them buil on an optimized

version of the semi-honest protocol from [23] to generate the base

OTs. Commitments are formed using SHA-256 with 𝜅2 = 256 and

|𝑣 | = 𝜅1 = 128 random bits included as entropy supplement.𝑚 =

1600 and reported performance is averaged over 100 runs. The

implementation is available as open source from https://github.

com/applied-crypto-lab/biom-auth.

The the following machines were used to run the experiments:

• An AMD Ryzen5-3600 6-core processor machine operating

at 3.6 GHz, running openSUSE Leap 15.3.

• Identical computers with Intel Xeon E5-2620v4 8-core pro-

cessors operating at 2.1GHz, running Ubuntu 20.04.3 LTS.

All communication used TCP sockets with the following setup:

• Each party on a different Xeon machine on a LAN.

• The two servers on Xeon machines on a LAN, with the client

on the Ryzen machine connecting via VPN from the internet.

Network latency and throughput were measured by transmitting

buffers of size 4
𝑖
bytes for 𝑖 ∈ [0, 12] bidirectionally. Round trip time

(RTT) is taken to be the average of transmitting ≤ 256 bytes (repre-

senting one packet). Throughput is taken to be ((2 · 8 · bufsize) −
latency)/time(sec) as a buffer of size bufsize is sent twice in this

round trip test. We obtain RTT of 0.345 ms and throughput of 946

Mb/sec for Xeon LAN and RTT of 45.9 ms and throughput of 20.4

Mb/sec for Ryzen to Xeon over internet. We use encrypted channels

for sensitive information such as biometric shares, GC labels, and

protocol outcomes (while garbled tables and OTB communication

are not encrypted).

Table 1 reports performance of authentication protocols. The

online time and communication correspond to all work with the

exception of garbling and transmitting the garbled table and labels

from 𝑆1 to 𝑆2, which can be precomputed and constitutes offline

work. Note that online communication is independent of the dis-

tance metric, while offline runtime is independent of the network

setup (as the connection between the servers does not change).

The GC size is sub-divided into gates that involve communication

(AND and OR) and those that do not (XOR and NOT). The category

“Other” of online time includes communication time, other local

computation time, and down time. The (online) communication

time is relatively insignificant for LAN tests but dominates the

mixed internet test times.

The client computation time is not included, but it is minimal,

showing that the solution is well suited for constrained devices.

In particular, client’s computation took on overage 0.17 ms with

additional 0.05 ms for data transmission to the socket, after which

the client awaits a response. In addition, the client only transmits

400B (and receives 1B), while the remaining communication is

between the servers.

We test squared Euclidean distance and cosine similarity, and

find the latter to be slightlymore efficient as it uses fewer operations.

Although we further optimize the squaring operation in Euclidean

distance computation, this is not enough to offset the difference.

Note that Euclidean distance can reuse some operations from the

normalization check.

We can can compare performance of our solutions with that of

other constructions that treat biometric-based authentication and

consider at least the client to be malicious [2, 17, 21, 22, 34]. All

of them require the clients to store keys on their devices and all

with the exception of [21] consider only semi-honest servers (and

thus are closer to our first threat model). Among these, [34] has

performance on the order of seconds or larger and is not suitable

for real-time authentication. [22] takes about a second for a com-

putation that leaks the distance to the server in the semi-honest

server model. [17] does not provide sufficient information to de-

termine the time, but it is lower-bounded by several hundred ms.

With [2], authentication takes 71ms on 128-byte vectors and 102ms

on 256-byte vectors without taking communication into account,

both of which are higher than our 192-element times are. This pro-

tocol does not leak the distance to the server, but does not achieve

security (the client notifies the server of authentication outcome).

Lastly, in [21] authentication (client and server work) takes over

150ms with much shorter 64-byte templates and over 175ms with

128-byte templates without taking network communication into

account and disclosing the distance to the server. Once again, this

is slower than performance of all of our protocols.

5 CONCLUSIONS
In this work, we treat the topic of privacy-preserving biometric-

based authentication that permits users to authenticate with bio-

metric data in a such a way that users do not have to maintain

any additional secrets and the authentication server does not learn

information about user biometrics. We build solutions using a num-

ber of cryptographic techniques such as garbled circuit evaluation,

a new variant of oblivious transfer, and a commitment scheme that

https://github.com/applied-crypto-lab/biom-auth
https://github.com/applied-crypto-lab/biom-auth
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Protocol

Dist. Circuit gates LAN online time Internet online time Online Offline time Offline

metric Comm. Local GCE OT Other Total GCE OT Other Total comm. Garble Send Total comm.

Auth-SH
CS 63,017 117,327 12.2 13.2 2.20 27.1 13.4 13.3 48.9 75.6

216KB

24.9 60.2 92.7 8.26 MB

ED 82,862 152,834 15.4 16.5 2.23 30.5 16.9 13.5 49.1 79.5 32.6 82.8 125 10.8 MB

Auth-MAL
CS 176,669 489,109 32.2 17.6 3.05 52.9 33.0 18.0 49.9 101

313KB

76.2 259 364 31.8 MB

ED 196,514 524,616 35.1 17.7 3.15 56.0 36.3 17.9 49.8 104 83.8 282 397 34.3 MB

Table 1: Performance of LAN and Internet authentication protocols; runtime is in ms.

rely on a helper server. An interesting aspect of our work is that the

standard security definitions adopted in secure multi-party com-

putation literature were not sufficient to demonstrate security in

our application and we extend them to accommodate computation

consisting of multiple phases where the set of participants might

change from one phase to another. We consider two different se-

curity models, both of which model users as malicious and differ

in the assumptions on the servers. We formally prove all of our

constructions to be secure in the respective models and implement

them to demonstrate that they have practical performance.
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