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Data PrivacyData Privacy

• Why do we talk about protecting data privacy?
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Data PrivacyData Privacy

• Larger and larger volumes of data are being collected about individuals

– one’s shopping behavior, geo location and moving patterns, interests and
hobbies, exercise patterns, etc.

• Even intended analysis and use of data is scary, but it is also prone to abuse

– information about individuals collected by an entity can be legitimately
sold to others

– large datasets with sensitive information are an attractive target for
insider abuse

– data breaches are more common than what we know
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Data BreachesData Breaches
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Data ProtectionData Protection

• There are many different ways to protect private, proprietary, classified or
otherwise sensitive information

– this course will cover some of such techniques

• Protection techniques include:

– computing on private data without revealing the data

– anonymous communication and authentication

– applications that provide anonymity (e-cash, voting, etc.)

• Standard techniques of protecting data at rest or in transit are not covered by
this course
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Secure Multi-Party ComputationSecure Multi-Party Computation

• Secure multi-party computation allows two or more individuals to jointly
evaluate a function on their respective private data

– security guarantees allow for no unintended information leakage

– only output of the computation (and any information deduced from the
output and its private input) can be known to a participant
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Example Secure Two-Party ComputationExample Secure Two-Party Computation

• Two millionaires Alice and Bob would like to determine who is richer
without revealing their worth to each other

Alice Bob
private x private y

−→
←−
−→
←−
−→

output
x < y
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Example Secure Multi-Party ComputationExample Secure Multi-Party Computation

• A number of local hospitals would like to jointly determine the most
effective treatment to a rare disease

outputhospital 2
private records
output

secure
computation

hospital 1
private records

output hospital 3
private records
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Secure Multi-Party ComputationSecure Multi-Party Computation

• Regardless of the setup, the same strong security guarantees are expected:

– suppose there is an ideal third party that the participants trust with their
data

– they send their data to the trusted third party (TTP) and receive the output

– then a multi-party protocol is secure if adversarial participants learn no
more information than in the case of ideal TTP

– this is formalized through a simulation paradigm
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Security of SMCSecurity of SMC

• There are two standard ways of modeling participants in SMC

– a semi-honest participant complies with the prescribed computation, but
might attempt to learn additional information about other participants’
data from the messages it receives

• it is also called honest-but-curious or passive

– a malicious participant can arbitrarily deviate from the protocol’s
execution in the attempt to learn unauthorized information about other
participants’ data

• it is also called active

• There is a third type of adversarial model with covert participants who can
act maliciously, but do not wish to be caught
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Security of SMC in the Semi-Honest ModelSecurity of SMC in the Semi-Honest Model

• We start modeling security using the semi-honest model

– Let n be the number of participants in secure computation

– An adversaryA can corrupt and control t < n of them

– A knows all information that the corrupt parties have and receive

– Security is modeled by building a simulator SA with access to the TTP
that producesA’s view indistinguishable from its view in real protocol
execution

• SA hasA’s information, TTP’s output, and must simulate the view of
A and form outputs for all parties correctly
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Security of SMC in the Semi-Honest ModelSecurity of SMC in the Semi-Honest Model

• Formal definition:

– Let parties P1, . . ., Pn engage in a protocol Π that computes function
f(in1, . . ., inn)→ (out1, . . ., outn), where ini ∈ {0,1}∗ and
outi ∈ {0,1}∗ denote the input and output of party Pi, respectively.

– Let VIEWΠ(Pi) denote the view of participant Pi during the execution
of protocol Π. That is, Pi’s view is formed by its input and internal
random coin tosses ri, as well as messages m1, . . .,mk passed between
the parties during protocol execution:

VIEWΠ(Pi) = (ini, ri,m1, . . .,mk).

– Let I = {Pi1, Pi2, . . ., Pit} denote a subset of the participants for
t < n and VIEWΠ(I) denote the combined view of participants in I
during the execution of protocol Π (i.e., the union of the views of the
participants in I).
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Security of SMC in the Semi-Honest ModelSecurity of SMC in the Semi-Honest Model

• Formal definition (cont.):

– We say that protocol Π is t-private in the presence of semi-honest
adversaries if for each coalition of size at most t there exists a
probabilistic polynomial time simulator SI such that

SI(inI , f(in1, . . ., inn)) ≡ {VIEWΠ(I), outI},

where inI =
⋃
Pi∈I{ini}, outI =

⋃
Pi∈I{outi}, and ≡ denotes

computational or statistical indistinguishability.

• Computational indistinguishability of two distributions means that the
probability that they differ is negligible in the security parameter κ

– for statistical indistinguishability, the difference must be negligible in the
statistical security parameter
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Security of SMC in the Malicious ModelSecurity of SMC in the Malicious Model

• In the malicious model we have the following definition:

– Let Π be a protocol that computes function
f(in1, . . ., inn)→ (out1, . . ., outn), with party Pi contributing input
ini ∈ {0,1}∗ and receiving output outi ∈ {0,1}∗

– LetA be an arbitrary algorithm with auxiliary input x and S be an
adversary/simulator in the ideal model

– Let REALΠ,A(x),I(in1, . . ., inn) denote the view of adversaryA
controlling parties in I together with the honest parties’ outputs after real
protocol Π execution

– Similarly, let IDEALf,S(x),I(in1, . . ., inn) denote the view of S and
outputs of honest parties after ideal execution of function f
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Security of SMC in the Malicious ModelSecurity of SMC in the Malicious Model

• Formal definition (cont.):

– We say that Π t-securely computes f if for each coalition I of size at
most t, every probabilistic adversaryA in the real model, all
ini ∈ {0,1}∗ and x ∈ {0,1}∗, there is probabilistic S in the ideal
model that runs in time polynomial inA’s runtime and

{IDEALf,S(x),I(in1, . . ., inn)} ≡ {REALΠ,A(x),I(in1, . . ., inn)}
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Secure Multi-Party ComputationSecure Multi-Party Computation

• The setting can be further generalized to allow for more general setups

• We can distinguish between three groups of participants

– input parties (data owners) contribute their private input into the
computation

– computational parties securely execute the computation on behalf of all
participants

– output parties (output recipients) receive output from the computational
parties at the end of the computation

• The groups can be arbitrarily overlapping
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Secure Multi-Party ComputationSecure Multi-Party Computation

• The above setup allows for many interesting settings

– a large number of participating hospitals can choose a subset of them to
run the computation on behalf of all of them

– they can also employ external parties (cloud providers) for running the
computation

– the output can be delivered to a subset of them and/or to other interested
parties

• This setup also allows for secure computation outsourcing

– one or more clients securely outsource their computation to a number of
external cloud computing providers
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Secure Computation OutsourcingSecure Computation Outsourcing

• In the case of secure computation outsourcing, additional security objectives
emerge

– because the computation is performed by external parties, there are no
guarantees that the computation was run correctly (or even run at all)

– thus, the output recipient would like to be able to verify that the returned
result is correct

– if verification succeeds, the probably that the output is incorrect should
be negligible (in the security parameter κ)

– the verification process should be much faster than running the
computation locally

• The details of the security definition may differ depending on the problem
formulation
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Secure Multi-Party Computation TechniquesSecure Multi-Party Computation Techniques

• We’ll next briefly discuss three major types of secure computation
techniques

– garbled circuit evaluation

• two-party computation (n = 2)

– linear secret sharing

• multi-party computation (n > 2)

– homomorphic encryption

• two- or multi-party computation (n ≥ 2)
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Garbled Circuit EvaluationGarbled Circuit Evaluation

• SMC based on garbled circuit evaluation involves two participants: circuit
garbler and circuit evaluator

• The function to be computed is represented as a Boolean circuit

– typically we’ll use binary (two input and one output bits) gates and
negation gates

– example:

. . .

. . .

xm ymx1 y1
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Garbled Circuit EvaluationGarbled Circuit Evaluation

• The garbler takes a Boolean circuit and associates two random labels
`0i , `

1
i ∈ {0,1}

κ with each circuit’s wire i

– `0i is associated with value 0 of the wire and `1i with value 1

– given `bi , it is not possible to determine what b is

• The garbler also encodes each gate

– suppose a binary gate g has input wires i and j and output wire k

– the garbler uses encryption to enable recovery of `
g(bi,bj)
k given `bii and

`
bj
j

• The evaluator obtains appropriate labels for the input wires and evaluates the
garbled circuit one gate at a time

– the evaluator sees labels, but doesn’t know their meaning
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Garbled Circuit EvaluationGarbled Circuit Evaluation

• The evaluator obtains labels for the input wires as follows:

– the garbler knows its input and simply sends the right labels for its input
wires to the evaluator

– to obtain labels corresponding to its own input, the evaluator engages in
the 1-out-of-2 oblivious transfer (OT) with the garbler

• it allows the evaluator to retrieve one out of two labels for each of its
input wires, while the garbler learns nothing

• The basic technique is secure in the presence of semi-honest garbler and
malicious evaluator

– it can be extended to be secure in the malicious model using additional
techniques
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SMC based on Secret SharingSMC based on Secret Sharing

• An alternative technique is to use threshold linear secret sharing for secure
multi-party computation

– (n, t)-threshold secret sharing allows secret s to be secret-shared among
n parties such that:

• no coalition of t or fewer parties can recover any information about s

• t+ 1 or more shares can be used to efficiently reconstruct s

– information-theoretic security (i.e., independent of security parameters)
is achieved

– linear secret sharing allows a linear combination of secret-shared values
to be computed by each party locally on its shares

• this includes (integer) addition, subtraction, and multiplication by a
known integer
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SMC based on Secret SharingSMC based on Secret Sharing

• Using secret sharing for secure multi-party computation

– multiplication of secret-shared (integer) values requires interaction and is
considered to be a basic building block (one elementary operation)

– common implementations of multiplication in the semi-honest model
require that t < n/2

• e.g., we could use (3, 1), (5, 2), etc. threshold secret sharing

– examples:

• let [x] denote that the value of x is protected/secret-shared

• is 2[x]− 5[y] interactive computation? is 2[x][y]?
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SMC based on Secret SharingSMC based on Secret Sharing

• Implementation of other operations is more complex and is typically
composed of elementary operations

– function representation expressed in terms of additions/subtractions and
multiplications is called an arithmetic circuit

• Performance of any function in this framework is then measured in terms of

– elementary interactive operations

– sequential interactive operations or rounds
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SMC based on Secret SharingSMC based on Secret Sharing

• SMC based on secret sharing supports the flexible setup with three groups of
participants:

– each data owners secret-shares its private input among the computational
parties prior to the computation

– the computational parties evaluate the function on secret-shared data

– the computational parties communicate their shares of the result to
output recipients who locally reconstruct the output

• A number of techniques are available to strengthen the security guarantees to
hold in the malicious model
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SMC based on Homomorphic EncryptionSMC based on Homomorphic Encryption

• Homomorphic encryption is another technique that allows for securely
evaluating general functionalities

– it is a special type of encryption that, given ciphertexts, permits
computation on the underlying plaintexts

Enck(m1)⊗ Enck(m2) = Enck(m1 ⊕m2)

– homomorphic encryption enables computation on encrypted data and
results in efficient protocols for certain problems

CSE 701 Fall 2017

27Marina Blanton



SMC based on Homomorphic EncryptionSMC based on Homomorphic Encryption

• Of most significant interest to us is public-key semantically-secure
homomorphic encryption

– a public-key encryption scheme uses a public-private key pair (pk, sk)

and consists of three algorithms Gen(1κ)→ (pk, sk),
Enc(pk,m)→ c, and Dec(sk, c)→ m∪ ⊥.

– additional algorithm(s) specify how to use homomorphic properties

– semantic security means that no information of any kind about plaintexts
can be learned from the corresponding ciphertexts

• this is true even in the presence of adversaries with large capabilities
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SMC based on Homomorphic EncryptionSMC based on Homomorphic Encryption

• We’ll look at two types of public-key homomorphic encryption

• The first type is called partially homomorphic encryption (or just HE for
short) and comes with one homomorphic operation

– of most significant importance to us is the ability to add (integer) values
inside ciphertexts

– we have Encpk(m1) · Encpk(m2) = Encpk(m1 +m2)

– which in turn implies Encpk(m)c = Encpk(m · c)

– Paillier encryption scheme (1999) is a popular cryptosystem of this type
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SMC based on Homomorphic EncryptionSMC based on Homomorphic Encryption

• To enable secure computation using homomorphic encryption that supports
addition, we also need to be able to implement other operations

– multiplication can be implemented as an interactive protocol between the
participants

– addition/subtraction and multiplication alone are sufficient for
supporting any computable function

– optimized implementations for common operations are available

• Also, we’ll often need to use (n, t)-threshold homomorphic encryption

– similar to secret sharing, the private key is split into n shares

– t+ 1 or more shares are needed for decryption

– Paillier encryption is available in the threshold version for any t < n

CSE 701 Fall 2017

30Marina Blanton



SMC based on Homomorphic EncryptionSMC based on Homomorphic Encryption

• The second type is called fully homomorphic encryption (FHE)

– it supports two types of operations on ciphertexts: addition and
multiplication

– this type enables any function to be evaluated on encrypted data

– this is suitable for secure computation outsourcing to a single server

• The drawback of FHE is its speed

– it is currently not suitable for moderate to large functions or amounts of
data
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Summary of SMC TechniquesSummary of SMC Techniques

• The three types of SMC techniques described so far can be used to evaluate
any function securely

• A large number of custom protocols for specific functions also exist

– example: private set intersection

– these can combine the above techniques or use custom approaches

– the goal of custom protocols is to outperform general solutions

• The same applies to verification of outsourced computation:

– general approaches are known, but constructions specific to some
function target efficiency
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