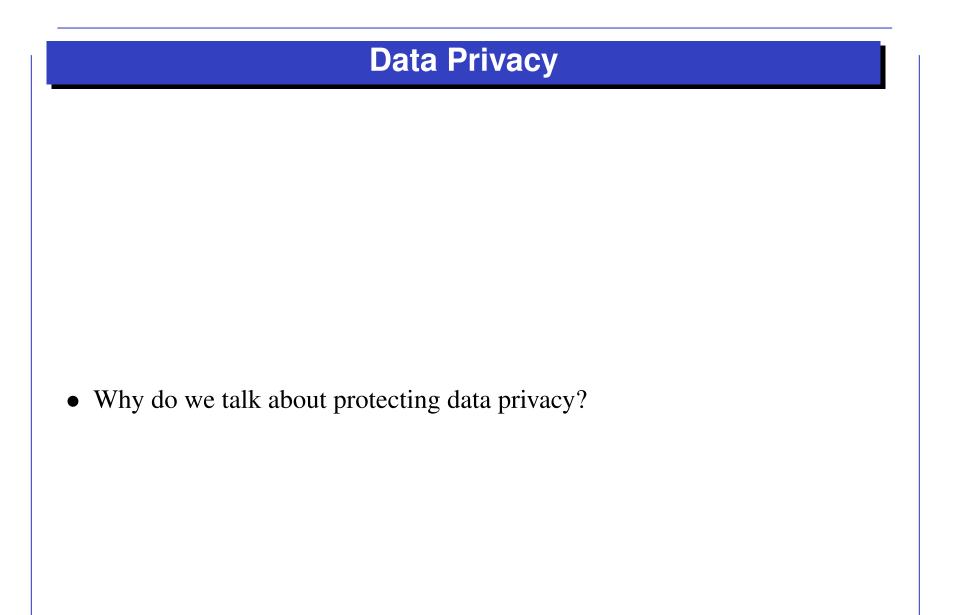
Privacy Enhancing Technologies CSE 701 Fall 2017

Lecture 1: Secure Computation and Outsourcing

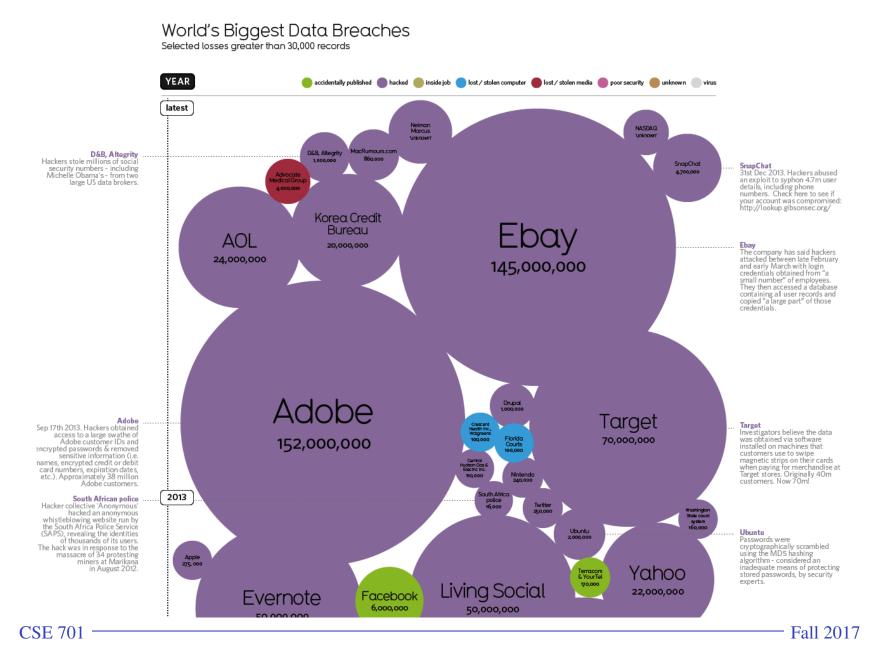
Department of Computer Science and Engineering University at Buffalo



Data Privacy

- Larger and larger volumes of data are being collected about individuals
 - one's shopping behavior, geo location and moving patterns, interests and hobbies, exercise patterns, etc.
- Even intended analysis and use of data is scary, but it is also prone to abuse
 - information about individuals collected by an entity can be legitimately sold to others
 - large datasets with sensitive information are an attractive target for insider abuse
 - data breaches are more common than what we know

Data Breaches



Marina Blanton

Data Protection

- There are many different ways to protect private, proprietary, classified or otherwise sensitive information
 - this course will cover some of such techniques
- Protection techniques include:
 - computing on private data without revealing the data
 - anonymous communication and authentication
 - applications that provide anonymity (e-cash, voting, etc.)
- Standard techniques of protecting data at rest or in transit are not covered by this course

Secure Multi-Party Computation

- Secure multi-party computation allows two or more individuals to jointly evaluate a function on their respective private data
 - security guarantees allow for no unintended information leakage
 - only output of the computation (and any information deduced from the output and its private input) can be known to a participant

Example Secure Two-Party Computation

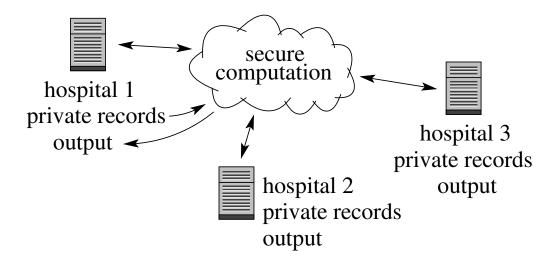
• Two millionaires Alice and Bob would like to determine who is richer without revealing their worth to each other

Alice private x

output x < y

Example Secure Multi-Party Computation

• A number of local hospitals would like to jointly determine the most effective treatment to a rare disease



Secure Multi-Party Computation

- Regardless of the setup, the same strong security guarantees are expected:
 - suppose there is an ideal third party that the participants trust with their data
 - they send their data to the trusted third party (TTP) and receive the output
 - then a multi-party protocol is secure if adversarial participants learn no more information than in the case of ideal TTP
 - this is formalized through a simulation paradigm

Security of SMC

- There are two standard ways of modeling participants in SMC
 - a semi-honest participant complies with the prescribed computation, but might attempt to learn additional information about other participants' data from the messages it receives
 - it is also called honest-but-curious or passive
 - a malicious participant can arbitrarily deviate from the protocol's execution in the attempt to learn unauthorized information about other participants' data
 - it is also called active
- There is a third type of adversarial model with covert participants who can act maliciously, but do not wish to be caught

Security of SMC in the Semi-Honest Model

- We start modeling security using the semi-honest model
 - Let n be the number of participants in secure computation
 - An adversary ${\mathcal A}$ can corrupt and control t < n of them
 - \mathcal{A} knows all information that the corrupt parties have and receive
 - Security is modeled by building a simulator S_A with access to the TTP that produces A's view indistinguishable from its view in real protocol execution
 - S_A has A's information, TTP's output, and must simulate the view of A and form outputs for all parties correctly

Security of SMC in the Semi-Honest Model

- Formal definition:
 - Let parties P_1, \ldots, P_n engage in a protocol Π that computes function $f(in_1, \ldots, in_n) \rightarrow (out_1, \ldots, out_n)$, where $in_i \in \{0, 1\}^*$ and $out_i \in \{0, 1\}^*$ denote the input and output of party P_i , respectively.
 - Let $VIEW_{\Pi}(P_i)$ denote the view of participant P_i during the execution of protocol Π . That is, P_i 's view is formed by its input and internal random coin tosses r_i , as well as messages m_1, \ldots, m_k passed between the parties during protocol execution:

 $\operatorname{VIEW}_{\Pi}(P_i) = (\operatorname{in}_i, r_i, m_1, \dots, m_k).$

- Let $I = \{P_{i_1}, P_{i_2}, \dots, P_{i_t}\}$ denote a subset of the participants for t < n and $VIEW_{\prod}(I)$ denote the combined view of participants in I during the execution of protocol \prod (i.e., the union of the views of the participants in I).

Security of SMC in the Semi-Honest Model

- Formal definition (cont.):
 - We say that protocol Π is *t*-private in the presence of semi-honest adversaries if for each coalition of size at most *t* there exists a probabilistic polynomial time simulator S_I such that

 $S_I(\operatorname{in}_I, f(\operatorname{in}_1, \ldots, \operatorname{in}_n)) \equiv \{\operatorname{VIEW}_{\Pi}(I), \operatorname{out}_I\},\$

where $in_I = \bigcup_{P_i \in I} \{in_i\}$, $out_I = \bigcup_{P_i \in I} \{out_i\}$, and \equiv denotes computational or statistical indistinguishability.

- Computational indistinguishability of two distributions means that the probability that they differ is negligible in the security parameter κ
 - for statistical indistinguishability, the difference must be negligible in the statistical security parameter

Security of SMC in the Malicious Model

- In the malicious model we have the following definition:
 - Let Π be a protocol that computes function
 f(in₁,...,in_n) → (out₁,...,out_n), with party P_i contributing input
 in_i ∈ {0,1}* and receiving output out_i ∈ {0,1}*
 - Let \mathcal{A} be an arbitrary algorithm with auxiliary input x and S be an adversary/simulator in the ideal model
 - Let $\operatorname{REAL}_{\Pi,\mathcal{A}(x),I}(\operatorname{in}_1,\ldots,\operatorname{in}_n)$ denote the view of adversary \mathcal{A} controlling parties in I together with the honest parties' outputs after real protocol Π execution
 - Similarly, let $IDEAL_{f,S(x),I}(in_1, ..., in_n)$ denote the view of S and outputs of honest parties after ideal execution of function f

Security of SMC in the Malicious Model

- Formal definition (cont.):
 - We say that ∏ t-securely computes f if for each coalition I of size at most t, every probabilistic adversary A in the real model, all in_i ∈ {0, 1}* and x ∈ {0, 1}*, there is probabilistic S in the ideal model that runs in time polynomial in A's runtime and

 ${\rm IDEAL}_{f,S(x),I}({\rm in}_1,\ldots,{\rm in}_n) \} \equiv {\rm REAL}_{\Pi,\mathcal{A}(x),I}({\rm in}_1,\ldots,{\rm in}_n) \}$

CSE 701

Secure Multi-Party Computation

- The setting can be further generalized to allow for more general setups
- We can distinguish between three groups of participants
 - input parties (data owners) contribute their private input into the computation
 - computational parties securely execute the computation on behalf of all participants
 - output parties (output recipients) receive output from the computational parties at the end of the computation
- The groups can be arbitrarily overlapping

Secure Multi-Party Computation

- The above setup allows for many interesting settings
 - a large number of participating hospitals can choose a subset of them to run the computation on behalf of all of them
 - they can also employ external parties (cloud providers) for running the computation
 - the output can be delivered to a subset of them and/or to other interested parties
- This setup also allows for secure computation outsourcing
 - one or more clients securely outsource their computation to a number of external cloud computing providers

Secure Computation Outsourcing

- In the case of secure computation outsourcing, additional security objectives emerge
 - because the computation is performed by external parties, there are no guarantees that the computation was run correctly (or even run at all)
 - thus, the output recipient would like to be able to verify that the returned result is correct
 - if verification succeeds, the probably that the output is incorrect should be negligible (in the security parameter κ)
 - the verification process should be much faster than running the computation locally
- The details of the security definition may differ depending on the problem formulation

Marina Blanton

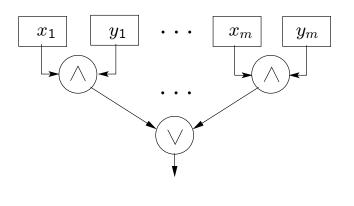
Secure Multi-Party Computation Techniques

- We'll next briefly discuss three major types of secure computation techniques
 - garbled circuit evaluation
 - two-party computation (n = 2)
 - linear secret sharing
 - multi-party computation (n > 2)
 - homomorphic encryption
 - two- or multi-party computation $(n \ge 2)$

Marina Blanton

Garbled Circuit Evaluation

- SMC based on garbled circuit evaluation involves two participants: circuit garbler and circuit evaluator
- The function to be computed is represented as a Boolean circuit
 - typically we'll use binary (two input and one output bits) gates and negation gates
 - example:



Garbled Circuit Evaluation

- The garbler takes a Boolean circuit and associates two random labels $\ell_i^0, \ell_i^1 \in \{0, 1\}^{\kappa}$ with each circuit's wire *i*
 - ℓ_i^0 is associated with value 0 of the wire and ℓ_i^1 with value 1
 - given ℓ_i^b , it is not possible to determine what b is
- The garbler also encodes each gate
 - suppose a binary gate g has input wires i and j and output wire k
 - the garbler uses encryption to enable recovery of $\ell_k^{g(b_i,b_j)}$ given $\ell_i^{b_i}$ and $\ell_j^{b_j}$
- The evaluator obtains appropriate labels for the input wires and evaluates the garbled circuit one gate at a time
 - the evaluator sees labels, but doesn't know their meaning

Garbled Circuit Evaluation

- The evaluator obtains labels for the input wires as follows:
 - the garbler knows its input and simply sends the right labels for its input wires to the evaluator
 - to obtain labels corresponding to its own input, the evaluator engages in the 1-out-of-2 oblivious transfer (OT) with the garbler
 - it allows the evaluator to retrieve one out of two labels for each of its input wires, while the garbler learns nothing
- The basic technique is secure in the presence of semi-honest garbler and malicious evaluator
 - it can be extended to be secure in the malicious model using additional techniques

- An alternative technique is to use threshold linear secret sharing for secure multi-party computation
 - (n, t)-threshold secret sharing allows secret s to be secret-shared among n parties such that:
 - no coalition of t or fewer parties can recover any information about s
 - t + 1 or more shares can be used to efficiently reconstruct s
 - information-theoretic security (i.e., independent of security parameters) is achieved
 - linear secret sharing allows a linear combination of secret-shared values to be computed by each party locally on its shares
 - this includes (integer) addition, subtraction, and multiplication by a known integer

- Using secret sharing for secure multi-party computation
 - multiplication of secret-shared (integer) values requires interaction and is considered to be a basic building block (one elementary operation)
 - common implementations of multiplication in the semi-honest model require that t < n/2
 - e.g., we could use (3, 1), (5, 2), etc. threshold secret sharing
 - examples:
 - let [x] denote that the value of x is protected/secret-shared
 - is 2[x] 5[y] interactive computation? is 2[x][y]?

- Implementation of other operations is more complex and is typically composed of elementary operations
 - function representation expressed in terms of additions/subtractions and multiplications is called an arithmetic circuit
- Performance of any function in this framework is then measured in terms of
 - elementary interactive operations
 - sequential interactive operations or rounds

- SMC based on secret sharing supports the flexible setup with three groups of participants:
 - each data owners secret-shares its private input among the computational parties prior to the computation
 - the computational parties evaluate the function on secret-shared data
 - the computational parties communicate their shares of the result to output recipients who locally reconstruct the output
- A number of techniques are available to strengthen the security guarantees to hold in the malicious model

- Homomorphic encryption is another technique that allows for securely evaluating general functionalities
 - it is a special type of encryption that, given ciphertexts, permits computation on the underlying plaintexts

$$\operatorname{Enc}_k(m_1) \otimes \operatorname{Enc}_k(m_2) = \operatorname{Enc}_k(m_1 \oplus m_2)$$

 homomorphic encryption enables computation on encrypted data and results in efficient protocols for certain problems

- Of most significant interest to us is public-key semantically-secure homomorphic encryption
 - a public-key encryption scheme uses a public-private key pair (pk, sk) and consists of three algorithms Gen(1^κ) → (pk, sk),
 Enc(pk, m) → c, and Dec(sk, c) → m∪ ⊥.
 - additional algorithm(s) specify how to use homomorphic properties
 - semantic security means that no information of any kind about plaintexts
 can be learned from the corresponding ciphertexts
 - this is true even in the presence of adversaries with large capabilities

- We'll look at two types of public-key homomorphic encryption
- The first type is called partially homomorphic encryption (or just HE for short) and comes with one homomorphic operation
 - of most significant importance to us is the ability to add (integer) values inside ciphertexts
 - we have $\operatorname{Enc}_{pk}(m_1) \cdot \operatorname{Enc}_{pk}(m_2) = \operatorname{Enc}_{pk}(m_1 + m_2)$
 - which in turn implies $\operatorname{Enc}_{pk}(m)^c = \operatorname{Enc}_{pk}(m \cdot c)$

CSE 701

- Paillier encryption scheme (1999) is a popular cryptosystem of this type

Fall 2017

Marina Blanton

- To enable secure computation using homomorphic encryption that supports addition, we also need to be able to implement other operations
 - multiplication can be implemented as an interactive protocol between the participants
 - addition/subtraction and multiplication alone are sufficient for supporting any computable function
 - optimized implementations for common operations are available
- Also, we'll often need to use (n, t)-threshold homomorphic encryption
 - similar to secret sharing, the private key is split into n shares
 - -t+1 or more shares are needed for decryption
 - Paillier encryption is available in the threshold version for any t < n

- The second type is called fully homomorphic encryption (FHE)
 - it supports two types of operations on ciphertexts: addition and multiplication
 - this type enables any function to be evaluated on encrypted data
 - this is suitable for secure computation outsourcing to a single server
- The drawback of FHE is its speed
 - it is currently not suitable for moderate to large functions or amounts of data

Summary of SMC Techniques

- The three types of SMC techniques described so far can be used to evaluate any function securely
- A large number of custom protocols for specific functions also exist
 - example: private set intersection
 - these can combine the above techniques or use custom approaches
 - the goal of custom protocols is to outperform general solutions
- The same applies to verification of outsourced computation:
 - general approaches are known, but constructions specific to some function target efficiency