Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 22: Post-Quantum Cryptography

Department of Computer Science and Engineering
University at Buffalo

Overview

- We'll briefly discuss the implications of quantum computing on cryptography
- quantum computing basics
- impact of quantum computers on conventional cryptography
- post-quantum cryptographic algorithms

Quantum Computing

- Classical computers process the input data sequentially
- a bit is the elementary unit of information
- computation can be represented as a Boolean circuit composed of elementary gates
- an n-bit input x can take up to 2^{n} time to process
- e.g., by performing computation on all possible n-bit values y and determining which $f(y)$ matches x
- Quantum computers can compute all 2^{n} values simultaneously
- the basic information unit is a quantum bit, or qubit
- quantum computing uses quantum circuits

Quantum Computing

- It is important to understand the computing model and its restrictions
- each qubit can assume infinitely many states, but only one classical bit can be extracted (or measured)
- each qubit measurement is probabilistic
- the internal state of a quantum computer is inaccessible and only a single output can be extracted
- because the output is probabilistic, quantum algorithms have to be carefully designed to be useful

Quantum Computing

- A qubit can assume infinitely many states between 0 and 1
- the state is represented by a normalized vector in \mathbb{C}^{2}
- using the standard basis $e_{1}=(1,0)$ and $e_{2}=(0,1)$, the basis states are denoted by $|0\rangle$ and $|1\rangle$
- the state of a qubit $|\psi\rangle=a|0\rangle+b|1\rangle$ is a linear combination of the basis states $|0\rangle$ and $|1\rangle$, where $a, b \in \mathbb{C}$ and $|a|^{2}+|b|^{2}=1$
- coefficients a and b can be interpreted as probabilities and a qubit as a random variable
- a measurement changes the state of qubit and yields a regular bit
- the original state of a qubit (i.e., a and b) is lost after the measurement and cannot be directly extracted

Quantum Computing

- More on qubits
- the state of a qubit determines the probability of the result of a measurement
- the probability of 0 is $|a|^{2}$ and the probability of 1 is $|b|^{2}$
- for instance, measurement of a qubit with state $|0\rangle=1 \cdot|0\rangle+0 \cdot|1\rangle$ always gives 0
- however, a qubit with state $\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ outputs both 0 and 1 with probability $1 / 2$
- we denote such a qubit that outputs a uniform random bit by $|+\rangle$

Quantum Computing

- Quantum gates
- a quantum gate U with a single input and output qubit is described by a unitary 2×2 matrix $\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)$
- a state $|\psi\rangle=a|0\rangle+b|1\rangle$ is transformed into

$$
U|\psi\rangle=U(a|0\rangle+b|1\rangle)=\left(c_{11} a+c_{12} b\right)|0\rangle+\left(c_{21} a+c_{22} b\right)|1\rangle
$$

- for example, the quantum analog of the NOT gate is given by matrix

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- it transforms state $|\psi\rangle=a|0\rangle+b|1\rangle$ into $|\bar{\psi}\rangle=b|0\rangle+a|1\rangle$

Quantum Computing

- Quantum gates
- another useful gate is called the Hadamard gate, described by matrix

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- because $H \cdot\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1}$, the state $|0\rangle$ is transformed into $|+\rangle$
- this is very useful for producing a balanced superposition (linear combination) of basis states
- i.e., it turns a 0 qubit into a qubit that is simultaneously 0 and 1
- measuring $H|0\rangle$ gives a uniform random bit

Quantum Computing

- More interesting quantum operations require systems of multiple qubits
- a system of n qubits can represent 2^{n} states simultaneously
- the basis states are $\left|x_{1} x_{2} \ldots x_{n}\right\rangle$, where $x_{i} \in\{0,1\}$
- states in an n-qubit system are a superposition of the 2^{n} basis states
- this is not the same as n individual qubits
- states are represented by the n-fold tensor product of \mathbb{C}^{2} :

$$
\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\left(\mathbb{C}^{2}\right)^{\otimes n}
$$

- e.g., a 2-qubit system is represented by a state in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ with basis states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$
- states are $|\psi\rangle=a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle$, where $\left|a_{00}\right|^{2}+\left|a_{01}\right|^{2}+\left|a_{10}\right|^{2}+\left|a_{11}\right|^{2}=1$

Quantum Computing

- Quantum algorithms
- computation takes form of quantum circuits processing qubits
- basic building blocks are quantum logic gates, which implement unitary (and therefore reversible) transformation
- elementary gates in classical circuits are typically not reversible
- one example is controlled-NOT gate CNOT $|x, y\rangle=|x, x \oplus y\rangle$
- it leaves the first (control) bit unchanged and flips the second (target) bit if control bit is 1
- the CNOT gate is represented by the unitary matrix

$$
U=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Quantum Computing

- Theorem: Single qubit gates and the CNOT gate are sufficient to implement an arbitrary unitary operation on n qubits
- The Walsh-Hadamard transformation W generalizes the Hadamard gate to transform the 0 state into a balanced superposition of 2^{n} basis states
- quantum algorithms can use this superposition to simultaneously compute all values of function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- Because f may not be invertible, it needs to be modified
- when $n \neq m, f$ is not invertible
- given f, define invertible $F:\{0,1\}^{n+m} \rightarrow\{0,1\}^{n+m}$ as

$$
F(x, y)=(x, y \oplus f(x))
$$

Quantum Computing

- Quantum Fourier Transform is a key algorithm in quantum computing
- classical Discrete Fourier Transform maps a sequence of N complex numbers into the frequency domain
- the result reveals the periodic structure of the input
- if the data is r-periodic and N is divisible by r, the Fourier coefficients y_{k} are non-zero only for multiples of N / r
- more generally, a Fourier amplitude $\left|y_{k}\right| \gg 0$ indicates that N / k is an approximate multiple of the period

Quantum Computing

- Quantum Fourier Transform
- the above allows for Quantum Fourier Transform to find a hidden period of input vector of size $N=2^{s}$
- indices k with Fourier coefficients $\left|y_{k}\right|^{2} \gg 0$ reveal the period
- measuring a state of Fourier amplitudes will give such indices k with significant probability
- QFT has an efficient circuit and runs in $O\left(s^{2}\right)$ time

Quantum Factoring

- In 1994, Shor discovered a quantum polynomial-time factoring algorithm
- the fastest classical algorithm - number field sieve - run in subexponential, but superpolynomial time
- Shor's algorithm combines QFT with second degree congruences
- QFT finds a hidden period of a function
- we use function $f(x)=a^{x} \bmod n$ to find the hidden period of x
- the order of $a \bmod n$ leads to the computation of factors p and q of n
- it uses $\approx 3 \log n$ qubits and $O\left((\log n)^{3}\right)$ operations

Quantum Factoring

- The idea behind computing factors p and q of n is somewhat similar to that of computing factors from RSA's e and d
- assume we have the ability to find the hidden period of $a^{x} \bmod n$, i.e., the order of $a \in \mathbb{Z}_{n}^{*} \bmod n$
- choose random $1<a<n$
- if $\operatorname{gcd}(a, n) \neq 1$, this immediately gives us factors
- otherwise, order r of $a \bmod n$ divides $\phi(n)=(p-1)(q-1)$
- by definition, $a^{r} \equiv 1(\bmod n)$
- if r is even, $a^{r}-1=\left(a^{r / 2}-1\right)\left(a^{r / 2}+1\right) \equiv 0(\bmod n)$
- this means that $n \mid\left(a^{r / 2}-1\right)\left(a^{r / 2}+1\right)$
- also, because the order is not $r / 2, n \times\left(a^{r / 2}-1\right)$

Quantum Factoring

- Factoring of $n=p q$ given r such that $a^{r} \equiv 1(\bmod n)$
- based on the above, we obtain two possibilities
- p divides one of $a^{r / 2}-1$ and $a^{r / 2}+1$ and q divides the other
- in this case $\operatorname{gcd}\left(a^{r / 2}+1, n\right)$ gives p or q
- $n \mid\left(a^{r / 2}+1\right)$ and the algorithm fails
- we have to choose another base a
- this means the algorithm is successful if r is even and $n X\left(a^{r / 2}+1\right)$
- the probability of this is at least 50%
- i.e., r is odd if and only iff the orders of a in both \mathbb{Z}_{p}^{*} and \mathbb{Z}_{q}^{*} are odd
- and if r is even, we must have $a^{r / 2} \equiv-1(\bmod p)$ and $a^{r / 2} \equiv-1(\bmod q)$ to have $a^{r / 2}+1 \equiv 0(\bmod n)$

Quantum Factoring

- The remaining step is to determine the unknown order r of residue class $a \in \mathbb{Z}_{n}^{*}$
- we prepare a superposition of input values $x=0,1, \ldots, N-1$ using Walsh-Hadamard transformation
- we apply it to transformation for $a^{x} \bmod n$ to simultaneously compute all $a^{x} \bmod n$
- because the values are r-periodic, $a^{x} \equiv a^{x+r}$, the QFT is applied to reveal the period with high probability
- measuring the state gives k, which is an approximate multiple of N / r
- the exact r is computed using the continued fraction expansion
- setting $N=2^{s}$, where $n^{2} \leq N \leq 2 n^{2}$, is a good choice

Post-Quantum Cryptography

- The discrete logarithm problem can also be solved using a period-finding algorithm
- consider $h=g^{y}$ for some $G=\langle g\rangle$
- function $f\left(x_{1}, x_{2}\right)=h^{x_{1}} g^{-x_{2}}$ has period $(1, y)$ because $f\left(x_{1}+1, x_{2}+y\right)=h^{x_{1}+1} g^{-x_{2}-y}=g^{y x_{1}+y} g^{-x_{2}-y}=h^{x_{1}} g^{-x_{2}}$
- This means that classical public-key cryptography algorithms can be broken by quantum computers
- Symmetric key algorithms are less severely affected
- Grover's algorithm reduces work from 2^{k} to $2^{k / 2}$ for k-bit keys
- this means that post-quantum 256-bit AES has the strength of 128-bit AES

Post-Quantum Computing

- In the post-quantum world, we would need to use alternative algorithms for public-key cryptography
- this includes public-key encryption, signatures, etc.
- Two prominent directions are
- lattice-based cryptography
- code-based cryptography

Lattice-Based Cryptography

- Lattices are discrete subgroups of \mathbb{R}^{n}
- a subset of $\Lambda \subset \mathbb{R}^{n}$ is called discrete if for every point $v \in \Lambda, v$ is the only point in the environment of radius $\epsilon>0$ around it
- a discrete subgroup of \mathbb{R}^{n} is called a lattice
- all nontrivial lattices are infinite sets, but they have a finite basis
- in cryptographic constructions we normally use integers instead of real numbers

Lattice-Based Cryptography

- Examples of hard lattice-based problems used in cryptography
- closest vector problem (CVP): given a target vector $w \in \mathbb{R}^{n}$, find the closest lattice point $v \in \Lambda$ to w
- learning with errors (LWE): solving a random system of noisy linear equations modulo an integer
- note that solving a system of linear equations is easy
- Examples of cryptosystems include
- GGH (1997) public-key encryption and signature schemes
- NTRU (1998) public-key encryption scheme that uses polynomials in the ring $\mathbb{Z}[x] /\left(x^{N}-1\right)$
- many recent somewhat and fully homomorphic encryption schemes

Code-Based Cryptography

- Codes play an important role in error detection and error correction when sending data over noisy channels
- For cryptographic applications, one can use very long codes with a secret structure
- Goppa codes are an example of suitable linear codes
- There are similarities between lattice-based and code-based cryptography
- both are linear subspaces of high-dimensional spaces and finding the closest vector to the target vector in the subspace can be hard
- McEliece and Niederreiter cryptosystems are promising candidates for post-quantum cryptography

Conclusions

- Many public-key cryptographic algorithms will lose their security in a post-quantum world
- Cryptographic techniques resilient to quantum computing cryptanalysis are an active area of research
- lattice-based cryptography has particularly experienced a lot of progress

