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OverviewOverview

• We’ll briefly discuss the implications of quantum computing on
cryptography

– quantum computing basics

– impact of quantum computers on conventional cryptography

– post-quantum cryptographic algorithms

CSE 664 Spring 2020

2Marina Blanton



Quantum ComputingQuantum Computing

• Classical computers process the input data sequentially

– a bit is the elementary unit of information

– computation can be represented as a Boolean circuit composed of
elementary gates

– an n-bit input x can take up to 2n time to process

• e.g., by performing computation on all possible n-bit values y and
determining which f(y) matches x

• Quantum computers can compute all 2n values simultaneously

– the basic information unit is a quantum bit, or qubit

– quantum computing uses quantum circuits
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Quantum ComputingQuantum Computing

• It is important to understand the computing model and its restrictions

– each qubit can assume infinitely many states, but only one classical bit
can be extracted (or measured)

– each qubit measurement is probabilistic

– the internal state of a quantum computer is inaccessible and only a single
output can be extracted

– because the output is probabilistic, quantum algorithms have to be
carefully designed to be useful
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Quantum ComputingQuantum Computing

• A qubit can assume infinitely many states between 0 and 1

– the state is represented by a normalized vector in C2

– using the standard basis e1 = (1,0) and e2 = (0,1), the basis states
are denoted by |0〉 and |1〉

– the state of a qubit |ψ〉 = a|0〉+ b|1〉 is a linear combination of the
basis states |0〉 and |1〉, where a, b ∈ C and |a|2 + |b|2 = 1

– coefficients a and b can be interpreted as probabilities and a qubit as a
random variable

– a measurement changes the state of qubit and yields a regular bit

– the original state of a qubit (i.e., a and b) is lost after the measurement
and cannot be directly extracted
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Quantum ComputingQuantum Computing

• More on qubits

– the state of a qubit determines the probability of the result of a
measurement

• the probability of 0 is |a|2 and the probability of 1 is |b|2

– for instance, measurement of a qubit with state |0〉 = 1 · |0〉+ 0 · |1〉
always gives 0

– however, a qubit with state 1√
2
|0〉+ 1√

2
|1〉 outputs both 0 and 1 with

probability 1/2

• we denote such a qubit that outputs a uniform random bit by |+〉
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Quantum ComputingQuantum Computing

• Quantum gates

– a quantum gate U with a single input and output qubit is described by a

unitary 2× 2 matrix

(
c11 c12
c21 c22

)
– a state |ψ〉 = a|0〉+ b|1〉 is transformed into

U |ψ〉 = U(a|0〉+ b|1〉) = (c11a+ c12b)|0〉+ (c21a+ c22b)|1〉

– for example, the quantum analog of the NOT gate is given by matrix

X =

(
0 1
1 0

)
• it transforms state |ψ〉 = a|0〉+ b|1〉 into |ψ〉 = b|0〉+ a|1〉
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Quantum ComputingQuantum Computing

• Quantum gates

– another useful gate is called the Hadamard gate, described by matrix

H =
1√
2

(
1 1
1 −1

)
• because H ·

(
1
0

)
= 1√

2

(
1
1

)
, the state |0〉 is transformed into |+〉

• this is very useful for producing a balanced superposition (linear
combination) of basis states

• i.e., it turns a 0 qubit into a qubit that is simultaneously 0 and 1

• measuring H|0〉 gives a uniform random bit
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Quantum ComputingQuantum Computing

• More interesting quantum operations require systems of multiple qubits

– a system of n qubits can represent 2n states simultaneously

– the basis states are |x1x2 . . . xn〉, where xi ∈ {0,1}

– states in an n-qubit system are a superposition of the 2n basis states

• this is not the same as n individual qubits

– states are represented by the n-fold tensor product of C2:

C2 ⊗ · · · ⊗ C2 = (C2)⊗n

– e.g., a 2-qubit system is represented by a state in C2 ⊗ C2 with basis
states |00〉, |01〉, |10〉, |11〉
• states are |ψ〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉,

where |a00|2 + |a01|2 + |a10|2 + |a11|2 = 1
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Quantum ComputingQuantum Computing

• Quantum algorithms

– computation takes form of quantum circuits processing qubits

– basic building blocks are quantum logic gates, which implement unitary
(and therefore reversible) transformation

• elementary gates in classical circuits are typically not reversible

– one example is controlled-NOT gate CNOT|x, y〉 = |x, x⊕ y〉
• it leaves the first (control) bit unchanged and flips the second (target)

bit if control bit is 1

• the CNOT gate is represented by the unitary matrix

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Quantum ComputingQuantum Computing

• Theorem: Single qubit gates and the CNOT gate are sufficient to implement
an arbitrary unitary operation on n qubits

• The Walsh-Hadamard transformation W generalizes the Hadamard gate to
transform the 0 state into a balanced superposition of 2n basis states

– quantum algorithms can use this superposition to simultaneously
compute all values of function f : {0,1}n → {0,1}m

• Because f may not be invertible, it needs to be modified

– when n 6= m, f is not invertible

– given f , define invertible F : {0,1}n+m → {0,1}n+m as

F (x, y) = (x, y ⊕ f(x))
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Quantum ComputingQuantum Computing

• Quantum Fourier Transform is a key algorithm in quantum computing

– classical Discrete Fourier Transform maps a sequence of N complex
numbers into the frequency domain

• the result reveals the periodic structure of the input

• if the data is r-periodic and N is divisible by r, the Fourier
coefficients yk are non-zero only for multiples of N/r

• more generally, a Fourier amplitude |yk| � 0 indicates that N/k is
an approximate multiple of the period
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Quantum ComputingQuantum Computing

• Quantum Fourier Transform

– the above allows for Quantum Fourier Transform to find a hidden period
of input vector of size N = 2s

• indices k with Fourier coefficients |yk|2 � 0 reveal the period

• measuring a state of Fourier amplitudes will give such indices k with
significant probability

• QFT has an efficient circuit and runs in O(s2) time
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Quantum FactoringQuantum Factoring

• In 1994, Shor discovered a quantum polynomial-time factoring algorithm

– the fastest classical algorithm – number field sieve – run in
subexponential, but superpolynomial time

• Shor’s algorithm combines QFT with second degree congruences

– QFT finds a hidden period of a function

– we use function f(x) = ax mod n to find the hidden period of x

– the order of a mod n leads to the computation of factors p and q of n

– it uses ≈ 3 logn qubits and O((logn)3) operations
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Quantum FactoringQuantum Factoring

• The idea behind computing factors p and q of n is somewhat similar to that
of computing factors from RSA’s e and d

– assume we have the ability to find the hidden period of ax mod n, i.e.,
the order of a ∈ Z∗n mod n

– choose random 1 < a < n

• if gcd(a, n) 6= 1, this immediately gives us factors

• otherwise, order r of a mod n divides φ(n) = (p− 1)(q − 1)

• by definition, ar ≡ 1 (mod n)

– if r is even, ar − 1 = (ar/2 − 1)(ar/2 + 1) ≡ 0 (mod n)

• this means that n|(ar/2 − 1)(ar/2 + 1)

• also, because the order is not r/2, n 6 |(ar/2 − 1)
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Quantum FactoringQuantum Factoring

• Factoring of n = pq given r such that ar ≡ 1 (mod n)

– based on the above, we obtain two possibilities

• p divides one of ar/2 − 1 and ar/2 + 1 and q divides the other

– in this case gcd(ar/2 + 1, n) gives p or q

• n|(ar/2 + 1) and the algorithm fails

– we have to choose another base a

– this means the algorithm is successful if r is even and n 6 |(ar/2 + 1)

• the probability of this is at least 50%

• i.e., r is odd if and only iff the orders of a in both Z∗p and Z∗q are odd

• and if r is even, we must have ar/2 ≡ −1 (mod p) and
ar/2 ≡ −1 (mod q) to have ar/2 + 1 ≡ 0 (mod n)
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Quantum FactoringQuantum Factoring

• The remaining step is to determine the unknown order r of residue class
a ∈ Z∗n

– we prepare a superposition of input values x = 0,1, . . . , N − 1 using
Walsh-Hadamard transformation

– we apply it to transformation for ax mod n to simultaneously compute
all ax mod n

– because the values are r-periodic, ax ≡ ax+r, the QFT is applied to
reveal the period with high probability

• measuring the state gives k, which is an approximate multiple of N/r

• the exact r is computed using the continued fraction expansion

– setting N = 2s, where n2 ≤ N ≤ 2n2, is a good choice
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Post-Quantum CryptographyPost-Quantum Cryptography

• The discrete logarithm problem can also be solved using a period-finding
algorithm

– consider h = gy for some G = 〈g〉

– function f(x1, x2) = hx1g−x2 has period (1, y) because

f(x1 + 1, x2 + y) = hx1+1g−x2−y = gyx1+yg−x2−y = hx1g−x2

• This means that classical public-key cryptography algorithms can be broken
by quantum computers

• Symmetric key algorithms are less severely affected

– Grover’s algorithm reduces work from 2k to 2k/2 for k-bit keys

– this means that post-quantum 256-bit AES has the strength of 128-bit
AES
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Post-Quantum ComputingPost-Quantum Computing

• In the post-quantum world, we would need to use alternative algorithms for
public-key cryptography

– this includes public-key encryption, signatures, etc.

• Two prominent directions are

– lattice-based cryptography

– code-based cryptography
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Lattice-Based CryptographyLattice-Based Cryptography

• Lattices are discrete subgroups of Rn

– a subset of Λ ⊂ Rn is called discrete if for every point v ∈ Λ, v is the
only point in the environment of radius ε > 0 around it

– a discrete subgroup of Rn is called a lattice

– all nontrivial lattices are infinite sets, but they have a finite basis

– in cryptographic constructions we normally use integers instead of real
numbers
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Lattice-Based CryptographyLattice-Based Cryptography

• Examples of hard lattice-based problems used in cryptography

– closest vector problem (CVP): given a target vector w ∈ Rn, find the
closest lattice point v ∈ Λ to w

– learning with errors (LWE): solving a random system of noisy linear
equations modulo an integer

• note that solving a system of linear equations is easy

• Examples of cryptosystems include

– GGH (1997) public-key encryption and signature schemes

– NTRU (1998) public-key encryption scheme that uses polynomials in the
ring Z[x]/(xN − 1)

– many recent somewhat and fully homomorphic encryption schemes
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Code-Based CryptographyCode-Based Cryptography

• Codes play an important role in error detection and error correction when
sending data over noisy channels

• For cryptographic applications, one can use very long codes with a secret
structure

– Goppa codes are an example of suitable linear codes

• There are similarities between lattice-based and code-based cryptography

– both are linear subspaces of high-dimensional spaces and finding the
closest vector to the target vector in the subspace can be hard

• McEliece and Niederreiter cryptosystems are promising candidates for
post-quantum cryptography
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ConclusionsConclusions

• Many public-key cryptographic algorithms will lose their security in a
post-quantum world

• Cryptographic techniques resilient to quantum computing cryptanalysis are
an active area of research

– lattice-based cryptography has particularly experienced a lot of progress
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