Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 22: Post-Quantum Cryptography

Department of Computer Science and Engineering University at Buffalo

Overview

- We'll briefly discuss the implications of quantum computing on cryptography
 - quantum computing basics
 - impact of quantum computers on conventional cryptography
 - post-quantum cryptographic algorithms

- Classical computers process the input data sequentially
 - a bit is the elementary unit of information
 - computation can be represented as a Boolean circuit composed of elementary gates
 - an *n*-bit input x can take up to 2^n time to process
 - e.g., by performing computation on all possible n-bit values y and determining which f(y) matches x
- Quantum computers can compute all 2^n values simultaneously
 - the basic information unit is a quantum bit, or qubit
 - quantum computing uses quantum circuits

- It is important to understand the computing model and its restrictions
 - each qubit can assume infinitely many states, but only one classical bit can be extracted (or measured)
 - each qubit measurement is probabilistic
 - the internal state of a quantum computer is inaccessible and only a single output can be extracted
 - because the output is probabilistic, quantum algorithms have to be carefully designed to be useful

- A qubit can assume infinitely many states between 0 and 1
 - the state is represented by a normalized vector in \mathbb{C}^2
 - using the standard basis $e_1 = (1, 0)$ and $e_2 = (0, 1)$, the basis states are denoted by $|0\rangle$ and $|1\rangle$
 - the state of a qubit $|\psi\rangle = a|0\rangle + b|1\rangle$ is a linear combination of the basis states $|0\rangle$ and $|1\rangle$, where $a, b \in \mathbb{C}$ and $|a|^2 + |b|^2 = 1$
 - coefficients *a* and *b* can be interpreted as probabilities and a qubit as a random variable
 - a measurement changes the state of qubit and yields a regular bit
 - the original state of a qubit (i.e., a and b) is lost after the measurement and cannot be directly extracted

- More on qubits
 - the state of a qubit determines the probability of the result of a measurement
 - the probability of 0 is $|a|^2$ and the probability of 1 is $|b|^2$
 - for instance, measurement of a qubit with state $|0\rangle = 1 \cdot |0\rangle + 0 \cdot |1\rangle$ always gives 0
 - however, a qubit with state $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ outputs both 0 and 1 with probability 1/2
 - we denote such a qubit that outputs a uniform random bit by $|+\rangle$

- Quantum gates
 - a quantum gate U with a single input and output qubit is described by a unitary 2×2 matrix $\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$

- a state $|\psi\rangle = a|0\rangle + b|1\rangle$ is transformed into

 $U|\psi\rangle = U(a|0\rangle + b|1\rangle) = (c_{11}a + c_{12}b)|0\rangle + (c_{21}a + c_{22}b)|1\rangle$

- for example, the quantum analog of the NOT gate is given by matrix $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 - it transforms state $|\psi\rangle = a|0\rangle + b|1\rangle$ into $|\overline{\psi}\rangle = b|0\rangle + a|1\rangle$

Spring 2020

- Quantum gates
 - another useful gate is called the Hadamard gate, described by matrix

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

• because
$$H \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, the state $|0\rangle$ is transformed into $|+\rangle$

- this is very useful for producing a balanced superposition (linear combination) of basis states
- i.e., it turns a 0 qubit into a qubit that is simultaneously 0 and 1
- measuring $H|0\rangle$ gives a uniform random bit

- More interesting quantum operations require systems of multiple qubits
 - a system of n qubits can represent 2^n states simultaneously
 - the basis states are $|x_1x_2...x_n\rangle$, where $x_i \in \{0, 1\}$
 - states in an *n*-qubit system are a superposition of the 2^n basis states
 - this is not the same as *n* individual qubits
 - states are represented by the *n*-fold tensor product of \mathbb{C}^2 :

$$\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$$

- e.g., a 2-qubit system is represented by a state in C² ⊗ C² with basis states |00⟩, |01⟩, |10⟩, |11⟩
 - states are $|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$, where $|a_{00}|^2 + |a_{01}|^2 + |a_{10}|^2 + |a_{11}|^2 = 1$

- Quantum algorithms
 - computation takes form of quantum circuits processing qubits
 - basic building blocks are quantum logic gates, which implement unitary (and therefore reversible) transformation
 - elementary gates in classical circuits are typically not reversible
 - one example is controlled-NOT gate $\text{CNOT}|x,y\rangle = |x,x\oplus y\rangle$
 - it leaves the first (control) bit unchanged and flips the second (target) bit if control bit is 1
 - the CNOT gate is represented by the unitary matrix

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

CSE 664

Spring 2020

- Theorem: Single qubit gates and the CNOT gate are sufficient to implement an arbitrary unitary operation on *n* qubits
- The Walsh-Hadamard transformation W generalizes the Hadamard gate to transform the 0 state into a balanced superposition of 2^n basis states
 - quantum algorithms can use this superposition to simultaneously compute all values of function $f : \{0, 1\}^n \to \{0, 1\}^m$
- Because f may not be invertible, it needs to be modified
 - when $n \neq m$, f is not invertible
 - given f, define invertible $F : \{0, 1\}^{n+m} \to \{0, 1\}^{n+m}$ as

$$F(x,y) = (x, y \oplus f(x))$$

Spring 2020

- Quantum Fourier Transform is a key algorithm in quantum computing
 - classical Discrete Fourier Transform maps a sequence of N complex numbers into the frequency domain
 - the result reveals the periodic structure of the input
 - if the data is r-periodic and N is divisible by r, the Fourier coefficients y_k are non-zero only for multiples of N/r
 - more generally, a Fourier amplitude $|y_k| \gg 0$ indicates that N/k is an approximate multiple of the period

- Quantum Fourier Transform
 - the above allows for Quantum Fourier Transform to find a hidden period of input vector of size $N = 2^s$
 - indices k with Fourier coefficients $|y_k|^2 \gg 0$ reveal the period
 - measuring a state of Fourier amplitudes will give such indices k with significant probability
 - QFT has an efficient circuit and runs in $O(s^2)$ time

- In 1994, Shor discovered a quantum polynomial-time factoring algorithm
 - the fastest classical algorithm number field sieve run in subexponential, but superpolynomial time
- Shor's algorithm combines QFT with second degree congruences
 - QFT finds a hidden period of a function
 - we use function $f(x) = a^x \mod n$ to find the hidden period of x
 - the order of $a \mod n$ leads to the computation of factors p and q of n
 - it uses $\approx 3 \log n$ qubits and $O((\log n)^3)$ operations

- The idea behind computing factors p and q of n is somewhat similar to that of computing factors from RSA's e and d
 - assume we have the ability to find the hidden period of $a^x \mod n$, i.e., the order of $a \in \mathbb{Z}_n^* \mod n$
 - choose random 1 < a < n
 - if $gcd(a, n) \neq 1$, this immediately gives us factors
 - otherwise, order r of a mod n divides $\phi(n) = (p-1)(q-1)$
 - by definition, $a^r \equiv 1 \pmod{n}$
 - if r is even, $a^r 1 = (a^{r/2} 1)(a^{r/2} + 1) \equiv 0 \pmod{n}$
 - this means that $n|(a^{r/2}-1)(a^{r/2}+1)|$
 - also, because the order is not r/2, $n \not| (a^{r/2} 1)$

Spring 2020

- Factoring of n = pq given r such that $a^r \equiv 1 \pmod{n}$
 - based on the above, we obtain two possibilities
 - p divides one of $a^{r/2} 1$ and $a^{r/2} + 1$ and q divides the other
 - in this case $gcd(a^{r/2} + 1, n)$ gives p or q
 - $n|(a^{r/2}+1)$ and the algorithm fails
 - we have to choose another base a
 - this means the algorithm is successful if r is even and $n \not| (a^{r/2} + 1)$
 - the probability of this is at least 50%

CSE 664

- i.e., r is odd if and only iff the orders of a in both \mathbb{Z}_p^* and \mathbb{Z}_q^* are odd
- and if r is even, we must have $a^{r/2} \equiv -1 \pmod{p}$ and $a^{r/2} \equiv -1 \pmod{p}$ to have $a^{r/2} + 1 \equiv 0 \pmod{n}$

- The remaining step is to determine the unknown order r of residue class $a \in \mathbb{Z}_n^*$
 - we prepare a superposition of input values x = 0, 1, ..., N 1 using Walsh-Hadamard transformation
 - we apply it to transformation for $a^x \mod n$ to simultaneously compute all $a^x \mod n$
 - because the values are r-periodic, $a^x \equiv a^{x+r}$, the QFT is applied to reveal the period with high probability
 - measuring the state gives k, which is an approximate multiple of N/r
 - the exact r is computed using the continued fraction expansion
 - setting $N = 2^s$, where $n^2 \le N \le 2n^2$, is a good choice

CSE 664

Spring 2020

Post-Quantum Cryptography

- The discrete logarithm problem can also be solved using a period-finding algorithm
 - consider $h = g^y$ for some $G = \langle g \rangle$
 - function $f(x_1, x_2) = h^{x_1}g^{-x_2}$ has period (1, y) because

 $f(x_1 + 1, x_2 + y) = h^{x_1 + 1}g^{-x_2 - y} = g^{yx_1 + y}g^{-x_2 - y} = h^{x_1}g^{-x_2}$

- This means that classical public-key cryptography algorithms can be broken by quantum computers
- Symmetric key algorithms are less severely affected
 - Grover's algorithm reduces work from 2^k to $2^{k/2}$ for k-bit keys
 - this means that post-quantum 256-bit AES has the strength of 128-bit AES

CSE 664

Spring 2020

Post-Quantum Computing

- In the post-quantum world, we would need to use alternative algorithms for public-key cryptography
 - this includes public-key encryption, signatures, etc.
- Two prominent directions are
 - lattice-based cryptography
 - code-based cryptography

Lattice-Based Cryptography

- Lattices are discrete subgroups of \mathbb{R}^n
 - a subset of $\Lambda \subset \mathbb{R}^n$ is called discrete if for every point $v \in \Lambda$, v is the only point in the environment of radius $\epsilon > 0$ around it
 - a discrete subgroup of \mathbb{R}^n is called a lattice
 - all nontrivial lattices are infinite sets, but they have a finite basis
 - in cryptographic constructions we normally use integers instead of real numbers

Lattice-Based Cryptography

- Examples of hard lattice-based problems used in cryptography
 - closest vector problem (CVP): given a target vector $w \in \mathbb{R}^n$, find the closest lattice point $v \in \Lambda$ to w
 - learning with errors (LWE): solving a random system of noisy linear equations modulo an integer
 - note that solving a system of linear equations is easy
- Examples of cryptosystems include
 - GGH (1997) public-key encryption and signature schemes
 - NTRU (1998) public-key encryption scheme that uses polynomials in the ring $\mathbb{Z}[x]/(x^N-1)$
 - many recent somewhat and fully homomorphic encryption schemes

Spring 2020

Code-Based Cryptography

- Codes play an important role in error detection and error correction when sending data over noisy channels
- For cryptographic applications, one can use very long codes with a secret structure
 - Goppa codes are an example of suitable linear codes
- There are similarities between lattice-based and code-based cryptography
 - both are linear subspaces of high-dimensional spaces and finding the closest vector to the target vector in the subspace can be hard
- McEliece and Niederreiter cryptosystems are promising candidates for post-quantum cryptography

Conclusions

- Many public-key cryptographic algorithms will lose their security in a post-quantum world
- Cryptographic techniques resilient to quantum computing cryptanalysis are an active area of research
 - lattice-based cryptography has particularly experienced a lot of progress