Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 18: Elliptic Curves and Applications

Department of Computer Science and Engineering
University at Buffalo

Lecture Outline

- We previously looked at
- discrete logarithm problem
- cryptographic schemes that assume difficulty of discrete logarithm
- ElGamal encryption
- Digital signature algorithm
- Diffie-Hellman key exchange
- What we are going to learn next
- elliptic curves
- discrete logarithm over elliptic curves
- elliptic curves version of cryptographic constructions

Discrete Logarithm

- The discrete logarithm problem
- we are given a group (G, \cdot) and $g \in G$ of order q
- given $h \in\langle g\rangle$, find a unique integer $x \in[0, q)$ such that $g^{x}=h$
- Recall that the discrete logarithm problem is considered hard in
- the multiplicative group \mathbb{Z}_{p}^{*} where p is prime and $p-1$ has at least one large factor
- It is also hard in
- the multiplicative group of the field $\mathbb{F}_{p^{n}}$ where p is prime
- the group of an elliptic curve over a finite field

Elliptic Curves

- Elliptic curves are described by a set of solutions to certain equations in two variables x and y
- The curves are solutions to equations of the form $y^{2}=x^{3}+a x+b$
- They have certain properties that make them useful in cryptography
- we'll be dealing with elliptic curves modulo a prime p
- elliptic curve groups can be used in cryptographic algorithms in similar ways multiplicative groups of integers modulo p are used
- the discrete logarithm problem is harder for elliptic curve groups than for \mathbb{Z}_{p}^{*}

Elliptic Curves

- Definition
- an elliptic curve is the set E of solutions (x, y) to the equation $y^{2}=x^{3}+a x+b$
- here x, y, a, and b are real numbers, rational numbers, or integers modulo $m>1$
- the set E also contains a point at infinity ∞
- The point ∞ is not a point on the curve $y^{2}=x^{3}+a x+b$
- ∞ is the identity of the elliptic curve group
- all other points of E are on the curve

Elliptic Curves: Examples

- Curves $y^{2}=x^{3}-5 x$ (left) and $y^{2}=x^{3}+8$ (right)

Elliptic Curves

- Number of roots
- for the cubic equation $y^{2}=x^{3}+a x+b$, the discriminant is $4 a^{3}+27 b^{2}$
- if $4 a^{3}+27 b^{2}=0$, then the curve has a repeated root
- such elliptic curves are called singular
- if, on the other hand, $4 a^{3}+27 b^{2} \neq 0$, then there are three distinct roots
- such elliptic curves are called non-singular
- we are excluding singular elliptic curves

Elliptic Curves: Examples

- Singular curves $y^{2}=x^{3}-3 x+2$ (left) and $y^{2}=x^{3}$ (right)

Elliptic Curves

- Operations on elliptic curves
- we define a binary operation over E that makes it into a commutative group
- this operation is normally denoted as +
- let P and Q be two points on E such that $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$
$-P+\infty=\infty+P=P$
- let $P+Q=R$
- such R is computed depending on the relationship between x_{1} and x_{2} and y_{1} and y_{2}

Elliptic Curves

- Computing $P+Q=R$
- there are three cases
- case $1: x_{1} \neq x_{2}$
- draw a line through P and Q and find another point R^{\prime}, where the line intersects the curve
- reflect R^{\prime} on the x-axis to obtain R
- the coordinates $\left(x_{3}, y_{3}\right)$ are computed as:

$$
x_{3}=\lambda^{2}-x_{1}-x_{2}, \quad y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
$$

where λ is the slope computed as $\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$

Elliptic Curves

- Computing $P+Q=R$
- case 2: $x_{1}=x_{2}$ and $y_{1} \neq y_{2}$
- P is a reflection of Q on the x axis
- in this case $P+Q=\infty$
- thus Q is the inverse of P
- case 3: $x_{1}=x_{2}$ and $y_{1}=y_{2}$
- i.e., we are computing $P+P$
- this case is handled similar to case 1
- instead of drawing a line through P and Q, draw a tangent line to the curve at P
- x_{3} and y_{3} are computed using the formulas from case 1

Elliptic Curves

- Computing $P+Q=R$
- case $3: x_{1}=x_{2}$ and $y_{1}=y_{2}$ (cont.)
- the formula for the slope now is $\lambda=\left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right)$
- Examples

Elliptic Curves

- Elliptic curves modulo a prime p are defined as above except that all operations are replaced by analogous operations in \mathbb{Z}_{p}
- now the points are the solutions to the congruence $y^{2} \equiv x_{3}+a x+b(\bmod p)$
$-a, b \in \mathbb{Z}_{p}$ are constants such that $4 a^{3}+27 b^{2} \not \equiv 0(\bmod p)$
- given points $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$, as before $P+Q=\infty$ if $x_{1}=x_{2}$ and $y_{2}=-y_{1}$
- the slope λ is computed as

$$
\lambda= \begin{cases}\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)^{-1}, & \text { if } P \neq Q \\ \left(3 x_{1}^{2}+a\right)\left(2 y_{1}\right)^{-1}, & \text { if } P=Q\end{cases}
$$

- and as before $P+\infty=\infty+P=P$

Elliptic Curves

- Example: points on the elliptic curve $y^{2}=x^{3}+3 x+4$ over \mathbb{Z}_{7}

x	$x^{3}+3 x+4 \bmod 7$	y
0	4	2,5
1	1	1,6
2	4	2,5
3	5	none
4	3	none
5	4	2,5
6	0	0

- there are 10 points on this elliptic curve (including ∞)

Elliptic Curves

- Example: $y^{2} \equiv x^{3}+3 x+4(\bmod 7)$ (cont.)
- to add points $(1,1)$ and $(2,5)$
- to double the point $(2,2)$

Elliptic Curves

- Discrete logarithms over elliptic curves
- for (G, \cdot) the discrete $\operatorname{logarithm} \log _{g} h$ was defined as x where $g^{x}=h$
- now + is the group binary operation, so the discrete $\operatorname{logarithm~}^{\log _{P} Q}$ now is a such that $a P=Q$
- Computing "exponentiation" $a P$
- instead of using SQUARE-AND-MULTIPLY algorithm on g and x, we use DOUBLE-AND-ADD algorithm on P and a

Elliptic Curves

- Computing $a P$
- note that additive inverses are very easy to compute
- this is exploited in a generalization DOUBLE-AND-(ADD OR SUBTRACT) algorithm
- it uses signed binary representation of integer $a=\sum_{i=0}^{\ell-1} a_{i} 2^{i}$, where each $a_{i} \in\{-1,0,1\}$
- given signed binary representation of a, we compute $a P$ by a series of doublings, additions, and subtractions
- signed representation reduces the number of add/subtract operations

Elliptic Curves

- Double-And-(Add or Subtract)
- input: $P,\left(a_{\ell-1}, \ldots, a_{0}\right)$
- output: $a P$
- algorithm steps:
$Q \leftarrow \infty$
for $i=\ell-1$ downto $0\{$
$Q \leftarrow 2 Q$
if $a_{i}=1$ then $Q \leftarrow Q+P$ else if $a_{i}=-1$ then $Q \leftarrow Q-P$
\}
return Q

Elliptic Curve Constructions

- Let's look at elliptic curve version of cryptographic schemes
- Elliptic curve Diffie-Hellman key agreement
- fix an elliptic curve E modulo p and a point P_{0} of large order on E
- Alice chooses $a(0<a<p)$ and sends $a P_{0}$ to Bob
- Bob chooses $b(0<b<p)$ and sends $b P_{0}$ to Alice
- Alice computes $k=a\left(b P_{0}\right)$ and Bob computes $k=b\left(a P_{0}\right)$

Elliptic Curve Constructions

- An elliptic curve analogue of ElGamal encryption is then:
- fix an elliptic curve E modulo p and a point P_{0} of large order on E
- for Alice to generate a key, she chooses secret $a_{A}\left(0<a_{A}<p\right)$ and publishes $P_{A}=a P_{0}$
- when Bob wants to encrypt message m :
- he first embeds it into a point P of E
- he then chooses a random $b(0<b<p)$ and sends to Alice $c=\left(c_{1}, c_{2}\right)=\left(b P_{0}, b P_{A}+P\right)$
- Alice, who knows the secret key a_{A}, decrypts as follows:

$$
P=c_{2}-a_{A} c_{1}=b P_{A}+P-a_{A} b P_{0}=b a_{A} P_{0}+P-b a_{A} P_{0}=P
$$

Elliptic Curve Constructions

- An elliptic curve Digital signature algorithm (ECDSA) is then
- choose one of the recommended elliptic curves and curve parameters
- government-recommended curves have been questioned in light of past NSA-related events
- choose a point P_{0} of large prime order on the curve and secret key x
- set the public key to $x P_{0}$
- proceed with signing similar to as before, but using elliptic curve arithmetic
- see FIPS PUB 186-4 for the details and suggested implementation

Discrete Logarithm Problem

- How hard is the discrete logarithm problem to solve in a group over an elliptic curve E ?
- the powerful index calculus algorithm doesn't work for elliptic curves
- the best possible algorithm is Pollard rho algorithm with $O(\sqrt{p})$ work
- To be secure until the year of 2030
- it is suggested to choose $p \approx 2^{224}$ in case of elliptic curves
- compare this with $p \approx 2^{2048}$ for groups $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$
- for that reason, elliptic curves have been gaining popularity, especially on constrained platforms

Summary

- Elliptic curves are solutions to equations of the form $y^{2}=x_{3}+a x+b$
- Groups over elliptic curves modulo a prime
- often can be used in similar ways to $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$
- require smaller security parameters because the discrete logarithm is harder in such groups

