Applied Cryptography and Computer Security CSE 664 Spring 2020
 Lecture 16: Second Degree Congruences and Security Applications

Department of Computer Science and Engineering
University at Buffalo

Overview

- Our coverage of public-key encryption so far included RSA and ElGamal
- Today we look at second degree congruences
- modulo a prime
- modulo a composite
- The security implications are:
- ElGamal encryption needs to be modified to eliminate information leakage about encrypted plaintexts
- factoring of an RSA modulus is possible given knowledge of e and d

Number-Theoretic Background

- Second degree congruences
- we already learned about solving linear congruences
- now we'll look into quadratic congruences
- in the most general form they are $a x^{2}+b x+c \equiv 0(\bmod n)$
- we need to learn how to take square root modulo n
- in most cases we'll deal with congruences of the form $x^{2} \equiv a(\bmod n)$
- Let's first look at the case when the modulus p is prime

Second Degree Congruences

- Solving $x^{2} \equiv a(\bmod p)$ for a prime p
- when $p=2$, solving the congruence is easy
- there is always one solution
- if $a=0, x \equiv 0(\bmod 2)$
- if $a=1, x \equiv 1(\bmod 2)$
- when p is an odd prime, the congruence has solutions for some values of a and not for other values of a
- example for $p=11$

$$
\begin{array}{rrrrrrrrrrrr}
x: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
x^{2} \bmod 11: & 0 & 1 & 4 & 9 & 5 & 3 & 3 & 5 & 9 & 4 & 1
\end{array}
$$

- when $a=2,6,7,8,10$, the congruence doesn't have solutions

Second Degree Congruences

- Quadratic residues
- let n be a positive integer and a be relatively prime to n
- a is called a quadratic residue (QR) modulo n if the congruence $x^{2} \equiv a(\bmod n)$ has a solution
- a is called a quadratic nonresidue (QNR) modulo n if the congruence $x^{2} \equiv a(\bmod n)$ has no solution
- in the example above:
- $1,3,4,5$, and 9 are QRs modulo 11
- 2, 6, 7, 8, and 10 are QNRs modulo 11
- the class 0 is excluded from this definition

Second Degree Congruences

- Theorem: Square roots of 1 modulo p
- if p is prime, then $x^{2} \equiv 1(\bmod p)$ if and only if $x \equiv \pm 1(\bmod p)$
- Theorem: Number of solutions modulo p
- let p be an odd prime and a not be a multiple of p
- then the congruence $x^{2} \equiv a(\bmod p)$ has either no solution or two solutions modulo p
- Theorem: Number of QRs and QNRs
- if p is an odd prime, there are exactly $(p-1) / 2$ QRs among $1,2, \ldots, p-1$ and the same number of QNRs

Second Degree Congruences

- Legendre symbol
- let p be an odd prime and a be an integer
- the Legendre symbol (a / p) is defined to be +1 if a is a QR modulo p, -1 if a is a QNR modulo p, and 0 if p divides a
- Euler's test for a being a QR
- let p be an odd prime and a an integer not divisible by p
- then $a^{(p-1) / 2} \bmod p$ is 1 or $p-1$
- if it is $1, a$ is a QR modulo p; if it is $p-1, a$ is a QNR modulo p

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)
$$

Second Degree Congruences

- Properties of the Legendre symbol
- the number of solutions to $x^{2} \equiv a(\bmod p)$ is $1+(a / p)$
$-(a / p) \equiv a^{(p-1) / 2}(\bmod p)$
$-(a b / p)=(a / p)(b / p)$
- if $a \equiv b(\bmod p)$, then $(a / p)=(b / p)$
$-(1 / p)=+1$ and $(-1 / p)=(-1)^{(p-1) / 2}$
- if $p \nless a$, then $\left(a^{2} / p\right)=+1$ and $\left(a^{2} b / p\right)=(b / p)$
- Example: is 5 a QR modulo 13 ? how about $5 \cdot 2$?
- Let's see what implications this has on ElGamal encryption

Security of ElGamal Encryption

- Care must be taken when mapping messages to group elements
- one (least significant) bit of discrete logarithm is easy to compute for elements of \mathbb{Z}_{p}^{*}
- given a ciphertext, an adversary can tell whether the underlying plaintext was a QR modulo p or not
- this gives the adversary an easy way to win the indistinguishability game
- to ensure indistinguishability, we need to make sure that all values we use will have the same value for that bit
- thus, we encode messages as $x^{2} \bmod p$ only

ElGamal Encryption

- Encryption with ElGamal becomes
- given a message m, interpret it as a integer between 1 and q, where $q=(p-1) / 2$
- compute $\hat{m}=m^{2} \bmod p$ and encrypt \hat{m}
- upon decryption:
- obtain \widehat{m}
- compute square roots m_{1}, m_{2} of \hat{m} modulo p
- set m to the unique $1 \leq m_{i} \leq q$
- There are alternative ways of achieving the same goal
- e.g., setup encryption over a subgroup of \mathbb{Z}_{p}^{*} of prime order q, where $p=2 q+1$

Second Degree Congruences

- The Jacobi symbol (for composite moduli)
- let n be an integer with prime factorization $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$
- the Jacobi symbol (a / n) is defined as

$$
\left(\frac{a}{n}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)^{e_{i}}
$$

where $\left(a / p_{i}\right)$ are Legendre symbols

- If $\operatorname{gcd}(a, n)>1$, then some prime factor p of n divides $a \Rightarrow$ $(a / p)=0 \Rightarrow(a / n)=0$
- Example: compute the Jacobi symbol of 3 modulo 70
$-\left(\frac{3}{70}\right)=\left(\frac{3}{2}\right)\left(\frac{3}{5}\right)\left(\frac{3}{7}\right)$

Second Degree Congruences

- The Jacobi symbol shares many properties with the Legendre symbol
- Properties of the Jacobi symbol
- if $a \equiv b(\bmod n)$, then $(a / n)=(b / n)$
$-(a b / n)=(a / n)(b / n)$
$-\left(a / n n^{\prime}\right)=(a / n)\left(a / n^{\prime}\right)$
- if $\operatorname{gcd}(a, n)=1$, then $\left(a^{2} / n\right)=\left(a / n^{2}\right)=+1$, $\left(a^{2} b / n\right)=(b / n)$ and $\left(a /\left(n^{2} n^{\prime}\right)\right)=\left(a / n^{\prime}\right)$
- There are also properties with respect to $(-1 / n),(2 / n)$ and other values

Solving Second Degree Congruences

- We know how to decide whether $x^{2} \equiv a(\bmod n)$ has solutions, but how about finding them?
- Theorem
- if $p \equiv 3(\bmod 4)$ is prime and a is a QR modulo p, then the solutions to $x^{2} \equiv a(\bmod p)$ are $x \equiv \pm\left(a^{(p+1) / 4}\right)(\bmod p)$
$-\operatorname{primes} p \equiv 3(\bmod 4)$ are called Blum primes
- Theorem
- if $p \equiv 5(\bmod 8)$ is prime and a is a QR modulo p, then the solutions to $x^{2} \equiv a(\bmod p)$ are $\pm x$, where x is computed as:

$$
\begin{aligned}
& x \equiv a^{(p+3) / 8}(\bmod p) \\
& \text { if }\left(x^{2} \not \equiv a(\bmod p)\right) x=x 2^{(p-1) / 4} \bmod p
\end{aligned}
$$

Solving Second Degree Congruences

- Example: solve $x^{2} \equiv 6(\bmod 47)$
- first compute $(6 / 47)=+1$, so 6 is a QR modulo 47
- because $47 \equiv 3(\bmod 4)$,

$$
x \equiv \pm 6^{(47+1) / 4} \equiv \pm 6^{12} \equiv \pm 37(\bmod 47)
$$

- Theorem: square roots modulo $p q$
- let p and q be distinct odd primes and a be a QR modulo $p q$
- then there are exactly 4 solutions to $x^{2} \equiv a(\bmod p q)$
- there are 2 solutions to $x^{2} \equiv a(\bmod p)$ and $x^{2} \equiv a(\bmod q)$ each
- when we combine them using the CRT, we obtain 4 solutions

Attacks on RSA

- We can also factor n if e and d are known
- We first look at the fact that if $n=p q$ then $x^{2} \equiv 1(\bmod n)$ has 4 solutions $<n$
$-x^{2} \equiv 1(\bmod n)$ iff both $x^{2} \equiv 1(\bmod p)$ and $x^{2} \equiv 1(\bmod q)$
- two trivial solutions 1 and $n-1$
- 1 is the solution when $x \equiv 1(\bmod p)$ and $x \equiv 1(\bmod q)$
- $n-1$ is the solution when $x \equiv-1(\bmod p)$ and $x \equiv-1(\bmod q)$
- two other solutions
- a solution when $x \equiv 1(\bmod p)$ and $x \equiv-1(\bmod q)$
- a solution when $x \equiv-1(\bmod p)$ and $x \equiv 1(\bmod q)$

Attacks on RSA

- Fact: if $n=p q$ then $x^{2} \equiv 1(\bmod n)$ has 4 solutions
- example: $n=3 \cdot 5=15$
- $x^{2} \equiv 1(\bmod 15)$ has solutions $1,4,11,14$
- knowing a non-trivial solution to $x^{2} \equiv 1(\bmod n)$, compute $\operatorname{gcd}(x+1, n)$ and $\operatorname{gcd}(x-1, n)$
- they will give factors p and q
- example: 4 and 11 are solutions to $x^{2} \equiv 1(\bmod 15)$
- $\operatorname{gcd}(4+1,15)=5 ; \operatorname{gcd}(4-1,15)=3$
$\cdot \operatorname{gcd}(11+1,15)=3 ; \operatorname{gcd}(11-1,15)=5$

Attacks on RSA

- Now assume that we know e and d such that $e d \equiv 1(\bmod \phi(n))$
- To factor n using this knowledge:
- write $e d-1=2^{s} r$ where r is odd
- choose w at random such that $1<w<n-1$
- if w is not relatively prime to n, return $\operatorname{gcd}(w, n)$
- otherwise notice that $w^{2^{s} r} \equiv w^{1-1} \equiv 1(\bmod n)$
- compute $w^{r}, w^{2 r}, w^{2^{2} r}, \ldots$ until we find $w^{2^{t} r} \equiv 1(\bmod n)$
$-w^{2^{t-1} r}$ is then a non-trivial solution to the equation which gives factorization of n
- if $w^{r} \equiv 1(\bmod n)$ or $w^{2^{t} r} \equiv-1(\bmod n)$, try a different w

Attacks on RSA

- Example of factoring n when e and d are known
- we are given $n=2773, e=17$, and $d=157$
- compute $e d-1=2668=2^{2} .667 \Rightarrow r=667$
- pick a random w and compute $w^{r} \bmod n$
- $w=7,7^{667} \bmod 2773=1$, discard
- $w=8,8^{667} \bmod 2773=471$, $w^{2 r} \bmod n=471^{2} \bmod 2773=1 \Rightarrow 471$ is a non-trivial square root of $1 \bmod 2773$
- now compute $\operatorname{gcd}(471+1,2773)=59$ and $\operatorname{gcd}(471-1,2773)=47$
- thus $p=59$ and $q=47$

Summary

- Second degree congruences are among many number theoretic results discovered over time
- Their knowledge leads to attacks on public-key encryption and other schemes
- Awareness of such attacks is needed for secure implementation of respective algorithms

