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Overview

e Our coverage of public-key encryption so far included RSA and ElGamal

e Today we look at second degree congruences
— modulo a prime

— modulo a composite

e The security implications are:

— ElGamal encryption needs to be modified to eliminate information

leakage about encrypted plaintexts

— factoring of an RSA modulus is possible given knowledge of e and d
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Number-Theoretic Background

e Second degree congruences
— we already learned about solving linear congruences
— now we’ll look into quadratic congruences
— in the most general form they are az2 + bz + ¢ = 0 (mod n)
— we need to learn how to take square root modulo n
— 1n most cases we’ll deal with congruences of the form

22 = a (mod n)

e Let’s first look at the case when the modulus p is prime
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Second Degree Congruences

e Solving 22 = a (mod p) for a prime p

— when p = 2, solving the congruence is easy

e there is always one solution
e ifa =0,z =0 (mod 2)
e ifa=1, =1 (mod 2)

— when p is an odd prime, the congruence has solutions for some values of
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a and not for other values of a

e example forp = 11

r: 01 23 4567 89 10
z?2modl1l: 01 4 9 5 335094 1

e whena = 2,6, 7, 8, 10, the congruence doesn’t have solutions
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Second Degree Congruences

e (QQuadratic residues
— let n be a positive integer and a be relatively prime to n

— a is called a quadratic residue (QR) modulo n if the congruence
22 = a (mod n) has a solution

— a is called a quadratic nonresidue (QNR) modulo n if the congruence
22 = a (mod n) has no solution

— 1in the example above:

e 1,3,4,5, and 9 are QRs modulo 11
e 2,6,7,8,and 10 are QNRs modulo 11

e the class 0 is excluded from this definition
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Second Degree Congruences

e Theorem: Square roots of 1 modulo p

— if pis prime, then z2 = 1 (mod p) ifand only if z = +1 (mod p)

e Theorem: Number of solutions modulo p

— let p be an odd prime and a not be a multiple of p

— then the congruence 2 = a (mod p) has either no solution or two

solutions modulo p

e Theorem: Number of QRs and QNRs

— if p is an odd prime, there are exactly (p — 1)/2 QRs among
1,2,...,p— 1 and the same number of QNRs
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Second Degree Congruences

e [egendre symbol

— let p be an odd prime and a be an integer
— the Legendre symbol (a/p) is defined to be 41 if a is a QR modulo p,
—1 if a 1s a QNR modulo p, and O if p divides a
e Euler’s test for a being a QR
— let p be an odd prime and a an integer not divisible by p
— then a(?=1)/2 mod pislorp—1

— ifitis 1, a1s a QR modulo p; ifitis p — 1, a 1s a QNR modulo p

(2) = q(P~1/2 (mod p)
p
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Second Degree Congruences

e Properties of the Legendre symbol

— the number of solutions to z2 = a (mod p) is 1 + (a/p)
~ (a/p) = aP~1/2 (mod p)

— (ab/p) = (a/p)(b/p)

— if a = b (mod p), then (a/p) = (b/p)

- (1/p) = +1land (~1/p) = (-1)P~1)/2

— if p fa, then (a?/p) = +1 and (a®b/p) = (b/p)

e Example: is 5 a QR modulo 13? how about 5 - 27?

e [et’s see what implications this has on ElGamal encryption
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Security of EIGamal Encryption

e Care must be taken when mapping messages to group elements
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one (least significant) bit of discrete logarithm is easy to compute for
elements of Z,

given a ciphertext, an adversary can tell whether the underlying plaintext
was a QR modulo p or not

this gives the adversary an easy way to win the indistinguishability game

to ensure indistinguishability, we need to make sure that all values we
use will have the same value for that bit

2

thus, we encode messages as < mod p only
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ElGamal Encryption

e Encryption with ElGamal becomes

— given a message m, interpret it as a integer between 1 and q, where
q=(p—1)/2

— compute m = m?

mod p and encrypt m

— upon decryption:

e obtain m
e compute square roots m1i, mo of m modulo p

e set m to the unique 1 < m; < g

e There are alternative ways of achieving the same goal

— e.g., setup encryption over a subgroup of Z;‘, of prime order q, where
p=2q+1
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Second Degree Congruences

e The Jacobi symbol (for composite moduli)

— let n be an integer with prime factorization n = Hle pfi

— the Jacobi symbol (a/n) is defined as
01 )
n i—1 \Pi
where (a/p;) are Legendre symbols

e If gcd(a,n) > 1, then some prime factor p of n divides a =
(a/p) =0 = (a/n) =0

e Example: compute the Jacobi symbol of 3 modulo 70
- (70)=3)(3) ()
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Second Degree Congruences

e The Jacobi symbol shares many properties with the Legendre symbol

e Properties of the Jacobi symbol

— ifa = b (mod n), then (a/n) = (b/n)

(ab/n) = (a/n)(b/n)
(a/nn') = (a/n)(a/n")

— if ged(a, n) = 1, then (a?/n) = (a/n?) = +1,

(a®b/n) = (b/n) and (a/(n*n")) = (a/n’)

e There are also properties with respect to (—1/n), (2/n) and other values
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Solving Second Degree Congruences

e We know how to decide whether 22 = a (mod n) has solutions, but how

about finding them?

e Theorem

— if p = 3 (mMod 4) is prime and a is a QR modulo p, then the solutions
to 22 = a (mod p) are z = +(a(Pt1)/4) (mod p)

— primes p = 3 (mod 4) are called Blum primes

e Theorem

— if p = 5 (mod 8) is prime and a is a QR modulo p, then the solutions

to 2 = a (mod p) are +2, where x is computed as:
z = a(P1+3)/8 (mod p)
if (2 2 a (mod p)) z = z2(P~1)/4 mod p
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Solving Second Degree Congruences

e Example: solve 22 = 6 (mod 47)
— first compute (6/47) = 41, so 6 is a QR modulo 47
— because 47 = 3 (mod 4),
r=+6471t1)/4 = +612 = 437 (mod 47)
e Theorem: square roots modulo pq
— let p and g be distinct odd primes and a be a QR modulo pgq
— then there are exactly 4 solutions to 2 = a (mod pq)
— there are 2 solutions to 22 = a (mod p) and 22 = a (mod ¢) each

— when we combine them using the CRT, we obtain 4 solutions
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Attacks on RSA

e We can also factor n if e and d are known

e We first look at the fact that if n = pq then 22 = 1 (mod n) has 4
solutions < n

— 22 =1 (mod n) iffboth z2 = 1 (mod p) and z2 = 1 (mod q)
— two trivial solutions 1 and n — 1
e 1 is the solution whenx = 1 (mod p) and x = 1 (mod q)

e 1 — 1 is the solution when z = —1 (mod p) and
x=—1(mod q)

— two other solutions

e asolution whenxz =1 (mod p) andx = —1 (mod q)

e asolution whenxz = —1 (mod p) andx = 1 (mod q)
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Attacks on RSA

2 =1 (mod n) has 4 solutions

e Fact: if n = pq then =
— example: n =3 -5 =15
e 22 =1 (mod 15) has solutions 1, 4, 11, 14

— knowing a non-trivial solution to z2 = 1 (mod n), compute
ged(x + 1,n) and ged(x — 1, n)

 they will give factors p and q

— example: 4 and 11 are solutions to z2 =1 (mod 15)
e ged(4+1,15) =5;ged(4 —1,15) =3
e ged(114+1,15) = 3;ged(11 —1,15) =5
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Attacks on RSA

e Now assume that we know e and d such thated = 1 (mod ¢(n))

e To factor n using this knowledge:
— write ed — 1 = 2°r where r is odd
— choose w atrandom suchthat 1 < w <n — 1

— if w is not relatively prime to n, return ged(w, n)

— otherwise notice that w2 " = wl=1 =1 (mod n)
2 . t
— compute w’, w2, w2°T, ... until we find w2 " = 1 (mod n)
2t 1

- " is then a non-trivial solution to the equation which gives
factorization of n

iy —

—ifw"=1(modn)orw —1 (mod n), try a different w
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Attacks on RSA

e Example of factoring n when e and d are known
— weare givenn = 2773,e = 17,and d = 157
— compute ed — 1 = 2668 = 22.667 = r = 667

— pick a random w and compute w” Mod n

w=717, 7667 mod 2773 = 1, discard

w =8, 8%07 mod 2773 = 471,
w2” mod n = 4712 mod 2773 = 1 = 471 is a non-trivial
square root of 1 mod 2773

e now compute ged(471 4+ 1,2773) = 59 and
ged(471 — 1,2773) = 47

thusp = 59and g = 47
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e Second degree congruences are among many number theoretic results
discovered over time

e Their knowledge leads to attacks on public-key encryption and other
schemes

e Awareness of such attacks is needed for secure implementation of respective
algorithms
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