Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 16: Second Degree Congruences and Security Applications

> Department of Computer Science and Engineering University at Buffalo

Overview

- Our coverage of public-key encryption so far included RSA and ElGamal
- Today we look at second degree congruences
 - modulo a prime
 - modulo a composite
- The security implications are:
 - ElGamal encryption needs to be modified to eliminate information leakage about encrypted plaintexts
 - factoring of an RSA modulus is possible given knowledge of e and d

Number-Theoretic Background

- Second degree congruences
 - we already learned about solving linear congruences
 - now we'll look into quadratic congruences
 - in the most general form they are $ax^2 + bx + c \equiv 0 \pmod{n}$
 - we need to learn how to take square root modulo n
 - in most cases we'll deal with congruences of the form $x^2 \equiv a \pmod{n}$
- Let's first look at the case when the modulus p is prime

- Solving $x^2 \equiv a \pmod{p}$ for a prime p
 - when p = 2, solving the congruence is easy
 - there is always one solution
 - if $a = 0, x \equiv 0 \pmod{2}$
 - if $a = 1, x \equiv 1 \pmod{2}$
 - when p is an odd prime, the congruence has solutions for some values of a and not for other values of a
 - example for p = 11

• when a = 2, 6, 7, 8, 10, the congruence doesn't have solutions

- Quadratic residues
 - let n be a positive integer and a be relatively prime to n
 - a is called a quadratic residue (QR) modulo n if the congruence $x^2 \equiv a \pmod{n}$ has a solution
 - a is called a quadratic nonresidue (QNR) modulo n if the congruence $x^2 \equiv a \pmod{n}$ has no solution
 - in the example above:
 - 1, 3, 4, 5, and 9 are QRs modulo 11
 - 2, 6, 7, 8, and 10 are QNRs modulo 11
 - the class 0 is excluded from this definition

- Theorem: Square roots of 1 modulo p
 - if p is prime, then $x^2 \equiv 1 \pmod{p}$ if and only if $x \equiv \pm 1 \pmod{p}$
- Theorem: Number of solutions modulo p
 - let p be an odd prime and a not be a multiple of p
 - then the congruence $x^2 \equiv a \pmod{p}$ has either no solution or two solutions modulo p
- Theorem: Number of QRs and QNRs
 - if p is an odd prime, there are exactly (p 1)/2 QRs among
 1, 2, ..., p 1 and the same number of QNRs

Spring 2020

- Legendre symbol
 - let p be an odd prime and a be an integer
 - the Legendre symbol (a/p) is defined to be +1 if a is a QR modulo p, -1 if a is a QNR modulo p, and 0 if p divides a
- Euler's test for *a* being a QR
 - let p be an odd prime and a an integer not divisible by p
 - then $a^{(p-1)/2} \mod p$ is 1 or p-1
 - if it is 1, a is a QR modulo p; if it is p 1, a is a QNR modulo p

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$$

CSE 664

Spring 2020

- Properties of the Legendre symbol
 - the number of solutions to $x^2 \equiv a \pmod{p}$ is 1 + (a/p)

-
$$(a/p) \equiv a^{(p-1)/2} \pmod{p}$$

$$- (ab/p) = (a/p)(b/p)$$

- if
$$a \equiv b \pmod{p}$$
, then $(a/p) = (b/p)$

-
$$(1/p) = +1$$
 and $(-1/p) = (-1)^{(p-1)/2}$

- if
$$p \not| a$$
, then $(a^2/p) = +1$ and $(a^2b/p) = (b/p)$

- Example: is 5 a QR modulo 13? how about 5 · 2?
- Let's see what implications this has on ElGamal encryption

Security of ElGamal Encryption

- Care must be taken when mapping messages to group elements
 - one (least significant) bit of discrete logarithm is easy to compute for elements of \mathbb{Z}_p^*
 - given a ciphertext, an adversary can tell whether the underlying plaintext was a QR modulo p or not
 - this gives the adversary an easy way to win the indistinguishability game
 - to ensure indistinguishability, we need to make sure that all values we use will have the same value for that bit
 - thus, we encode messages as $x^2 \mod p$ only

ElGamal Encryption

- Encryption with ElGamal becomes
 - given a message m, interpret it as a integer between 1 and q, where q = (p-1)/2
 - compute $\hat{m}=m^2 \bmod p$ and encrypt \hat{m}
 - upon decryption:
 - obtain \hat{m}
 - compute square roots m_1 , m_2 of \hat{m} modulo p
 - set m to the unique $1 \le m_i \le q$
- There are alternative ways of achieving the same goal
 - e.g., setup encryption over a subgroup of \mathbb{Z}_p^* of prime order q, where p = 2q + 1

CSE 664

Spring 2020

- The Jacobi symbol (for composite moduli)
 - let *n* be an integer with prime factorization $n = \prod_{i=1}^{k} p_i^{e_i}$
 - the Jacobi symbol (a/n) is defined as

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}$$

where (a/p_i) are Legendre symbols

- If gcd(a, n) > 1, then some prime factor p of n divides a ⇒
 (a/p) = 0 ⇒ (a/n) = 0
- Example: compute the Jacobi symbol of 3 modulo 70

$$-\left(\frac{3}{70}\right) = \left(\frac{3}{2}\right)\left(\frac{3}{5}\right)\left(\frac{3}{7}\right)$$

- The Jacobi symbol shares many properties with the Legendre symbol
- Properties of the Jacobi symbol
 - if $a \equiv b \pmod{n}$, then (a/n) = (b/n)

$$- (ab/n) = (a/n)(b/n)$$

CSE 664

$$-(a/nn') = (a/n)(a/n')$$

- if gcd(a, n) = 1, then $(a^2/n) = (a/n^2) = +1$, $(a^2b/n) = (b/n)$ and $(a/(n^2n')) = (a/n')$
- There are also properties with respect to (-1/n), (2/n) and other values

Spring 2020

Solving Second Degree Congruences

- We know how to decide whether $x^2 \equiv a \pmod{n}$ has solutions, but how about finding them?
- Theorem
 - if $p \equiv 3 \pmod{4}$ is prime and a is a QR modulo p, then the solutions to $x^2 \equiv a \pmod{p}$ are $x \equiv \pm (a^{(p+1)/4}) \pmod{p}$

– primes $p \equiv 3 \pmod{4}$ are called Blum primes

• Theorem

- if $p \equiv 5 \pmod{8}$ is prime and a is a QR modulo p, then the solutions to $x^2 \equiv a \pmod{p}$ are $\pm x$, where x is computed as:

$$x \equiv a^{(p+3)/8} \pmod{p}$$

if $(x^2 \not\equiv a \pmod{p}) x = x2^{(p-1)/4} \mod{p}$

Solving Second Degree Congruences

• Example: solve
$$x^2 \equiv 6 \pmod{47}$$

- first compute (6/47) = +1, so 6 is a QR modulo 47

- because
$$47 \equiv 3 \pmod{4}$$
,
 $x \equiv \pm 6^{(47+1)/4} \equiv \pm 6^{12} \equiv \pm 37 \pmod{47}$

- Theorem: square roots modulo pq
 - let p and q be distinct odd primes and a be a QR modulo pq
 - then there are exactly 4 solutions to $x^2 \equiv a \pmod{pq}$
 - there are 2 solutions to $x^2 \equiv a \pmod{p}$ and $x^2 \equiv a \pmod{q}$ each
 - when we combine them using the CRT, we obtain 4 solutions

Spring 2020

CSE 664

- We can also factor n if e and d are known
- We first look at the fact that if n = pq then $x^2 \equiv 1 \pmod{n}$ has 4 solutions < n
 - $x^2 \equiv 1 \pmod{n}$ iff both $x^2 \equiv 1 \pmod{p}$ and $x^2 \equiv 1 \pmod{q}$
 - two trivial solutions 1 and n 1
 - 1 is the solution when $x \equiv 1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
 - n 1 is the solution when $x \equiv -1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 - two other solutions
 - a solution when $x \equiv 1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 - a solution when $x \equiv -1 \pmod{p}$ and $x \equiv 1 \pmod{q}$

- Fact: if n = pq then $x^2 \equiv 1 \pmod{n}$ has 4 solutions
 - example: $n = 3 \cdot 5 = 15$
 - $x^2 \equiv 1 \pmod{15}$ has solutions 1, 4, 11, 14
 - knowing a non-trivial solution to $x^2 \equiv 1 \pmod{n}$, compute gcd(x+1, n) and gcd(x-1, n)
 - they will give factors p and q
 - example: 4 and 11 are solutions to $x^2 \equiv 1 \pmod{15}$
 - gcd(4+1, 15) = 5; gcd(4-1, 15) = 3
 - gcd(11+1,15) = 3; gcd(11-1,15) = 5

- Now assume that we know e and d such that $ed \equiv 1 \pmod{\phi(n)}$
- To factor *n* using this knowledge:
 - write $ed 1 = 2^{s}r$ where r is odd
 - choose w at random such that 1 < w < n 1
 - if w is not relatively prime to n, return gcd(w, n)
 - otherwise notice that $w^{2^s r} \equiv w^{1-1} \equiv 1 \pmod{n}$
 - compute $w^r, w^{2r}, w^{2^2r}, \dots$ until we find $w^{2^t r} \equiv 1 \pmod{n}$
 - $w^{2^{t-1}r}$ is then a non-trivial solution to the equation which gives factorization of n
 - if $w^r \equiv 1 \pmod{n}$ or $w^{2^t r} \equiv -1 \pmod{n}$, try a different w

- Example of factoring n when e and d are known
 - we are given n = 2773, e = 17, and d = 157
 - compute $ed 1 = 2668 = 2^2 \cdot 667 \implies r = 667$
 - pick a random w and compute $w^r \mod n$
 - $w = 7,7^{667} \mod 2773 = 1$, discard
 - $w = 8, 8^{667} \mod 2773 = 471,$ $w^{2r} \mod n = 471^2 \mod 2773 = 1 \implies 471$ is a non-trivial square root of 1 mod 2773
 - now compute gcd(471 + 1, 2773) = 59 and gcd(471 1, 2773) = 47
 - thus p = 59 and q = 47

Summary

- Second degree congruences are among many number theoretic results discovered over time
- Their knowledge leads to attacks on public-key encryption and other schemes
- Awareness of such attacks is needed for secure implementation of respective algorithms