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What’s NextWhat’s Next

• So far we looked at a public-key encryption scheme modulo a composite

– the difficulty of breaking it lies in factoring and computing roots modulo
a composite

• Now we are going to study a public-key encryption scheme modulo a prime

– discrete logarithms

– Diffie-Hellman problem

– ElGamal encryption
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Terminology RecapTerminology Recap

• Recall that group G is a set of elements together with

– a binary operation for which the associative law holds and the set is
closed under that operation

– a unique identity element

– and unique inverses for each element a of G

• The multiplicative group modulo m is denoted by Z∗m

• A cyclic group is one that contains an element a whose powers ai and a−i

make up the entire group

• An element a with such property is called a generator of the group
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ElGamal EncryptionElGamal Encryption

• The idea behind ElGamal encryption

– we are given a cyclic multiplicative group G

– let m ∈ G be an arbitrary element

– if g is an element of G chosen uniformly at random, then so is
g′ = g ·m
• m is perfectly protected

– we want g to be pseudorandom

• g is computable using the private key sk and can’t be guessed
otherwise
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• Discrete logarithms

– we are given a cyclic group G of order q

– then there exists an element g ∈ G such that
G = 〈g〉 = {gi : 0 ≤ i ≤ q − 1}

– for each h ∈ G there is a unique x such that gx = h

– such x is called the discrete logarithm of h with respect to g and we use
x = logg h

– many properties of regular logarithms apply

• logg 1 = 0

• logg(h1 · h2) = (logg h1 + logg h2) mod q
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• The discrete logarithm problem

– in a cyclic group G with given generator g, compute unique logg h for a
random element h ∈ G

• Let PPT algorithm Set(1k) output a cyclic group G of order q and
generator g ∈ G

• The discrete logarithm experiment DLogA,Set(k):

1. Run (G, q, g)← Set(1k) and choose random h ∈ G

2. A is given G, q, g, h and outputs x ∈ Zq

3. the experiment outputs 1 if gx = h and 0 otherwise
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• We say that the discrete logarithm problem is hard (relative to Set) if any
PPT adversaryA cannot win the discrete logarithm experiment with a
non-negligible probability

Pr[DLogA,Set(k) = 1] ≤ negl(k)

• When is the discrete logarithm problem hard?

– most often a multiplicative group modulo prime p, Z∗p, or its subgroup is
used

– the choice of parameters is driven by known algorithms for solving the
discrete logarithm problem
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• Is the discrete logarithm problem generally hard?

– it is hard in (Z∗p, ·) using proper parameters

– how about (Zn,+)?

• let gcd(g, n) = 1, so g is a generator of Zn

• now gx mod n in multiplicative groups translates to gx mod n

• the discrete logarithm problem is then gx ≡ h (modn)

• but since gcd(g, n) = 1, we can compute g−1 mod n

• now x = logg h = hg−1 mod n

– are there other cases when logg h is hard?
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• Algorithms for solving discrete log

– there are generic algorithms that work for every cyclic group

• e.g., Shanks’ method, Pollard rho method, Pohlig-Hellman algorithm

– there are algorithms that work for certain groups only

• they rely on particular representation of the group

• they are faster and will require larger security parameters

• e.g., general number field sieve for (Z∗p, ·) with prime p

– for certain groups, there are no better attacks than generic algorithms

• e.g., groups over elliptic curves
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Algorithms for Discrete Logarithm ProblemAlgorithms for Discrete Logarithm Problem

• Shanks’ baby-step/giant-step algorithm

– the algorithm requires O(
√
q) steps for groups of order q

– “giant steps” are of size
√
q and “baby steps” are of size 1

– algorithm steps on input G = 〈g〉 and h ∈ G

1. set t = b√qc

2. for i = 0 to bq/tc, compute gi = gi·t

3. sort pairs (i, gi) by second value

4. for i = 0 to t, compute hi = h · gi; if hi = gj for some j, return
jt− i mod q

– taking into account sorting and mod exponentiations & multiplications,
overall complexity is O(

√
q · polylog(q))
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Algorithms for Discrete Logarithm ProblemAlgorithms for Discrete Logarithm Problem

• Pohlig-Hellman algorithm

– works when factorization of group order q is known or can be computed

– reduces the problem of computing discrete log in groups of order
q = q1 · q2 to discrete log in groups of order q1 and q2

– it uses a variant of the Chinese remainder theorem

– thus, group order q must always contain at least one large factor
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• Discrete logarithm problem

– groups of prime order are a popular choice because

• Pohlig-Hellman algorithm is not effective

• finding a generator is easy: each element is a generator

• exponent manipulation is easier: each exponent has an inverse

• other security assumptions are more likely to hold

• How do we produce a group of prime order or with a large factor in the
group order?
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• A subgroup of a group is a subset of the group that forms a group with the
same binary operation

– for example, powers ai in a multiplicative group can “hit” only a subset
of the group elements

• A group (Z∗p, ·) for prime p has order φ(p) = p− 1

• Subgroups of Z∗p can have any order q that divides p− 1

– we often might want p = 2q+1 for prime p and q

– or we can have p = 2qt+1 for reasonably large prime q and some t
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• How do we generate a subgroup?

– let order of some group G be q = q1 · q2

– to obtain generator of subgroup of order q1, we often can pick a ∈ G
and set g = aq2

• How do we generate proper prime p?

– we want to generate primes p and q such that q|(p− 1)

– to do so, we need to know the factorization of p− 1

– approach 1: generate a random prime p and then factor p− 1

– approach 2: generate a random q first and then choose r such that
p = 2rq+1 is prime
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• The choice of parameters

– for group Z∗p, p needs to be large enough for discrete log to be hard to
solve

• fastest algorithm runs on average in 2O(k1/3(log k)2/3) time

• today this requires |p| of 2048 bits or higher

– the group order must have at least one large factor to prevent exhaustive
search

• e.g., 224 bits or higher

– if the group order is prime, it can be relatively short (same 224 bits)

• this can improve performance
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ElGamal Public-Key EncryptionElGamal Public-Key Encryption

• ElGamal encryption

– a public-key encryption published in 1985 by ElGamal

– its security relies on the discrete logarithm problem being hard

– the encryption operation is randomized

– a ciphertext is twice as long as the original message

– the idea:

• the plaintext m is masked by multiplying it by hy

• another value gy is transmitted as part of the ciphertext

• knowing the private key, one can compute hy from gy and unmask the
message
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ElGamal Public-Key EncryptionElGamal Public-Key Encryption

• Key generation

– choose a cyclic group G of order q and a generator g ∈ G

– choose a random x from Zq and compute h = gx

– public key: pk = (G, q, g, h)

– private key: sk = x

• Encryption

– to encrypt a message m ∈ G using public key pk = (G, q, g, h)

– choose a random number y ∈ Zq

– compute the ciphertext as c = Encpk(m) = (c1, c2) = (gy,m · hy)
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ElGamal Public-Key EncryptionElGamal Public-Key Encryption

• Decryption

– given a ciphertext c = (c1, c2) and keys pk = (G, q, g, h), sk = x

– decrypt the ciphertext as m = Decsk(c) = c2 · c−x1

• Correctness

– we show that Decsk(Encpk(m)) = m

– the decryption is
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ElGamal Public-Key EncryptionElGamal Public-Key Encryption

• Example

– key generation

• let p = 2579 and g = 2

• suppose we choose x = 765 and compute
h = 2765 mod 2579 = 949

• the public key is pk = (2579,2,949)

• the secret key is sk = 765

– encryption

• to encrypt m = 1299, suppose we choose y = 853

• to encrypt, first compute c1 = 2853 mod 2579 = 435 and
c2 = 1299 · 949853 mod 2579 = 2396
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ElGamal Public-Key EncryptionElGamal Public-Key Encryption

• Example (cont.)

– encryption

• the ciphertext is c = (435,2396)

– decryption

• given c = (c1, c2), we decrypt the message by computing
c2 · (cx1)

−1 mod p:

m = 2396 · (435765)−1 mod 2579 = 1299

• Security of ElGamal encryption

– depends on the discrete logarithm problem in G being infeasible

– but it is based on a different hardness assumption
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ElGamal Public-Key EncryptionElGamal Public-Key Encryption

• On parameter choice in ElGamal

– if we use Z∗p or its subgroup

• p should have at least 2000 bits for the discrete logarithm to be hard

– if g is a generator of Z∗p
• p− 1 should have at least one large prime factor

– if g does not generate Z∗p
• we can use a subgroup of a smaller size

• e.g., prime order q of length 224 bits is sufficient

– the group doesn’t have to be Z∗p
• other choices include groups defined over elliptic curves
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ElGamal Public-Key EncryptionElGamal Public-Key Encryption

• On parameter choice in ElGamal

– sharing parameters

• unlike in cryptosystems that use composite modulus, here the same p
and g can be used in many keys

• when modulus n = pq is used, its factorization is often the private
key or allows to compute the private key

• here both p and g are public

• that makes this encryption secure is the knowledge of the secret value
x

– a fresh value of y should be picked for each encryption

CSE 664 Spring 2020

22Marina Blanton



Diffie-Hellman Key ExchangeDiffie-Hellman Key Exchange

• Diffie-Hellman key exchange protocol

– Alice and Bob want to compute a shared key unknown to eavesdroppers

– Alice and Bob share public parameters: a group G of order q and a
generator g

– Alice randomly chooses x ∈ Zq and sends gx to Bob: A
gx−→ B

– Bob randomly chooses y ∈ Zq and sends gy to Alice: A
gy←− B

– the shared secret is set to gxy

• Alice computes it as (gy)x = gxy

• Bob computes it as (gx)y = gxy

– it is believed to be infeasible for an eavesdropper to compute gxy given
gx and gy
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Diffie-Hellman Key ExchangeDiffie-Hellman Key Exchange

• Diffie-Hellman key exchange protocol

– Alice and Bob are able to establish a shared secret with no prior
relationship

– it is believed to be infeasible for an eavesdropper to compute gxy given
gx and gy

• Diffie-Hellman problem

– Computational Diffie-Hellman (CDH) problem

• given g, gx and gy, compute gxy

– Decision Diffie-Hellman (DDH) problem

• given g, gx, gy, and gz, determine whether xy = z (modulo q)
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Diffie-Hellman ProblemDiffie-Hellman Problem

• As before, CDH (DDH) problem is hard if any PPT adversaryA has at most
negligible probability in solving it

• Diffie-Hellman problem

– DDH is a stronger assumption than CDH

• breaking CDH implies breaking DDH, but the converse is not true

– discrete log is at least as hard as CDH

– security of the Diffie-Hellman key exchange protocol is based on the
CDH assumption
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Security of ElGamal EncryptionSecurity of ElGamal Encryption

• Going back to ElGamal

– if the CDH assumption holds, ElGamal is one-way

• i.e., if you can solve the CDH problem, you will be able to decrypt

– if the DDH assumption holds, ElGamal is secure in the sense of
indistinguishability

• Formally: if the DDH problem is hard (relative to Set), then the ElGamal
encryption scheme has indistinguishable encryptions under a
chosen-plaintext attack
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Security of ElGamal EncryptionSecurity of ElGamal Encryption

• Security proof sketch
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SummarySummary

• The discrete logarithm problem is considered hard in groups modulo a large
prime

– many constructions rely on it

• ElGamal is an example of encryption that assumes hardness of discrete
logarithm problem

• Diffie-Hellman key exchange is built using similar assumptions

– two types of hardness assumptions are known as computational and
decision Diffie-Hellman problems

• ElGamal is CPA-secure under the DDH assumption, but the construction the
way it was described requires further changes
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