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Summary of RSASummary of RSA

• Key generation

– choose prime p, q, and e; set n = pq

– public key is pk = (e, n)

– private key is sk = d, where d ≡ e−1 (mod φ(n))

• Encryption

– given a message 0 < m < n

– encrypt as c = Epk(m) = me mod n

• Decryption

– given ciphertext c

– decrypt as m = Dsk(c) = cd mod n
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Security of RSASecurity of RSA

• The security of the RSA encryption schemes depends on the hardness of the
RSA problem

• The RSA problem is widely believed to be computationally equivalent to
factoring, but no proof is known

• Knowledge of the following is equivalent with public key (n, e), i.e.,
enables decryption

– factors p and q

– φ(n)

– private key d
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Security of RSASecurity of RSA

• Knowledge of n and φ(n) implies knowledge of factors p and q

– given n and φ(n), we can compute

φ(n) = (p− 1)(q − 1) = n− p− q+1 = n− p− n/p+1

pφ(n) = np− p2 − n+ p

then p2 − np+ φ(n)p− p+ n = 0
p2 − (n− φ(n) + 1)p+ n = 0

– the above equation has two solutions: p and q
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Factoring Large NumbersFactoring Large Numbers

• For factoring a product of two primes, most effective algorithms are

– quadratic sieve

– number field sieve

– elliptic curve factoring algorithm

• The best factoring algorithms run in sub-exponential time

• Hardness of factoring

– 512-bit modulus has been factored in 1999

– 768-bit modulus has been factored in 2009

– 829-bit modulus has been factored in 2020

– 1024-bit modulus may be factored soon
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Security of RSASecurity of RSA

• Plain RSA is very weak

• Attacks on plain RSA

– short messages

– brute force search

– common modulus

– small exponents e and d

– timing attacks

• Improving security of RSA
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Attacks on RSAAttacks on RSA

• Encrypting short messages with small e

– often e can be very small such as 3

– suppose that we encrypt a message m < n1/3 and transmit ciphertext
c = me mod n

• any m can be encoded as an element of Zn by treating it as integer
and padding with 0s on the left

– no modular reduction takes place and m = c1/3 over integers can be
easily computed

– now how about encrypting 128-bit symmetric encryption key with a
> 1024-bit modulus?
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Attacks on RSAAttacks on RSA

• Brute force key search

– try possible keys hoping to find the correct one

– infeasible to succeed unlike in case of symmetric encryption

• Brute force message search

– the message space can be bounded by some value L

– simply encrypt all messages

• the encryption algorithm is public

– when we see ciphertext c, simply compare it to our ciphertexts

– attack takes time/space linear in L
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Attacks on RSAAttacks on RSA

• Brute force message search

– unfortunately, a much faster attack is known that runs in about
√
L time

– implications: decrypting a 128-bit key takes 264 steps

– algorithm:

• we are given c = Enc(m) = me mod n for some m < 2`

• set T = 2α` for 1/2 < α < 1

• for r = 1, . . ., T , set xr = c/re mod n

• sort the pairs (r, xr) by the second value

• for s = 1, . . ., T , if se mod n = xr for some r, output r · s mod n
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Attacks on RSAAttacks on RSA

• Small encryption exponent e

– suppose that the same e = 3 is used with different moduli (i.e., with
different public keys)

– suppose Alice wants to send the same message m to three different
people using their moduli n1, n2, and n3

– she sends ci = m3 mod ni for i = 1,2,3

– an eavesdropper Eve observes c1, c2, and c3

– Eve can use the Chinese Remainder Theorem to find a solution x
(0 < x < n1n2n3) to the three congruences x ≡ ci (modni)

– the solution is x = m3 and m can be recovered by computing 3
√
x over

integers (since m < min(n1, n2, n3))
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Attacks on RSAAttacks on RSA

• Common modulus attack

– this attack deals with a common misuse of RSA

– suppose for efficiency reasons a trusted party generates one modulus n
and several key pairs (e1, d1), (e2, d2), . . .

– then each user has pki = (ei, n) and ski = di

– this setup is trivially insecure

• why?

CSE 664 Spring 2020

11Marina Blanton



Attacks on RSAAttacks on RSA

• Common modulus attack

– now suppose that it is all right that all users know each others’ keys

– suppose Eve sees two ciphertexts that encrypt the same message

c1 = me1 mod n and c2 = me2 mod n

– e1 6= e2 and it is likely that gcd(e1, e2) = 1

– then Eve can use Extended Euclidean algorithm to compute x and y such
that e1x+ e2y = 1

– Eve computes cx1 · c
y
2 mod n to recover m
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Attacks on RSAAttacks on RSA

• Small decryption exponent d

– the secret key d cannot be small

– if |d| ≈ 1/4|n|, there is an efficient algorithm for recovering d from
public information (e, n)

– thus, d should have roughly the same size as n

• Factors p and q close to each other

– p and q cannot be chosen to be close to
√
n

– if p and q are within a feasible comptutational effort from
√
n, a brute

force search can find the factors
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Attacks on RSAAttacks on RSA

• Timing attacks

– measure decryption time hoping to recover the decryption key

– exponentiation algorithm and the ciphertext are known

– what we can do to prevent such attacks

• use constant exponentiation time

• add random delays

• modify the values used in calculations by blinding
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Attacks on RSAAttacks on RSA

• Are timing attacks practical?

– the answer is yes

– OpenSSL was discovered to be vulnerable in 2003

• researchers discovered a remote timing attack on OpenSSL
implementations that allowed to learn RSA keys

• to secure it, turn RSA blinding on
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Security of RSASecurity of RSA

• Let’s get back to security of RSA

– RSA is not secure because it is deterministic

– RSA leaks information

• To achieve security in the sense of indistinguishability, randomization and
expansion are necessary

– now the ciphertext will be longer than the message

– suppose we want the computation effort of breaking the
indistinguishability to be 2k

– the ciphertext must be at least k bits longer than the message
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Security of RSASecurity of RSA

• Simple padding scheme

– idea: pad message m with random r and encrypt their concatenation

– let (n, e, d)← GenRSA(1k) with |n| = k

– let |m| = `(k) ≤ k − 1

– Gen: run (n, e, d)← GenRSA(1k) and output pk = (n, e) and
sk = (n, d)

– Enc: given m ∈ {0,1}`(k), choose random r ← {0,1}k−`(k)−1 and
output

c = Encpk(m) = (r||m)e mod n

– Dec: given c ∈ Z∗n, compute m′ = cd mod n and output `(k) least
significant bits of it
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Security of RSASecurity of RSA

• Security of this simple padding scheme

– if |r| is not large enough, the scheme is not CPA-secure

• e.g., |r| = O(log k)

– if `(k) = c · k for constant c < 1, the scheme can be conjectured secure

• no proof based on the standard RSA assumption is known

– if `(k) = O(log k), the scheme has been proven to be CPA-secure
under the RSA assumption

• is it satisfactory?
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Security of RSASecurity of RSA

• PKCS #1 v1.5

– it is a widely used and standardized version of RSA from RSA
Laboratories

– it uses the above idea and requires |r| to be at least 8 bytes

– `(n) is at most k/8− 11 bytes

– |r| is k/8− `− 3 bytes

– encryption is formed as

c = (00000000||00000010||r||00000000||m)e mod n

– no byte of r is allowed to be 0

– the construction is believed to be CPA-secure, but no formal proof under
the RSA assumption is known
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Towards Higher Security StandardsTowards Higher Security Standards

• An example padding for achieving CPA-security

– we are given an encryption scheme E = (Gen, Enc,Dec) and a
cryptographic hash function h

– to encrypt message m, generate a random number r

– compute the ciphertext (c1, c2) as

c1 = Enck(r) and c2 = h(r)⊕m

– to decrypt a message given (c1, c2), compute h(Deck(c1))⊕ c2
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Semantic Security of RSASemantic Security of RSA

• This padding scheme with RSA:

– public key is (e, n) with 1536-bit modulus

– encryption of m is (re mod n, h(r)⊕m) for a random r ∈ Z∗n

– to decrypt a ciphertext (c1, c2), compute m = h(cd1 mod n)⊕ c2

– for 256-bit messages, the size of ciphertexts is 1536+ 256

• Why is this solution secure?

– it relies on randomness of h and one-way nature of Enck

– to learn something about m from h(r)⊕m, one has to know h(r)

– but since h(r) is random, you cannot recover r

– recovering r from Enck(r) is also infeasible
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OAEPOAEP

• In 1994 Bellare and Rogaway proposed an optimal asymmetric encryption
padding (OAEP) method for encoding messages

– it is the basis of PKCS #1 v2.0 and later

– it uses encryption E = (Gen, Enc,Dec) (formally modeled as one-way
trapdoor permutation)

– it also uses two hash functions h : {0,1}` → {0,1}t and
g : {0,1}t → {0,1}`
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OAEPOAEP

• OAEP algorithms

– to encrypt an `-bit message m:

• choose an t-bit random r

• compute the ciphertext as

Enck(m⊕ g(r)||r ⊕ h(m⊕ g(r)))

– to decrypt ciphertext c:

• after applying Deck to c, parse the content in two parts
c1||c2 ← Deck(c)

• to recover m from m⊕ g(r), we need to find r as c2 ⊕ h(c1)

• finally, set m = c1 ⊕ g(r)
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OAEPOAEP

• Security of OAEP

– if h and g are modeled as random oracles and the RSA problem is hard

– RSA-OAEP is proven to be CCA-secure for certain types of public
exponents e (including common e = 3)

– OAEP is designed in such a way that the only way to find m is to
explicitly choose m and r and try them
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OAEPOAEP

• Size of parameters in OAEP

– ciphertext has size k (e.g., 1536 for RSA)

– t should be such that 2t work is infeasible and success is negligible

• e.g., t = O(k)

– the plaintext size ` can be up to k − t

– e.g., with k = 1536 and t = 128, message size is up to 1408 bits

– expansion is optimal
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SummarySummary

• Security of RSA

– many attacks have been discovered over the year

– attacks on plain RSA can be very damaging

– countermeasures for implementation-based attacks exist

• CPA-security of RSA

– can be added by using padding

– OAEP achieves an optimal expansion and is provably secure
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