
Applied Cryptography and Computer
Security

CSE 664 Spring 2020

Lecture 12: Introduction to Number Theory II

Department of Computer Science and Engineering
University at Buffalo

1



Lecture OutlineLecture Outline

• This time we’ll finish the intro to number theory

• What to expect:

– congruences

– Fermat and Euler’s theorems

– the Chinese remainder theorem

– finding large primes

CSE 664 Spring 2020

2Marina Blanton



CongruencesCongruences

• A congruence is a statement about divisibility

– such statements simplify reasoning about divisibility

• Definition

– let a, b, m > 0 be integers

– if m divides a− b, then a is congruent to b modulo m and we write
a ≡ b (mod m)

– if m does not divide a− b, a is not congruent to b modulo m and we
write a 6≡ b (mod m)

– the formula a ≡ b (mod m) is called a congruence

– the integer m is called the modulus

CSE 664 Spring 2020

3Marina Blanton



CongruencesCongruences

• Do not confuse a ≡ b (mod m) with binary operator “mod”

– a ≡ b (mod m) if and only if (a mod m) = (b mod m)

• For each integer a, the set of all integers b ≡ a (mod m) is called the
congruence class or residue class of a modulo m

– example: the residue class of 27 (mod 5) is
. . .,−13,−8,−3,2,7,12, . . .

– each value is a representative of the class, and the smallest positive value
is the standard representative

CSE 664 Spring 2020

4Marina Blanton



CongruencesCongruences

• The congruence relation has many similarities to equality

– it, like equality, is an equivalence relation

– reflexive: a ≡ a (mod m)

– symmetric: if a ≡ b (mod m), then b ≡ a (modm)

– transitive: if a ≡ b (mod m) and b ≡ c (mod m), then
a ≡ c (mod m)

CSE 664 Spring 2020

5Marina Blanton



CongruencesCongruences

• Properties of congruence relations

– let a ≡ b (mod m) and c ≡ d (mod m)

– a+ c ≡ b+ d (mod m)

– a− c ≡ b− d (mod m)

– ac ≡ bd (mod m)

– let f be a polynomial with integer coefficients, then if a ≡ b (mod m),
f(a) ≡ f(b) (mod m)

– let d|m, then a ≡ b (mod m) ⇒ a ≡ b (mod d)

CSE 664 Spring 2020

6Marina Blanton



CongruencesCongruences

• Although addition, subtraction, and multiplication follow the usual rules,
division does not always work as expected

– ac ≡ bc (mod m) does not always imply a ≡ b (mod m)

– example: 2 · 3 = 6 ≡ 18 = 2 · 9 (mod 12), but 3 6≡ 9 (mod 12)

– we next investigate when this implication is true

• Theorem (division):

– for integer a, b, c 6= 0, and m > 0, if gcd(c,m) = 1, then
ac ≡ bc (mod m) implies a ≡ b (mod m)

– example: 5 · 3 = 15 ≡ 39 = 13 · 3 (mod 8); both
15 ≡ 39 (mod 8) and 5 ≡ 13 (mod 8)

CSE 664 Spring 2020

7Marina Blanton



CongruencesCongruences

• Theorem (multiplicative inverse):

– if gcd(a,m) = 1, then there is a unique x (0 < x < m) such that
ax ≡ 1 (mod m), i.e., x is a−1(mod m)

– example: a = 3, m = 5; x ≡ 2 ≡ 3−1 (mod 5)

– the inverse is normally computed using the extended Euclidean
algorithm, where ax+my = 1

CSE 664 Spring 2020

8Marina Blanton



Residue SetsResidue Sets

• A complete set of residues (CSR) modulo m is a set S of integers such that
every integer is congruent to exactly one integer in that set S

– the standard CSR modulo m is {0,1, . . .,m− 1}, i.e, Zm

• A reduced set of residues (RSR) modulo m is a set R of integers such that
every integer relatively prime to m is congruent to exactly one integer in R

– the standard RSR modulo m is all 1 ≤ r ≤ m such that
gcd(r,m) = 1

– example: for m = 12, the standard RSR is {1,5,7,11}

– for a prime p, this set is {1,2, . . ., p− 1}

CSE 664 Spring 2020

9Marina Blanton



Linear CongruencesLinear Congruences

• Now how do we solve congruences ax ≡ b (mod m) for given a, b, m
and unknown x?

– we first need to determine when they are solvable

• Theorem (solvability of linear congruence)

– ax ≡ b (mod m) has a solution if and only if gcd(a,m) divides b

– example:

• solve 165x ≡ 100 (mod 285)

• ?

CSE 664 Spring 2020

10Marina Blanton



Linear CongruencesLinear Congruences

• Theorem (solution to a linear congruence)

– let g = gcd(a,m)

– if g divides b, then ax ≡ b (mod m) has g solutions

– the solutions are:

x ≡
b

g
x0 + t

m

g
(mod m), t = 0,1, . . ., g − 1

– here x0 is any solution to a
gx0 ≡ 1(mod m

g )

CSE 664 Spring 2020

11Marina Blanton



Linear CongruencesLinear Congruences

• Example of a linear congruence

– solve 7x ≡ 3 (mod 12)

– first find g =

– determine the number of solutions

– determine x0

– find the solution

– now solve 8x ≡ 4 (mod 12)

CSE 664 Spring 2020

12Marina Blanton



GroupsGroups

• A group G is a set of elements together with a binary operation ◦ such that

– the set is closed under the operation ◦, i.e., for every a, b ∈ G, a ◦ b is a
unique element of G

– the associative law holds, i.e., for all a, b, c ∈ G,
a ◦ (b ◦ c) = (a ◦ b) ◦ c

– the set has a unique identity element e such that a ◦ e = e ◦ a = a for
every a ∈ G

– every element has a unique inverse a−1 in G such that
a ◦ a−1 = a−1 ◦ a = e

CSE 664 Spring 2020

13Marina Blanton



GroupsGroups

• A group is called commutative or abelian if a ◦ b = b ◦ a for every pair
a, b ∈ G

• Size of a group

– a group is finite if it has only a finite number of elements

– a group is infinite if it has an infinite number of elements

– the number of elements of a finite group is called the order of the group

• Groups are a convenient way to represent sets by strings of symbols

CSE 664 Spring 2020

14Marina Blanton



GroupsGroups

• Examples of groups

– the set of integers {. . .,−2,−1,0,1,2, . . .} forms an infinite abelian
group

• addition is the binary operation

• 0 is the identity

• −a is the inverse of a

– this set does not form a group with multiplication as the binary operation
(lack of inverses)

CSE 664 Spring 2020

15Marina Blanton



GroupsGroups

• Examples of groups

– if m ≥ 2 is an integer, a complete set of residues (CSR) modulo m
forms an abelian group

• addition modulo m is the binary operation

• the residue class containing 0 is the identity

• the inverse of the residue class containing a is the residue class
containing −a

– this group is called the additive group modulo m

– a CSR modulo m does not form a group under multiplication

CSE 664 Spring 2020

16Marina Blanton



GroupsGroups

• Examples of groups

– recall that a reduced set of residues (RSR) includes all numbers
relatively prime to m

– for m > 1, a RSR modulo m forms a group with multiplication modulo
m as operation

– the identity element is the residue class containing 1

– it is called the multiplicative group modulo m

– what is the group order?

CSE 664 Spring 2020

17Marina Blanton



Euler’s φ FunctionEuler’s φ Function

• Euler φ function

– φ(m) is the size of RSR modulo m

– φ is called the Euler Phi or totient function

• Properties of φ

– if p is prime, φ(p) = p− 1

– φ is multiplicative: φ(ab) = φ(a)φ(b) for relatively prime a and b

– thus, if p 6= q are primes, φ(pq) = (p− 1)(q − 1)

– if p is prime, φ(pe) = pe − pe−1

– if n =
∏
i p
ei
i , where pi’s are distinct primes and ei ≥ 1,

φ(n) =
∏
i p
ei−1
i (pi − 1)

CSE 664 Spring 2020

18Marina Blanton



Fermat and Euler’s TheoremsFermat and Euler’s Theorems

• Fermat’s “Little” Theorem

– let p be prime and a be an integer which is not a multiple of p, then

ap−1 ≡ 1 (mod p)

• Euler’s Theorem

– let m > 1 and gcd(a,m) = 1, then

aφ(m) ≡ 1 (mod m)

• A Corollary of Euler’s Theorem

– let m, x, y, and g be positive integers with gcd(g,m) = 1

– if x ≡ y (mod φ(m)), then gx ≡ gy (mod m)

CSE 664 Spring 2020

19Marina Blanton



Fermat and Euler’s TheoremsFermat and Euler’s Theorems

• Another corollary of Euler’s theorem

– we obtain an alternative way of computing a−1(mod m)

• recall that a · a−1 ≡ 1 (mod m)

– factoring out one a gives us aaφ(m)−1 ≡ 1(mod m)

– then a−1 ≡

– for a prime modulus p, a−1 ≡

– computing the inverse using this approach requires roughly the same
number of bit operations as the extended Euclidean algorithm

CSE 664 Spring 2020

20Marina Blanton



More on GroupsMore on Groups

• If a is an element of a finite group with identity 1, then there is a unique
smallest positive integer i with ai = 1 (using multiplicative notation)

– such i is called the order of a (different from the order of the group)

• The element a has infinite order is there is no positive integer i with ai = 1

• A cyclic group is one that contains an element a whose powers ai and a−i

make up the entire group

• An element a with such property is called a generator of the group

CSE 664 Spring 2020

21Marina Blanton



Cyclic GroupsCyclic Groups

• Examples

– the set of all integers with + for the operation is a cyclic group of
infinite order

• the group is generated by 1

• the “powers” of 1 are 0,±1,±2, . . .

• every element a 6= 0 has infinite order

– the integers modulo m with + operation form a cyclic group of order
m, where the residue class of 1 is a generator

– the multiplicative group modulo m, Z∗m, may or may not be cyclic
depending on m

CSE 664 Spring 2020

22Marina Blanton



Cyclic GroupsCyclic Groups

• Theorem: If p is prime, then (Z∗p, ·) is cyclic.

• Example

– consider multiplicative group over Z∗7
– what is the order of 2?

– what is the order of 3?

CSE 664 Spring 2020

23Marina Blanton



Fast ExponentiationFast Exponentiation

• We’ll need to compute an often

• This can be done using only O(log2 n) multiplications

power(a, n) {
e = n; y = 1; z = a;
repeat {

if (e is odd) y = y · z;
if (e ≤ 1) return y;
z = z · z;
e = e� 1; ←− e = be/2c

}
}

CSE 664 Spring 2020

24Marina Blanton



Fast ExponentiationFast Exponentiation

• To compute an mod m, we want to keep numbers small (smaller than m)

• We reduce them modulo m after each multiplication

power(a, n, m) {
e = n; y = 1; z = a;
repeat {

if (e is odd) y = (y · z) % m;
if (e ≤ 1) return y;
z = (z · z) % m;
e = e� 1;

}
}

CSE 664 Spring 2020

25Marina Blanton



Fast ExponentiationFast Exponentiation

• Example: compute 36 mod 11

– set e = 6 (0110), y = 1; z = 3

– execute the loop

• iteration 1

• iteration 2

• iteration 3

• What’s the complexity of fast exponentiation?

CSE 664 Spring 2020

26Marina Blanton



The Chinese Remainder TheoremThe Chinese Remainder Theorem

• The Chinese Remainder Theorem (CRT) can be used to perform modular
exponentiations even faster than in the above algorithm

• The main advantage of CRT:

– it allows us to split up one large exponentiation into smaller
exponentiations

• The main idea:

– for a composite number m with factors p1, p2, . . ., it allows us to
combine congruences of the form x ≡ ai (mod pi) into a congruence
x ≡ a (mod m)

• Main uses:

– in public-key decryption and signing algorithms

CSE 664 Spring 2020

27Marina Blanton



The Chinese Remainder TheoremThe Chinese Remainder Theorem

• The Chinese Remainder Theorem

– we are given n1, . . ., nr positive integers pair-wise relatively prime (i.e.,
gcd(ni, nj) = 1 for any i 6= j)

– let n = n1 · · ·nr

– then r congruences x ≡ ai (mod ni) have common solutions modulo
n

• The solution to such congruences is

x ≡
r∑

i=1

(n/ni)biai (mod n)

– here bi ≡ (n/ni)
−1(mod ni)

CSE 664 Spring 2020

28Marina Blanton



The Chinese Remainder TheoremThe Chinese Remainder Theorem

• Example:

– solve a system of congruences x ≡ 1 (mod 7), x ≡ 3 (mod 10),
and x ≡ 8 (mod 13)

CSE 664 Spring 2020

29Marina Blanton



Finding Large PrimesFinding Large Primes

• In many constructions we rely on large primes

• How do we find them?

– the probability that a randomly picked integer, say, 2000 bits long is
prime is not great

• But even if we have a candidate, how do we test it?

– Fermat’s theorem says that if p is prime and p 6 |a, then
ap−1 ≡ 1 (mod p)

– this theorem gives us a test for compositeness

– if p is odd, p 6 |a, and ap−1 6≡ 1 (mod p), then p is not prime

– how about the converse, a test for primality?

CSE 664 Spring 2020

30Marina Blanton



Finding Large PrimesFinding Large Primes

• Unfortunately, the converse is not always true

– consider p = 11 · 13 = 341 and a = 2; 2340 ≡ 1 (mod 341)

– it is, however, true for most p and a

• The composite numbers that pass such “primality test” are called Carmichael
numbers (pseudo-prime)

– they result in ap−1 ≡ 1 (mod p) for every integer a with
gcd(a, p) = 1

– there are infinitely many of them

– they must be detected and avoided in cryptosystems like RSA

CSE 664 Spring 2020

31Marina Blanton



Finding Large PrimesFinding Large Primes

• But there is a true converse of Fermat’s theorem

• Lucas-Lehmer test (rigorous primality test):

– let n > 3 be odd

– if for every prime p that divides n− 1 there exists a such that
an−1 ≡ 1 (mod n), but a(n−1)/p 6≡ 1 (mod n), then n is prime

– using the test requires knowledge of factorization of n− 1

• This theorem can be used iteratively to construct large, random primes

– start with a rather small prime and make it several digits longer in each
step

– test for primality in each iteration

CSE 664 Spring 2020

32Marina Blanton



Finding Large PrimesFinding Large Primes

• Constructing large primes:

– begin with a prime p1 and let i = 1

– repeat the following steps until pi is large enough

• for a random small k (9–10 digits), let n = 2kpi+1

• if 2n−1 6≡ 1(mod n), then n is composite and try another k

• otherwise, n is probably prime, so try to prove it using Lucas-Lehmer
test

• if you succeed in finding the base a to satisfy the test, then n is proved
prime and set pi+1 = n

• otherwise try a new random k

CSE 664 Spring 2020

33Marina Blanton



Finding Large PrimesFinding Large Primes

• Using Lucas-Lehmer approach adds about 10 digits to the length of the
prime in each step

• It is possible to construct large primes faster

– we can double the size of the prime in one step

– complete factorization of the candidate prime is not required

• Pocklington-Lehmer theorem allows us to do so

– given prime pi set n to 2Fpi+1, where factorization of F is not known

– the idea is that if pi ≥
√
n, then n is prime

CSE 664 Spring 2020

34Marina Blanton



More on Primality TestsMore on Primality Tests

• Given a large number n, can we test whether it is prime without other
conditions?

• History of primality tests development

– trying all numbers up to
√
n works, but is inefficient

• this algorithm has been known for over 2000 years

– applying Fermat’s theorem is efficient, but not always works

• Carmichael numbers satisfy the test as well

• this theorem was the basis for many efficient primality tests

CSE 664 Spring 2020

35Marina Blanton



More on Primality TestsMore on Primality Tests

• History of primality tests development

– In 1970s randomized polynomial-time algorithms have been developed

• Miller-Rabin test determines composite numbers with probability at
least 1− 4−k for a chosen k

• Solovay-Strassen test determines composite numbers with probability
at least 1− 2−k

– In 1983 Adleman, Pomerance, and Rumely achieved a breakthrough

• they gave the first deterministic test that doesn’t require exponential
time

• the algorithm runs in (logn)O(log log logn)

CSE 664 Spring 2020

36Marina Blanton



More on Primality TestsMore on Primality Tests

• History of primality tests development

– Finally, in 2004 Agrawal, Kayal, and Saxena proved that PRIMES is in P

• their deterministic algorithm runs in O((logn)15/2) time or better

• the algorithm is based on a generalization of Fermat’s theorem

• History happens even now!

CSE 664 Spring 2020

37Marina Blanton



SummarySummary

• Congruences are statements about divisibility

– their properties often coincide with our intuition, but they also differ

• Fermat and Euler’s theorems

– provide an alternative way of computing an inverse modulo a number

– provide a compositeness test

• To find a large prime either

– choose a value at random and test for primality

– construct a prime from smaller values

• As of 2004, unconditional primality testing is in P

CSE 664 Spring 2020

38Marina Blanton


