Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 12: Introduction to Number Theory II

Department of Computer Science and Engineering University at Buffalo

Lecture Outline

- This time we'll finish the intro to number theory
- What to expect:
 - congruences
 - Fermat and Euler's theorems
 - the Chinese remainder theorem
 - finding large primes

- A congruence is a statement about divisibility
 - such statements simplify reasoning about divisibility
- Definition
 - let a, b, m > 0 be integers
 - if m divides a b, then a is congruent to b modulo m and we write $a \equiv b \pmod{m}$
 - if m does not divide a b, a is not congruent to b modulo m and we write $a \not\equiv b \pmod{m}$
 - the formula $a \equiv b \pmod{m}$ is called a congruence
 - the integer m is called the modulus

• Do not confuse $a \equiv b \pmod{m}$ with binary operator "mod"

- $a \equiv b \pmod{m}$ if and only if $(a \mod m) = (b \mod m)$

- For each integer a, the set of all integers $b \equiv a \pmod{m}$ is called the congruence class or residue class of a modulo m
 - example: the residue class of 27 (mod 5) is $\dots, -13, -8, -3, 2, 7, 12, \dots$
 - each value is a representative of the class, and the smallest positive value is the standard representative

- The congruence relation has many similarities to equality
 - it, like equality, is an equivalence relation
 - reflexive: $a \equiv a \pmod{m}$
 - symmetric: if $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$
 - transitive: if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$

- Properties of congruence relations
 - let $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$
 - $-a + c \equiv b + d \pmod{m}$
 - $-a-c \equiv b-d \pmod{m}$
 - $ac \equiv bd \pmod{m}$
 - let f be a polynomial with integer coefficients, then if $a \equiv b \pmod{m}$, $f(a) \equiv f(b) \pmod{m}$
 - let d|m, then $a \equiv b \pmod{m} \Rightarrow a \equiv b \pmod{d}$

Spring 2020

CSE 664

- Although addition, subtraction, and multiplication follow the usual rules, division does not always work as expected
 - $ac \equiv bc \pmod{m}$ does not always imply $a \equiv b \pmod{m}$
 - example: $2 \cdot 3 = 6 \equiv 18 = 2 \cdot 9 \pmod{12}$, but $3 \not\equiv 9 \pmod{12}$
 - we next investigate when this implication is true
- Theorem (division):
 - for integer a, b, $c \neq 0$, and m > 0, if gcd(c, m) = 1, then $ac \equiv bc \pmod{m}$ implies $a \equiv b \pmod{m}$
 - example: $5 \cdot 3 = 15 \equiv 39 = 13 \cdot 3 \pmod{8}$; both $15 \equiv 39 \pmod{8}$ and $5 \equiv 13 \pmod{8}$

- Theorem (multiplicative inverse):
 - if gcd(a, m) = 1, then there is a unique x (0 < x < m) such that $ax \equiv 1 \pmod{m}$, i.e., x is $a^{-1} \pmod{m}$
 - example: $a = 3, m = 5; x \equiv 2 \equiv 3^{-1} \pmod{5}$
 - the inverse is normally computed using the extended Euclidean algorithm, where ax + my = 1

Residue Sets

• A complete set of residues (CSR) modulo m is a set S of integers such that every integer is congruent to exactly one integer in that set S

- the standard CSR modulo m is $\{0, 1, \ldots, m-1\}$, i.e, \mathbb{Z}_m

- A reduced set of residues (RSR) modulo m is a set R of integers such that every integer relatively prime to m is congruent to exactly one integer in R
 - the standard RSR modulo m is all $1 \le r \le m$ such that gcd(r,m) = 1
 - example: for m = 12, the standard RSR is $\{1, 5, 7, 11\}$
 - for a prime p, this set is $\{1, 2, ..., p 1\}$

CSE 664

Spring 2020

Linear Congruences

- Now how do we solve congruences $ax \equiv b \pmod{m}$ for given a, b, mand unknown x?
 - we first need to determine when they are solvable
- Theorem (solvability of linear congruence)
 - $ax \equiv b \pmod{m}$ has a solution if and only if gcd(a, m) divides b
 - example:
 - solve $165x \equiv 100 \pmod{285}$
 - ?

Linear Congruences

- Theorem (solution to a linear congruence)
 - let g = gcd(a, m)
 - if g divides b, then $ax \equiv b \pmod{m}$ has g solutions
 - the solutions are:

CSE 664

$$x \equiv \frac{b}{g}x_0 + t\frac{m}{g} \pmod{m}, \ t = 0, 1, \dots, g-1$$

- here x_0 is any solution to $\frac{a}{g}x_0 \equiv 1 \pmod{\frac{m}{g}}$

Spring 2020

Linear Congruences

- Example of a linear congruence
 - solve $7x \equiv 3 \pmod{12}$
 - first find g =
 - determine the number of solutions
 - determine x_0

CSE 664

- find the solution
- now solve $8x \equiv 4 \pmod{12}$

- A group G is a set of elements together with a binary operation \circ such that
 - the set is closed under the operation \circ , i.e., for every $a, b \in G$, $a \circ b$ is a unique element of G
 - the associative law holds, i.e., for all $a, b, c \in G$, $a \circ (b \circ c) = (a \circ b) \circ c$
 - the set has a unique identity element e such that $a \circ e = e \circ a = a$ for every $a \in G$
 - every element has a unique inverse a^{-1} in G such that $a \circ a^{-1} = a^{-1} \circ a = e$

Spring 2020

CSE 664

- A group is called commutative or abelian if $a \circ b = b \circ a$ for every pair $a, b \in G$
- Size of a group
 - a group is finite if it has only a finite number of elements
 - a group is infinite if it has an infinite number of elements
 - the number of elements of a finite group is called the order of the group
- Groups are a convenient way to represent sets by strings of symbols

- Examples of groups
 - the set of integers {..., -2, -1, 0, 1, 2, ...} forms an infinite abelian group
 - addition is the binary operation
 - 0 is the identity
 - -a is the inverse of a
 - this set does not form a group with multiplication as the binary operation (lack of inverses)

- Examples of groups
 - if $m \ge 2$ is an integer, a complete set of residues (CSR) modulo m forms an abelian group
 - addition modulo m is the binary operation
 - the residue class containing 0 is the identity
 - the inverse of the residue class containing a is the residue class containing -a
 - this group is called the additive group modulo m
 - a CSR modulo m does not form a group under multiplication

- Examples of groups
 - recall that a reduced set of residues (RSR) includes all numbers relatively prime to m
 - for m > 1, a RSR modulo m forms a group with multiplication modulo m as operation
 - the identity element is the residue class containing 1
 - it is called the multiplicative group modulo m
 - what is the group order?

Euler's ϕ **Function**

- Euler ϕ function
 - $\phi(m)$ is the size of RSR modulo m
 - ϕ is called the Euler Phi or totient function
- Properties of ϕ
 - if p is prime, $\phi(p) = p 1$
 - ϕ is multiplicative: $\phi(ab) = \phi(a)\phi(b)$ for relatively prime a and b
 - thus, if $p \neq q$ are primes, $\phi(pq) = (p-1)(q-1)$
 - if p is prime, $\phi(p^e) = p^e p^{e-1}$
 - if $n = \prod_i p_i^{e_i}$, where p_i 's are distinct primes and $e_i \ge 1$, $\phi(n) = \prod_i p_i^{e_i-1}(p_i-1)$

CSE 664

Spring 2020

Fermat and Euler's Theorems

- Fermat's "Little" Theorem
 - let p be prime and a be an integer which is not a multiple of p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

• Euler's Theorem

- let
$$m > 1$$
 and $gcd(a, m) = 1$, then
 $a^{\phi(m)} \equiv 1 \pmod{m}$

• A Corollary of Euler's Theorem

- let m, x, y, and g be positive integers with gcd(g, m) = 1

- if
$$x \equiv y \pmod{\phi(m)}$$
, then $g^x \equiv g^y \pmod{m}$

CSE 664

Spring 2020

Fermat and Euler's Theorems

- Another corollary of Euler's theorem
 - we obtain an alternative way of computing $a^{-1} \pmod{m}$
 - recall that $a \cdot a^{-1} \equiv 1 \pmod{m}$
 - factoring out one a gives us $aa^{\phi(m)-1} \equiv 1 \pmod{m}$
 - then $a^{-1} \equiv$
 - for a prime modulus $p, a^{-1} \equiv$
 - computing the inverse using this approach requires roughly the same number of bit operations as the extended Euclidean algorithm

More on Groups

• If a is an element of a finite group with identity 1, then there is a unique smallest positive integer i with $a^i = 1$ (using multiplicative notation)

- such *i* is called the order of *a* (different from the order of the group)

- The element a has infinite order is there is no positive integer i with $a^i = 1$
- A cyclic group is one that contains an element a whose powers aⁱ and a⁻ⁱ make up the entire group
- An element a with such property is called a generator of the group

Cyclic Groups

- Examples
 - the set of all integers with + for the operation is a cyclic group of infinite order
 - the group is generated by 1
 - the "powers" of 1 are $0, \pm 1, \pm 2, \ldots$
 - every element $a \neq 0$ has infinite order
 - the integers modulo m with + operation form a cyclic group of order m, where the residue class of 1 is a generator
 - the multiplicative group modulo m, \mathbb{Z}_m^* , may or may not be cyclic depending on m

Cyclic Groups

- Theorem: If p is prime, then (\mathbb{Z}_p^*, \cdot) is cyclic.
- Example
 - consider multiplicative group over \mathbb{Z}_7^*
 - what is the order of 2?
 - what is the order of 3?

Fast Exponentiation

- We'll need to compute a^n often
- This can be done using only $O(\log_2 n)$ multiplications

```
power(a, n) {
     e = n; y = 1; z = a;
     repeat {
          if (e is odd) y = y \cdot z;
          if (e \leq 1) return y;
          z = z \cdot z;
                                               \leftarrow e = |e/2|
          e = e \gg 1;
```

Fast Exponentiation

- To compute $a^n \mod m$, we want to keep numbers small (smaller than m)
- We reduce them modulo m after each multiplication

```
power(a, n, m) {

e = n; y = 1; z = a;

repeat {

if (e is odd) y = (y \cdot z) \% m;

if (e \le 1) return y;

z = (z \cdot z) \% m;

e = e \gg 1;

}
```

Fast Exponentiation

- Example: compute 3⁶ mod 11
 - set e = 6 (0110), y = 1; z = 3
 - execute the loop
 - iteration 1

• iteration 2

- iteration 3
- What's the complexity of fast exponentiation?

The Chinese Remainder Theorem

- The Chinese Remainder Theorem (CRT) can be used to perform modular exponentiations even faster than in the above algorithm
- The main advantage of CRT:
 - it allows us to split up one large exponentiation into smaller exponentiations
- The main idea:
 - for a composite number m with factors p_1, p_2, \ldots , it allows us to combine congruences of the form $x \equiv a_i \pmod{p_i}$ into a congruence $x \equiv a \pmod{m}$
- Main uses:
 - in public-key decryption and signing algorithms

The Chinese Remainder Theorem

- The Chinese Remainder Theorem
 - we are given n_1, \ldots, n_r positive integers pair-wise relatively prime (i.e., $gcd(n_i, n_j) = 1$ for any $i \neq j$)

- let
$$n = n_1 \cdots n_r$$

- then r congruences $x \equiv a_i \pmod{n_i}$ have common solutions modulo n
- The solution to such congruences is

$$x \equiv \sum_{i=1}^{r} (n/n_i) b_i a_i \pmod{n}$$

- here
$$b_i \equiv (n/n_i)^{-1} \pmod{n_i}$$

Spring 2020

The Chinese Remainder Theorem

- Example:
 - solve a system of congruences $x \equiv 1 \pmod{7}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{13}$

- In many constructions we rely on large primes
- How do we find them?
 - the probability that a randomly picked integer, say, 2000 bits long is prime is not great
- But even if we have a candidate, how do we test it?
 - Fermat's theorem says that if p is prime and $p \not| a$, then $a^{p-1} \equiv 1 \pmod{p}$
 - this theorem gives us a test for compositeness
 - if p is odd, $p \not| a$, and $a^{p-1} \not\equiv 1 \pmod{p}$, then p is not prime
 - how about the converse, a test for primality?

Spring 2020

- Unfortunately, the converse is not always true
 - consider $p = 11 \cdot 13 = 341$ and a = 2; $2^{340} \equiv 1 \pmod{341}$
 - it is, however, true for most p and a
- The composite numbers that pass such "primality test" are called Carmichael numbers (pseudo-prime)
 - they result in $a^{p-1} \equiv 1 \pmod{p}$ for every integer a with gcd(a, p) = 1
 - there are infinitely many of them
 - they must be detected and avoided in cryptosystems like RSA

- But there is a true converse of Fermat's theorem
- Lucas-Lehmer test (rigorous primality test):
 - let n > 3 be odd
 - if for every prime p that divides n 1 there exists a such that $a^{n-1} \equiv 1 \pmod{n}$, but $a^{(n-1)/p} \not\equiv 1 \pmod{n}$, then n is prime
 - using the test requires knowledge of factorization of n-1
- This theorem can be used iteratively to construct large, random primes
 - start with a rather small prime and make it several digits longer in each step
 - test for primality in each iteration

- Constructing large primes:
 - begin with a prime p_1 and let i = 1
 - repeat the following steps until p_i is large enough
 - for a random small k (9–10 digits), let $n = 2kp_i + 1$
 - if $2^{n-1} \not\equiv 1 \pmod{n}$, then *n* is composite and try another *k*
 - otherwise, *n* is probably prime, so try to prove it using Lucas-Lehmer test
 - if you succeed in finding the base a to satisfy the test, then n is proved prime and set $p_{i+1} = n$
 - otherwise try a new random k

- Using Lucas-Lehmer approach adds about 10 digits to the length of the prime in each step
- It is possible to construct large primes faster
 - we can double the size of the prime in one step
 - complete factorization of the candidate prime is not required
- Pocklington-Lehmer theorem allows us to do so
 - given prime p_i set n to $2Fp_i + 1$, where factorization of F is not known
 - the idea is that if $p_i \ge \sqrt{n}$, then n is prime

More on Primality Tests

- Given a large number n, can we test whether it is prime without other conditions?
- History of primality tests development
 - trying all numbers up to \sqrt{n} works, but is inefficient
 - this algorithm has been known for over 2000 years
 - applying Fermat's theorem is efficient, but not always works
 - Carmichael numbers satisfy the test as well
 - this theorem was the basis for many efficient primality tests

More on Primality Tests

- History of primality tests development
 - In 1970s randomized polynomial-time algorithms have been developed
 - Miller-Rabin test determines composite numbers with probability at least $1 4^{-k}$ for a chosen k
 - Solovay-Strassen test determines composite numbers with probability at least $1 2^{-k}$
 - In 1983 Adleman, Pomerance, and Rumely achieved a breakthrough
 - they gave the first deterministic test that doesn't require exponential time
 - the algorithm runs in $(\log n)^{O(\log \log \log n)}$

More on Primality Tests

- History of primality tests development
 - Finally, in 2004 Agrawal, Kayal, and Saxena proved that PRIMES is in P
 - their deterministic algorithm runs in $O((\log n)^{15/2})$ time or better
 - the algorithm is based on a generalization of Fermat's theorem
- History happens even now!

Summary

- Congruences are statements about divisibility
 - their properties often coincide with our intuition, but they also differ
- Fermat and Euler's theorems
 - provide an alternative way of computing an inverse modulo a number
 - provide a compositeness test
- To find a large prime either
 - choose a value at random and test for primality
 - construct a prime from smaller values
- As of 2004, unconditional primality testing is in P