Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 3: Perfect Secrecy, Entropy

Department of Computer Science and Engineering
University at Buffalo

Lecture Outline

- Last lecture:
- classical ciphers
- This lecture:
- elements of probability theory
- perfect secrecy
- one-time pad (Vernam's cipher)
- entropy
- language redundancy

Lecture Outline

- Recall how the security of a cryptosystem is shown:
- computational security
- unconditional security
- Today we study unconditionally secure systems using probability theory
- given a ciphertext, no information can be learned about the message it encrypts
- ciphers we already learned about can be made unconditionally secure

One-Time Pad

- An example of crypto system that achieves unconditional and perfect secrecy is one-time pad (Vernam's cipher)
- given a binary message m of length n
- algorithm Gen produces a random binary key k of length at least n
- to encrypt m with k, compute $^{E_{n c}}(m)=m \oplus k$
- to decrypt c with k, compute $\operatorname{Dec}_{k}(c)=c \oplus k$
- What properties does this cipher have and why is it so good?

Elementary Probability Theory

- A discrete random variable X consists of:
- a finite set \mathcal{X} of values
- a probability distribution defined on \mathcal{X}
- The probability that X takes on the value x is denoted by $\operatorname{Pr}[X=x]$
- We must have that
$-\operatorname{Pr}[X=x] \geq 0$ for all $x \in \mathcal{X}$
$-\sum_{x \in \mathcal{X}} \operatorname{Pr}[X=x]=1$
- Example: dice from homework
- probability distribution is $\operatorname{Pr}[X=1]=\ldots=\operatorname{Pr}[X=6]=1 / 6$

Elementary Probability Theory

- Let X and Y be random variables (defined on sets \mathcal{X} and \mathcal{Y}, resp.)
- Joint probability $\operatorname{Pr}[X=x, Y=y]$ is the probability that X takes value x and Y takes value y
- Conditional probability $\operatorname{Pr}[X=x \mid Y=y]$ is the probability that X takes value x given that Y takes value y
- X and Y are independent random variables if

$$
\operatorname{Pr}[X=x, Y=y]=\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \text { for all } x \in \mathcal{X} \text { and } y \in \mathcal{Y}
$$

Elementary Probability Theory

- Example with two perfect dice:
- Let D_{1} denote the result of throwing first dice, D_{2} the result of throwing the second dice, and S their sum
- What is the joint probability $\operatorname{Pr}\left[D_{1}=2, D_{2}=5\right]$?
- What is the conditional probability $\operatorname{Pr}\left[D_{2}=3 \mid D_{1}=3\right]$?
- Are D_{1} and D_{2} independent?
- What is the joint probability $\operatorname{Pr}\left[D_{1}=3, S=5\right]$?
- Are D_{1} and S independent?
- What is the conditional probability $\operatorname{Pr}\left[S=8 \mid D_{1}=4\right]$? $\operatorname{Pr}\left[S=8 \mid D_{1}=1\right] ? \operatorname{Pr}\left[D_{1}=3 \mid S=4\right]$?

Probability Theory

- Conditional and joint probabilities are related:

$$
\begin{gather*}
\operatorname{Pr}[X=x, Y=y]=\operatorname{Pr}[X=x \mid Y=y] \cdot \operatorname{Pr}[Y=y] \tag{1}\\
\text { and } \\
\operatorname{Pr}[X=x, Y=y]=\operatorname{Pr}[Y=y \mid X=x] \cdot \operatorname{Pr}[X=x] \tag{2}
\end{gather*}
$$

- From these two expressions we obtain Bayes' Theorem:
- if $\operatorname{Pr}[Y=y]>0$, then

$$
\begin{equation*}
\operatorname{Pr}[X=x \mid Y=y]=\frac{\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y \mid X=x]}{\operatorname{Pr}[Y=y]} \tag{3}
\end{equation*}
$$

- How is it useful to us?

Probability Theory

- Corollary: X and Y are independent random variables if and only if

$$
\operatorname{Pr}[X=x \mid Y=y]=\operatorname{Pr}[X=x]
$$

for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$

- follows from definition of independent random variables and equation (1)
- This is what we need for perfect secrecy

What Does This Do for Us?

- Recall that a cipher is associated with \mathcal{M}, \mathcal{K}, and \mathcal{C}
- Let $\operatorname{Pr}[K=k]$ denote the probability of key $k \in \mathcal{K}$ being output by Gen
- Let $\operatorname{Pr}[M=m]$ define the a priori probability that message m is chosen for encryption
- M and K are independent and define ciphertext distribution C
- Given M, K and Enc, we can compute $\operatorname{Pr}[M=m \mid C=c]$
- This takes us to the notion of perfect secrecy...

Perfect Secrecy

- Definition: An encryption scheme (Gen, Enc, Dec) has perfect secrecy if for every distribution over \mathcal{M}, every $m \in \mathcal{M}$ and $c \in \mathcal{C}$ s.t. $\operatorname{Pr}[C=c]>0$:

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m]
$$

- Interpretation: after observing ciphertext c the a posteriori probability that the message is m is identical to the a priori probability that the message is m

Perfect Secrecy

- Alternative definition of perfect secrecy
- An encryption scheme (Gen, Enc, Dec) is perfectly secret if and only if for every distribution over \mathcal{M} and every $m \in \mathcal{M}$ and $c \in \mathcal{C}$:

$$
\operatorname{Pr}[C=c \mid M=m]=\operatorname{Pr}[C=c]
$$

- This means that the probability distribution of the ciphertext does not depend on the plaintext
- In other words, an encryption scheme (Gen, Enc, Dec) is perfectly secret if and only if for every distribution over \mathcal{M} and every $m_{1}, m_{2} \in \mathcal{M}$ and $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[C=c \mid M=m_{1}\right]=\operatorname{Pr}\left[C=c \mid M=m_{2}\right]
$$

Perfect Indistinguishability

- Indistinguishability of encrypted messages allows us to formulate security requirement as an experiment or game
- interactive game with adversary \mathcal{A}, who tries to break a cryptographic scheme
- Our first experiment
- for eavesdropping adversaries
- using private-key encryption
- asks them to distinguish between encryptions of different messages
- let $\mathcal{E}=\left(\right.$ Gen, Enc, Dec), and we name the experiment PrivK ${ }_{\mathcal{A}, \mathcal{E}}^{\text {eav }}$

Perfect Indistinguishability

- Experiment PrivK ${ }_{\mathcal{A}, \mathcal{E}}^{\text {eav }}$

1. \mathcal{A} chooses two messages $m_{0}, m_{1} \in \mathcal{M}$
2. random key k is generated by Gen, and random bit $b \leftarrow\{0,1\}$ is chosen
3. ciphertext $c \leftarrow \operatorname{Enc}_{k}\left(m_{b}\right)$ is computed and given to \mathcal{A}
4. \mathcal{A} outputs bit b^{\prime} as its guess for b
5. experiment outputs 1 if $b^{\prime}=b$ (\mathcal{A} wins) and 0 otherwise

- Given this experiment, how should we define indistinguishability? perfect secrecy?

Perfect Indistinguishability

- Definition: An encryption scheme (Gen, Enc, Dec) over message space \mathcal{M} is perfectly secret if for every adversary \mathcal{A} it holds that

$$
\operatorname{Pr}\left[\operatorname{PrivK}_{\mathcal{A}, \mathcal{E}}^{\mathrm{eav}}=1\right]=\frac{1}{2}
$$

- notice that is must work for every \mathcal{A}
- This definition is equivalent to our original definition of perfect secrecy

One-Time Pad

- One-time pad (Vernam's cipher)
- for fixed integer n, let $\mathcal{M}=\mathcal{K}=\mathcal{C}=\{0,1\}^{n}$
- Gen chooses a key k uniformly at random from \mathcal{K}
- each key is chosen with probability 2^{-n}
- Enc: given key $k \in\{0,1\}^{n}$ and message $m \in\{0,1\}^{n}$, compute $\operatorname{Enc}_{k}(m)=m \oplus k$
- Dec: given key $k \in\{0,1\}^{n}$ and ciphertext $c \in\{0,1\}^{n}$, compute $\operatorname{Dec}_{k}(c)=c \oplus k$
- Why is it perfectly secret?

One-Time Pad

- Theorem: One-time pad encryption scheme achieves perfect secrecy
- Proof
- fix distribution over \mathcal{M} and message $m \in \mathcal{M}$

$$
\operatorname{Pr}[C=c \mid M=m]=
$$

- this works for all distributions and all m, so for all distributions over \mathcal{M}, all $m_{1}, m_{2} \in \mathcal{M}$, and all $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[C=c \mid M=m_{1}\right]=\operatorname{Pr}\left[C=c \mid M=m_{2}\right]=\frac{1}{2^{n}}
$$

- by definition of perfect secrecy, this encryption is perfectly secret

More on One-Time Pad

- One-time pad can be defined on units larger than bits (e.g., letters)
- One-time pad questions:
- Since the key must be long, what if we use text from a book as our key?
- What if we reuse the key on different messages?
- Can we securely encrypt using a short/reusable key?
- no encryption scheme with smaller key space than message space can be perfectly secret

Perfect Secrecy

- It can be shown that
- Shift cipher has perfect secrecy if
- the key is chosen randomly
- it is used to encrypt a single letter
- Similarly, Vigenère cipher has perfect secrecy if
- each letter in the key is chosen randomly
- the message has the same length as the key

Perfect Secrecy

- (Shannon's theorem) In general, an encryption scheme with $|\mathcal{M}|=|\mathcal{C}|=|\mathcal{K}|$ is perfectly secret if and only if:
- every key must be chosen with equal probability (from \mathcal{K})
- for every message $m \in \mathcal{M}$ and every ciphertext $c \in \mathcal{C}$, there is a unique key k such that $\operatorname{Enc}_{k}(m)=c$

Entropy

- Entropy H measures the amount of information (or amount of uncertainty)
- The larger H of a message distribution is, the harder it is to predict that message
- H is measured in bits as the minimum number of bits required to encode all possible messages

$$
H(X)=-\sum_{x \in \mathcal{X}} \operatorname{Pr}[X=x] \log _{2} \operatorname{Pr}[X=x]
$$

- Examples

Entropy

- If there are n messages and they are all equally probable, then

$$
H(X)=-\sum_{i=1}^{n} \frac{1}{n} \log _{2} \frac{1}{n}=-\log _{2} \frac{1}{n}=\log _{2} n
$$

- Entropy is commonly used in security to measure information leakage
- compute entropy before and after transmitting a ciphertext
- if entropy associated with messages changes, leakage of information about transmitted message takes place
- similarly, if uncertainty associated with the keys changes after transmission, leakage of key information takes place

Entropy

- Entropy after transmission is captured using conditional entropy $H(X \mid Y)$
- $H(M)-H(M \mid C)$ defines information leakage about messages
- $H(K)-(K \mid C)$ defines information leakage about keys
- Perfect secrecy is achieved if (and only if) $H(M)=H(M \mid C)$
- that is, it is required that M and C are independent variables

Entropy

- Conditional entropy $H(X \mid Y)$ is defined as follows:
- for each value y of Y, we get a conditional probability distribution on X, denoted by $X \mid y$

$$
H(X \mid y)=-\sum_{x \in \mathcal{X}} \operatorname{Pr}[X=x \mid Y=y] \cdot \log _{2} \operatorname{Pr}[X=x \mid Y=y]
$$

- conditional entropy $H(X \mid Y)$ is defined as the weighted average (w.r.t. probabilities $\operatorname{Pr}[Y=y])$ of entropies $H(X \mid y)$ over all possible y

$$
\begin{aligned}
H(X \mid Y)=-\sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}}(& P r[Y=y] \cdot
\end{aligned} \begin{aligned}
& {[X=x \mid Y=y] } \\
& \left.\log _{2} \operatorname{Pr}[X=x \mid Y=y]\right)
\end{aligned}
$$

Language Redundancy

- Absolute rate of a language
- is the maximum number of bits that can be encoded in each character
- assuming that each character sequence is equally likely
- In an alphabet of ℓ letters:
- there are ℓ^{n} possible strings of size n
- if all of them are equiprobable, the entropy of a string is $\log _{2} \ell^{n}$
- then the absolute language rate

$$
r_{a}=\frac{\log _{2} \ell^{n}}{n}=\frac{n \log _{2} \ell}{n}=\log _{2} \ell
$$

- For English with $\ell=26, r_{a}=4.7$ bits

Language Redundancy

- Now compare that rate with the amount of information each English letter actually encodes
- Entropy of a language L is defined as

$$
H_{L}=\lim _{n \rightarrow \infty} \frac{H\left(M^{n}\right)}{n}
$$

- it measures the amount of entropy per letter and represents the average number of bits of information per character
- For English, $1 \leq H_{L} \leq 1.5$ bits per character
- Redundancy of English

$$
R_{L}=1-\frac{H_{L}}{r_{a}}=1-\frac{1.25}{4.7} \approx 0.75
$$

Summary

- Probabilities are used to evaluate security of a cipher
- Perfect secrecy achieves unconditional security
- One-time pad is a provably unbreakable cipher but is hard to use in practice
- Entropy is used to measure the amount of uncertainty of the encryption key given a ciphertext
- Next time:
- private-key encryption
- computational security

