Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 3: Perfect Secrecy, Entropy

Department of Computer Science and Engineering University at Buffalo

Lecture Outline

- Last lecture:
 - classical ciphers
- This lecture:
 - elements of probability theory
 - perfect secrecy
 - one-time pad (Vernam's cipher)
 - entropy
 - language redundancy

Lecture Outline

- Recall how the security of a cryptosystem is shown:
 - computational security
 - unconditional security
- Today we study unconditionally secure systems using probability theory
 - given a ciphertext, no information can be learned about the message it encrypts
 - ciphers we already learned about can be made unconditionally secure

One-Time Pad

- An example of crypto system that achieves unconditional and perfect secrecy is one-time pad (Vernam's cipher)
 - given a binary message m of length n
 - algorithm Gen produces a random binary key k of length at least n
 - to encrypt m with k, compute $\operatorname{Enc}_k(m) = m \oplus k$
 - to decrypt c with k, compute $Dec_k(c) = c \oplus k$
- What properties does this cipher have and why is it so good?

Elementary Probability Theory

- A discrete random variable X consists of:
 - a finite set \mathcal{X} of values
 - a probability distribution defined on \mathcal{X}
- The probability that X takes on the value x is denoted by Pr[X = x]
- We must have that
 - $Pr[X = x] \ge 0$ for all $x \in \mathcal{X}$
 - $-\sum_{x\in\mathcal{X}}\Pr[X=x]=1$
- Example: dice from homework
 - probability distribution is $Pr[X = 1] = \dots = Pr[X = 6] = 1/6$

Elementary Probability Theory

- Let X and Y be random variables (defined on sets \mathcal{X} and \mathcal{Y} , resp.)
- Joint probability $\Pr[X=x,Y=y]$ is the probability that X takes value x and Y takes value y
- Conditional probability $\Pr[X = x \mid Y = y]$ is the probability that X takes value x given that Y takes value y
- X and Y are independent random variables if $\Pr[X = x, Y = y] = \Pr[X = x] \Pr[Y = y]$ for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$

Elementary Probability Theory

• Example with two perfect dice:

- Let D_1 denote the result of throwing first dice, D_2 the result of throwing the second dice, and S their sum
- What is the joint probability $Pr[D_1 = 2, D_2 = 5]$?
- What is the conditional probability $Pr[D_2 = 3 \mid D_1 = 3]$?
- Are D_1 and D_2 independent?
- What is the joint probability $Pr[D_1 = 3, S = 5]$?
- Are D_1 and S independent?
- What is the conditional probability $Pr[S = 8 \mid D_1 = 4]$? $Pr[S = 8 \mid D_1 = 1]$? $Pr[D_1 = 3 \mid S = 4]$?

Probability Theory

• Conditional and joint probabilities are related:

$$\Pr[X=x,Y=y] = \Pr[X=x \mid Y=y] \cdot \Pr[Y=y] \qquad \text{(1)}$$
 and

$$\Pr[X = x, Y = y] = \Pr[Y = y \mid X = x] \cdot \Pr[X = x]$$
 (2)

• From these two expressions we obtain Bayes' Theorem:

- if
$$Pr[Y = y] > 0$$
, then

$$\Pr[X = x \mid Y = y] = \frac{\Pr[X = x] \cdot \Pr[Y = y \mid X = x]}{\Pr[Y = y]}$$
(3)

• How is it useful to us?

Probability Theory

• Corollary: X and Y are independent random variables if and only if

$$\Pr[X = x \mid Y = y] = \Pr[X = x]$$

for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$

follows from definition of independent random variables and equation
 (1)

• This is what we need for perfect secrecy

What Does This Do for Us?

- Recall that a cipher is associated with \mathcal{M} , \mathcal{K} , and \mathcal{C}
- Let $\Pr[K = k]$ denote the probability of key $k \in \mathcal{K}$ being output by Gen
- Let Pr[M=m] define the a priori probability that message m is chosen for encryption
- ullet M and K are independent and define ciphertext distribution C
- Given M, K and Enc, we can compute $\Pr[M = m \mid C = c]$
- This takes us to the notion of perfect secrecy...

Perfect Secrecy

• Definition: An encryption scheme (Gen, Enc, Dec) has perfect secrecy if for every distribution over \mathcal{M} , every $m \in \mathcal{M}$ and $c \in \mathcal{C}$ s.t. $\Pr[C = c] > 0$:

$$\Pr[M = m \mid C = c] = \Pr[M = m]$$

• Interpretation: after observing ciphertext c the a posteriori probability that the message is m is identical to the a priori probability that the message is m

— Spring 2020

Perfect Secrecy

- Alternative definition of perfect secrecy
 - An encryption scheme (Gen, Enc, Dec) is perfectly secret if and only if for every distribution over \mathcal{M} and every $m \in \mathcal{M}$ and $c \in \mathcal{C}$:

$$\Pr[C = c \mid M = m] = \Pr[C = c]$$

- This means that the probability distribution of the ciphertext does not depend on the plaintext
- In other words, an encryption scheme (Gen, Enc, Dec) is perfectly secret if and only if for every distribution over \mathcal{M} and every $m_1, m_2 \in \mathcal{M}$ and $c \in \mathcal{C}$:

$$Pr[C = c \mid M = m_1] = Pr[C = c \mid M = m_2]$$

Perfect Indistinguishability

- Indistinguishability of encrypted messages allows us to formulate security requirement as an experiment or game
 - interactive game with adversary A, who tries to break a cryptographic scheme
- Our first experiment
 - for eavesdropping adversaries
 - using private-key encryption
 - asks them to distinguish between encryptions of different messages
 - let $\mathcal{E} = (Gen, Enc, Dec)$, and we name the experiment $PrivK_{\mathcal{A},\mathcal{E}}^{eav}$

— Spring 2020

Perfect Indistinguishability

- Experiment PrivK $_{\mathcal{A},\mathcal{E}}^{\mathsf{eav}}$
 - 1. \mathcal{A} chooses two messages $m_0, m_1 \in \mathcal{M}$
 - 2. random key k is generated by Gen, and random bit $b \leftarrow \{0, 1\}$ is chosen
 - 3. ciphertext $c \leftarrow \operatorname{Enc}_k(m_b)$ is computed and given to A
 - 4. \mathcal{A} outputs bit b' as its guess for b
 - 5. experiment outputs 1 if b' = b (\mathcal{A} wins) and 0 otherwise
- Given this experiment, how should we define indistinguishability? perfect secrecy?

Perfect Indistinguishability

• Definition: An encryption scheme (Gen, Enc, Dec) over message space \mathcal{M} is perfectly secret if for every adversary \mathcal{A} it holds that

$$\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathcal{E}}=1]=rac{1}{2}$$

- notice that is must work for every ${\cal A}$
- This definition is equivalent to our original definition of perfect secrecy

One-Time Pad

- One-time pad (Vernam's cipher)
 - for fixed integer n, let $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0, 1\}^n$
 - Gen chooses a key k uniformly at random from K
 - each key is chosen with probability 2^{-n}
 - Enc: given key $k \in \{0,1\}^n$ and message $m \in \{0,1\}^n$, compute $\mathrm{Enc}_k(m) = m \oplus k$
 - Dec: given key $k \in \{0,1\}^n$ and ciphertext $c \in \{0,1\}^n$, compute $\mathrm{Dec}_k(c) = c \oplus k$
- Why is it perfectly secret?

One-Time Pad

• Theorem: One-time pad encryption scheme achieves perfect secrecy

Proof

- fix distribution over \mathcal{M} and message $m \in \mathcal{M}$

$$\Pr[C = c \,|\, M = m] =$$

- this works for all distributions and all m, so for all distributions over \mathcal{M} , all $m_1, m_2 \in \mathcal{M}$, and all $c \in \mathcal{C}$:

$$\Pr[C = c \mid M = m_1] = \Pr[C = c \mid M = m_2] = \frac{1}{2^n}$$

- by definition of perfect secrecy, this encryption is perfectly secret

More on One-Time Pad

- One-time pad can be defined on units larger than bits (e.g., letters)
- One-time pad questions:
 - Since the key must be long, what if we use text from a book as our key?
 - What if we reuse the key on different messages?
 - Can we securely encrypt using a short/reusable key?
 - no encryption scheme with smaller key space than message space can be perfectly secret

CSE 664 — Spring 2020

Perfect Secrecy

- It can be shown that
 - Shift cipher has perfect secrecy if
 - the key is chosen randomly
 - it is used to encrypt a single letter
 - Similarly, Vigenère cipher has perfect secrecy if
 - each letter in the key is chosen randomly
 - the message has the same length as the key

CSE 664 — Spring 2020

Perfect Secrecy

- (Shannon's theorem) In general, an encryption scheme with $|\mathcal{M}| = |\mathcal{C}| = |\mathcal{K}|$ is perfectly secret if and only if:
 - every key must be chosen with equal probability (from K)
 - for every message $m \in \mathcal{M}$ and every ciphertext $c \in \mathcal{C}$, there is a unique key k such that $\operatorname{Enc}_k(m) = c$

CSE 664 — Spring 2020

20

- Entropy H measures the amount of information (or amount of uncertainty)
- ullet The larger H of a message distribution is, the harder it is to predict that message
- *H* is measured in bits as the minimum number of bits required to encode all possible messages

$$H(X) = -\sum_{x \in \mathcal{X}} \Pr[X = x] \log_2 \Pr[X = x]$$

• Examples

—— Spring 2020

 \bullet If there are n messages and they are all equally probable, then

$$H(X) = -\sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = -\log_2 \frac{1}{n} = \log_2 n$$

- Entropy is commonly used in security to measure information leakage
 - compute entropy before and after transmitting a ciphertext
 - if entropy associated with messages changes, leakage of information about transmitted message takes place
 - similarly, if uncertainty associated with the keys changes after transmission, leakage of key information takes place

- Entropy after transmission is captured using conditional entropy H(X|Y)
 - H(M) H(M|C) defines information leakage about messages
 - H(K) (K|C) defines information leakage about keys
- Perfect secrecy is achieved if (and only if) H(M) = H(M|C)
 - that is, it is required that M and C are independent variables

— Spring 2020

- Conditional entropy H(X|Y) is defined as follows:
 - for each value y of Y, we get a conditional probability distribution on X, denoted by X|y

$$H(X|y) = -\sum_{x \in \mathcal{X}} \Pr[X = x | Y = y] \cdot \log_2 \Pr[X = x | Y = y]$$

- conditional entropy H(X|Y) is defined as the weighted average (w.r.t. probabilities $\Pr[Y=y]$) of entropies H(X|y) over all possible y

$$\begin{split} H(X|Y) = -\sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \left(\Pr[Y = y] \cdot \Pr[X = x | Y = y] \cdot \\ \log_2 \Pr[X = x | Y = y] \right) \end{split}$$

Language Redundancy

- Absolute rate of a language
 - is the maximum number of bits that can be encoded in each character
 - assuming that each character sequence is equally likely
- In an alphabet of ℓ letters:
 - there are ℓ^n possible strings of size n
 - if all of them are equiprobable, the entropy of a string is $\log_2 \ell^n$
 - then the absolute language rate

$$r_a = \frac{\log_2 \ell^n}{n} = \frac{n \log_2 \ell}{n} = \log_2 \ell$$

• For English with $\ell = 26$, $r_a = 4.7$ bits

Language Redundancy

- Now compare that rate with the amount of information each English letter actually encodes
- Entropy of a language L is defined as

$$H_L = \lim_{n \to \infty} \frac{H(M^n)}{n}$$

- it measures the amount of entropy per letter and represents the average number of bits of information per character
- For English, $1 \le H_L \le 1.5$ bits per character
- Redundancy of English

$$R_L = 1 - \frac{H_L}{r_a} = 1 - \frac{1.25}{4.7} \approx 0.75$$

Summary

- Probabilities are used to evaluate security of a cipher
- Perfect secrecy achieves unconditional security
- One-time pad is a provably unbreakable cipher but is hard to use in practice
- Entropy is used to measure the amount of uncertainty of the encryption key given a ciphertext
- Next time:
 - private-key encryption
 - computational security

— Spring 2020