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Lecture OutlineLecture Outline

• We previously looked at

– discrete logarithm problem

– cryptographic schemes that assume difficulty of discrete logarithm

• ElGamal encryption

• Digital signature algorithm

• Diffie-Hellman key exchange

• What we are going to learn next

– elliptic curves

– discrete logarithm over elliptic curves

– elliptic curves version of cryptographic constructions
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Discrete LogarithmDiscrete Logarithm

• The discrete logarithm problem

– we are given a group (G, ·) and g ∈ G of order q

– given h ∈ 〈g〉, find a unique integer x ∈ [0, n) such that gx = h

• Recall that the discrete logarithm problem is considered hard in

– the multiplicative group Z
∗
p where p is prime and p− 1 has at least

one large factor

• It is also hard in

– the multiplicative group of the field Fpn where p is prime

– the group of an elliptic curve over a finite field
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Elliptic CurvesElliptic Curves

• Elliptic curves are described by a set of solutions to certain equations in

two variables x and y

• The curves are solutions to equations of the form y2 = x3 + ax+ b

• They have certain properties that make them useful in cryptography

– we’ll be dealing with elliptic curves modulo a prime p

– elliptic curve groups can be used in cryptographic algorithms in

similar ways multiplicative groups of integers modulo p are used

– the discrete logarithm problem is harder for elliptic curve groups

than for Z
∗
p
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Elliptic CurvesElliptic Curves

• Definition

– an elliptic curve is the set E of solutions (x, y) to the equation

y2 = x3 + ax+ b

– here x, y, a, and b are real numbers, rational numbers, or integers

modulo m > 1

– the set E also contains a point at infinity ∞

• The point ∞ is not a point on the curve y2 = x3 + ax+ b

– ∞ is the identity of the elliptic curve group

– all other points of E are on the curve
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Elliptic Curves: ExamplesElliptic Curves: Examples

• Curves y2 = x3 − 5x (left) and y2 = x3 +8 (right)
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Elliptic CurvesElliptic Curves

• Number of roots

– for the cubic equation y2 = x3 + ax+ b, the discriminant is

4a3 +27b2

– if 4a3 +27b2 = 0, then the curve has a repeated root

• such elliptic curves are called singular

– if, on the other hand, 4a3 +27b2 6= 0, then there are three distinct

roots

• such elliptic curves are called non-singular

– we are excluding singular elliptic curves
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Elliptic Curves: ExamplesElliptic Curves: Examples

• Singular curves y2 = x3 − 3x+2 (left) and y2 = x3 (right)
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Elliptic CurvesElliptic Curves

• Operations on elliptic curves

– we define a binary operation over E that makes it into a

commutative group

– this operation is normally denoted as +

– let P and Q be two points on E such that P = (x1, y1) and

Q = (x2, y2)

– P +∞ = ∞+ P = P

– let P +Q = R

– such R is computed depending on the relationship between x1 and

x2 and y1 and y2
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Elliptic CurvesElliptic Curves

• Computing P +Q = R

– there are three cases

– case 1: x1 6= x2

• draw a line through P and Q and find another point R′, where the

line intersects the curve

• reflect R′ on the x-axis to obtain R

• the coordinates (x3, y3) are computed as:

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1

where λ is the slope computed as λ = (y2 − y1)/(x2 − x1)
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Elliptic CurvesElliptic Curves

• Computing P +Q = R

– case 2: x1 = x2 and y1 6= y2

• P is a reflection of Q on the x axis

• in this case P +Q = ∞
• thus Q is the inverse of P

– case 3: x1 = x2 and y1 = y2

• i.e., we are computing P + P

• this case is handled similar to case 1

• instead of drawing a line through P and Q, draw a tangent line to

the curve at P

• x3 and y3 are computed using the formulas from case 1

CSE 664 Spring 2017

11Marina Blanton



Elliptic CurvesElliptic Curves

• Computing P +Q = R

– case 3: x1 = x2 and y1 = y2 (cont.)

• the formula for the slope now is λ = (3x21 + a)/(2y1)

• Examples
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Elliptic CurvesElliptic Curves

• Elliptic curves modulo a prime p are defined as above except that all

operations are replaced by analogous operations in Zp

– now the points are the solutions to the congruence

y2 ≡ x3 + ax+ b (mod p)

– a, b ∈ Zp are constants such that 4a3 +27b2 6≡ 0 (mod p)

– given points P = (x1, y1) and Q = (x2, y2), as before

P +Q = ∞ if x1 = x2 and y2 = −y1

– the slope λ is computed as

λ =







(y2 − y1)(x2 − x1)
−1, if P 6= Q

(3x21 + a)(2y1)
−1, if P = Q

– and as before P +∞ = ∞+ P = P
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Elliptic CurvesElliptic Curves

• Example: points on the elliptic curve y2 = x3 +3x+4 over Z7

x x3 +3x+4 mod 7 y
0 4 2, 5

1 1 1, 6

2 4 2, 5

3 5 none

4 3 none

5 4 2, 5

6 0 0

– there are 10 points on this elliptic curve (including ∞)

CSE 664 Spring 2017

14Marina Blanton



Elliptic CurvesElliptic Curves

• Example: y2 ≡ x3 +3x+4 (mod 7) (cont.)

– to add points (1,1) and (2,5)

– to double the point (2,2)
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Elliptic CurvesElliptic Curves

• Discrete logarithms over elliptic curves

– for (G, ·) the discrete logarithm logg h was defined as x where

gx = h

– now + is the group binary operation, so the discrete logarithm

logP Q now is a such that aP = Q

• Computing “exponentiation” aP

– instead of using SQUARE-AND-MULTIPLY algorithm on g and x, we

use DOUBLE-AND-ADD algorithm on P and a
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Elliptic CurvesElliptic Curves

• Computing aP

– note that additive inverses are very easy to compute

– this is exploited in a generalization DOUBLE-AND-(ADD OR

SUBTRACT) algorithm

• it uses signed binary representation of integer a =
∑ℓ−1

i=0 ai2
i,

where each ai ∈ {−1,0,1}
• given signed binary representation of a, we compute aP by a

series of doublings, additions, and subtractions

• signed representation reduces the number of add/subtract

operations
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Elliptic Curve ConstructionsElliptic Curve Constructions

• Let’s look at elliptic curve version of cryptographic schemes

• Elliptic curve Diffie-Hellman key agreement

– fix an elliptic curve E modulo p and a point P0 of large order on E

– Alice chooses a (0 < a < p) and sends aP0 to Bob

– Bob chooses b (0 < b < p) and sends bP0 to Alice

– Alice computes k = a(bP0) and Bob computes k = b(aP0)
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Elliptic Curve ConstructionsElliptic Curve Constructions

• An elliptic curve analogue of ElGamal encryption is then:

– fix an elliptic curve E modulo p and a point P0 of large order on E

– for Alice to generate a key, she chooses secret aA (0 < aA < p) and

publishes PA = aP0

– when Bob wants to encrypt message m:

• he first embeds it into a point P of E

• he then chooses a random b (0 < b < p) and sends to Alice

c = (c1, c2) = (bP0, bPA + P )

– Alice, who knows the secret key aA, decrypts as follows:

P = c2−aAc1 = bPA+P −aAbP0 = baAP0+P − baAP0 = P
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Elliptic Curve ConstructionsElliptic Curve Constructions

• An elliptic curve Digital signature algorithm (ECDSA) is then

– choose one of the recommended elliptic curves and curve parameters

• government-recommended curves are now questioned in light of

past NSA-related events

– choose a point P0 of large prime order on the curve and secret key x

– set the public key to xP0

– proceed with signing similar to as before, but using elliptic curve

arithmetic

– see FIPS PUB 186-4 for the details and suggested implementation
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Discrete Logarithm ProblemDiscrete Logarithm Problem

• How hard is the discrete logarithm problem to solve in a group over an

elliptic curve E?

– the powerful index calculus algorithm doesn’t work for elliptic

curves

– the best possible algorithm is Pollard rho algorithm with O(
√
p)

work

• To be secure until the year of 2030

– it is suggested to choose p ≈ 2224 in case of elliptic curves

– compare this with p ≈ 22048 for groups (Z∗
p, ·)

– for that reason, elliptic curves have been gaining popularity,

especially on constrained platforms
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SummarySummary

• Elliptic curves are solutions to equations of the form y2 = x3 + ax+ b

• Groups over elliptic curves modulo a prime

– often can be used in similar ways to (Z∗
p, ·)

– require smaller security parameters because the discrete logarithm

is harder in such groups
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