Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 17: Elliptic Curves and Applications

Department of Computer Science and Engineering University at Buffalo

Lecture Outline

- We previously looked at
 - discrete logarithm problem
 - cryptographic schemes that assume difficulty of discrete logarithm
 - ElGamal encryption
 - Digital signature algorithm
 - Diffie-Hellman key exchange
- What we are going to learn next
 - elliptic curves
 - discrete logarithm over elliptic curves
 - elliptic curves version of cryptographic constructions

Spring 2017 -

Marina Blanton

Discrete Logarithm

- The discrete logarithm problem
 - we are given a group (G, \cdot) and $g \in G$ of order q
 - given $h \in \langle g \rangle$, find a unique integer $x \in [0, n)$ such that $g^x = h$
- Recall that the discrete logarithm problem is considered hard in
 - the multiplicative group \mathbb{Z}_p^* where p is prime and p-1 has at least one large factor
- It is also hard in

CSE 664

- the multiplicative group of the field \mathbb{F}_{p^n} where p is prime
- the group of an elliptic curve over a finite field

- Elliptic curves are described by a set of solutions to certain equations in two variables x and y
- The curves are solutions to equations of the form $y^2 = x^3 + ax + b$
- They have certain properties that make them useful in cryptography
 - we'll be dealing with elliptic curves modulo a prime \boldsymbol{p}
 - elliptic curve groups can be used in cryptographic algorithms in similar ways multiplicative groups of integers modulo p are used
 - the discrete logarithm problem is harder for elliptic curve groups than for \mathbb{Z}_p^\ast

• Definition

CSE 664

- an elliptic curve is the set E of solutions (x, y) to the equation $y^2 = x^3 + ax + b$
- here x, y, a, and b are real numbers, rational numbers, or integers modulo m > 1
- the set E also contains a point at infinity ∞
- The point ∞ is not a point on the curve $y^2 = x^3 + ax + b$
 - ∞ is the identity of the elliptic curve group
 - all other points of E are on the curve

Elliptic Curves: Examples

• Curves
$$y^2 = x^3 - 5x$$
 (left) and $y^2 = x^3 + 8$ (right)

• Number of roots

- for the cubic equation $y^2 = x^3 + ax + b$, the discriminant is $4a^3 + 27b^2$
- if $4a^3 + 27b^2 = 0$, then the curve has a repeated root
 - such elliptic curves are called singular
- if, on the other hand, $4a^3 + 27b^2 \neq 0$, then there are three distinct roots
 - such elliptic curves are called non-singular
- we are excluding singular elliptic curves

Elliptic Curves: Examples

• Singular curves
$$y^2 = x^3 - 3x + 2$$
 (left) and $y^2 = x^3$ (right)

- Operations on elliptic curves
 - we define a binary operation over E that makes it into a commutative group
 - this operation is normally denoted as +
 - let P and Q be two points on E such that $P = (x_1, y_1)$ and $Q = (x_2, y_2)$
 - $-P + \infty = \infty + P = P$
 - let P + Q = R

CSE 664

- such R is computed depending on the relationship between x_1 and x_2 and y_1 and y_2

Spring 2017 -

- Computing P + Q = R
 - there are three cases
 - **case 1:** $x_1 \neq x_2$

CSE 664

- draw a line through P and Q and find another point R', where the line intersects the curve
- reflect R' on the x-axis to obtain R
- the coordinates (x_3, y_3) are computed as:

$$x_3 = \lambda^2 - x_1 - x_2,$$
 $y_3 = \lambda(x_1 - x_3) - y_1$

where λ is the slope computed as $\lambda = (y_2 - y_1)/(x_2 - x_1)$

Spring 2017 ~

• Computing P + Q = R

CSE 664

- **case 2:** $x_1 = x_2$ and $y_1 \neq y_2$
 - P is a reflection of Q on the x axis
 - in this case $P + Q = \infty$
 - thus Q is the inverse of ${\cal P}$
- case 3: $x_1 = x_2$ and $y_1 = y_2$
 - i.e., we are computing P + P
 - this case is handled similar to case 1
 - instead of drawing a line through *P* and *Q*, draw a tangent line to the curve at *P*
 - x_3 and y_3 are computed using the formulas from case 1

- Computing P + Q = R
 - case 3: $x_1 = x_2$ and $y_1 = y_2$ (cont.)
 - the formula for the slope now is $\lambda = (3x_1^2 + a)/(2y_1)$
- Examples

CSE 664

- Elliptic curves modulo a prime p are defined as above except that all operations are replaced by analogous operations in \mathbb{Z}_p
 - now the points are the solutions to the congruence $y^2 \equiv x_3 + ax + b \pmod{p}$
 - $a, b \in \mathbb{Z}_p$ are constants such that $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$
 - given points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, as before $P + Q = \infty$ if $x_1 = x_2$ and $y_2 = -y_1$
 - the slope λ is computed as

CSE 664

$$\lambda = \begin{cases} (y_2 - y_1)(x_2 - x_1)^{-1}, & \text{if } P \neq Q \\ (3x_1^2 + a)(2y_1)^{-1}, & \text{if } P = Q \end{cases}$$

- and as before $P + \infty = \infty + P = P$

Spring 2017 ~

• Example: points on the elliptic curve $y^2 = x^3 + 3x + 4$ over \mathbb{Z}_7

x	$x^3 + 3x + 4 \mod 7$	y
0	4	2, 5
1	1	1,6
2	4	2, 5
3	5	none
4	3	none
5	4	2, 5
6	0	0

– there are 10 points on this elliptic curve (including ∞)

Spring 2017 -

• **Example:** $y^2 \equiv x^3 + 3x + 4 \pmod{7}$ (cont.)

- to add points (1, 1) and (2, 5)

- to double the point (2,2)

Spring 2017 -

- Discrete logarithms over elliptic curves
 - for (G, \cdot) the discrete logarithm $\log_g h$ was defined as x where $g^x = h$
 - now + is the group binary operation, so the discrete logarithm $\log_P Q$ now is *a* such that aP = Q
- **Computing "exponentiation"** *aP*
 - instead of using SQUARE-AND-MULTIPLY algorithm on g and x, we use DOUBLE-AND-ADD algorithm on P and a

CSE 664

- **Computing** *aP*
 - note that additive inverses are very easy to compute
 - this is exploited in a generalization DOUBLE-AND-(ADD OR SUBTRACT) algorithm
 - it uses signed binary representation of integer $a = \sum_{i=0}^{\ell-1} a_i 2^i$, where each $a_i \in \{-1, 0, 1\}$
 - given signed binary representation of a, we compute aP by a series of doublings, additions, and subtractions
 - signed representation reduces the number of add/subtract operations

Elliptic Curve Constructions

- Let's look at elliptic curve version of cryptographic schemes
- Elliptic curve Diffie-Hellman key agreement

CSE 664

- fix an elliptic curve E modulo p and a point P_0 of large order on E
- Alice chooses a (0 < a < p) and sends aP_0 to Bob
- Bob chooses b (0 < b < p) and sends bP_0 to Alice
- Alice computes $k = a(bP_0)$ and Bob computes $k = b(aP_0)$

Spring 2017 ~

Elliptic Curve Constructions

- An elliptic curve analogue of ElGamal encryption is then:
 - fix an elliptic curve E modulo p and a point P_0 of large order on E
 - for Alice to generate a key, she chooses secret a_A ($0 < a_A < p$) and publishes $P_A = aP_0$
 - when Bob wants to encrypt message m:

CSE 664

- he first embeds it into a point P of E
- he then chooses a random b (0 < b < p) and sends to Alice $c = (c_1, c_2) = (bP_0, bP_A + P)$
- Alice, who knows the secret key a_A , decrypts as follows:

$$P = c_2 - a_A c_1 = bP_A + P - a_A bP_0 = ba_A P_0 + P - ba_A P_0 = P$$

Spring 2017 ~

Elliptic Curve Constructions

- An elliptic curve Digital signature algorithm (ECDSA) is then
 - choose one of the recommended elliptic curves and curve parameters
 - government-recommended curves are now questioned in light of past NSA-related events
 - choose a point P_0 of large prime order on the curve and secret key x
 - set the public key to xP_0
 - proceed with signing similar to as before, but using elliptic curve arithmetic
 - see FIPS PUB 186-4 for the details and suggested implementation

CSE 664

Spring 2017 -

Discrete Logarithm Problem

- How hard is the discrete logarithm problem to solve in a group over an elliptic curve *E*?
 - the powerful index calculus algorithm doesn't work for elliptic curves
 - the best possible algorithm is Pollard rho algorithm with $O(\sqrt{p})$ work
- To be secure until the year of 2030
 - it is suggested to choose $p \approx 2^{224}$ in case of elliptic curves
 - compare this with $p \approx 2^{2048}$ for groups (\mathbb{Z}_p^*, \cdot)
 - for that reason, elliptic curves have been gaining popularity, especially on constrained platforms

Spring 2017 -

Summary

- Elliptic curves are solutions to equations of the form $y^2 = x_3 + ax + b$
- Groups over elliptic curves modulo a prime
 - often can be used in similar ways to (\mathbb{Z}_p^*, \cdot)
 - require smaller security parameters because the discrete logarithm is harder in such groups