Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 16: Digital Signatures

Department of Computer Science and Engineering University at Buffalo

Lecture Outline

- Introduction to digital signatures
 - definitions
 - security goals
- Digital signature algorithms
 - RSA signatures
 - Digital Signature Algorithm (DSA)

- A digital signature scheme is a method of signing messages stored in electronic form
- Digital signatures can be used in very similar ways conventional signatures are used
 - paying by a credit card and signing the bill
 - signing a contract
 - signing a letter
- Unlike conventional signatures, we have that
 - digital signatures are not physically attached to messages
 - we cannot compare a digital signature to the original signature

Spring 2017

- A digital signature scheme consists of the following algorithms
 - key generation
 - produces a private signing key sk and a public verification key pk
 - message signing
 - given a message m and a private key sk , produces a signature $\sigma(m)$ on m
 - signature verification
 - given a message m, a public key pk, and a signature $\sigma(m)$ on munder the corresponding secret key sk
 - the algorithm uses pk to verify whether $\sigma(m)$ is a valid signature on m

- Digital signatures allows us to achieve the following security objectives:
 - authentication
 - integrity
 - non-repudiation
 - note that this is the main difference between signatures and MACs
 - a MAC cannot be associated with a unique sender since a symmetric shared key is used
- Are there other conceptual differences from MACs?

- Attack models:
 - key-only attack: adversary knows only the verification key
 - known message attack: adversary has a list of messages and corresponding signatures

 $(m_1, \sigma(m_1)), (m_2, \sigma(m_2)), \ldots$

- chosen message attack: adversary can request signatures on messages of its choice $m_1, m_2, ...$

- Adversarial goals:
 - total break: adversary is able to obtain the private key and can forge a signature on any message
 - selective forgery: adversary is able to create a valid signature on a message chosen by someone else with a significant probability
 - existential forgery: adversary is able to create a valid signature on at least one message
- Signature schemes are only computationally secure
 - this holds for all public-key cryptosystems
 - remember why?

Digital Signatures Formally

- A signature scheme is defined by three PPT algorithms (Gen, Sign, Vrfy) such that:
 - 1. key generation algorithm Gen, on input a security parameter 1^k , outputs a key pair (pk, sk), where pk is the public key and sk is the private key.
 - 2. signing algorithm Sign, on input a private key sk and message $m \in \{0, 1\}^*$, outputs a signature σ , i.e., $\sigma \leftarrow \text{Sign}_{sk}(m)$
 - 3. verification algorithm Vrfy, on input a public key pk, a message m, and a signature σ, outputs a bit b, where b = 1 means the signature is valid and b = 0 means it is invalid, i.e., b := Vrfy_{pk}(m, σ)

Security of Digital Signatures

- We'll want to achieve the same level of security as in case of MACs: existential unforgeability under an adaptive chosen-message attack
- Let $\Pi = (Gen, Sign, Vrfy)$ be a signature scheme
- The signature experiment Sig-forge $A, \Pi(k)$:
 - **1. generate** $(pk, sk) \leftarrow \text{Gen}(1^k)$

CSE 664

- 2. adversary \mathcal{A} is given pk and oracle access to $Sign_{sk}(\cdot)$; let Q denote the set of queries \mathcal{A} makes to the oracle
- **3.** A eventually outputs a pair (m, σ)
- 4. output 1 (\mathcal{A} wins) iff (a) $Vrfy_{sk}(m, \sigma) = 1$ and (b) $m \notin Q$

Spring 2017

Marina Blanton

Security of Digital Signatures

• Definition: A signature scheme Π = (Gen, Sign, Vrfy) is existentially unforgeable under an adaptive chosen-message attack if any PPT adversary A cannot win the experiment with more than negligible probability

$$\Pr[\text{Sig-forge}_{\mathcal{A},\Pi}(k) = 1] \leq \operatorname{negl}(k)$$

- Another essential part of signature schemes is reliable key distribution
 - what can happen?
 - what are consequences?
 - is this unique to signature schemes?

Plain RSA Signature Scheme

- Key generation:
 - choose large prime p and q, set n = pq
 - compute $ed \equiv 1 \pmod{\phi(n)}$
 - set the public key to (n, e) and the private key to d
- Signing:
 - given message m and the key pair pk = (n, e) and sk = d, produce the signature $\sigma(m)$ as $\sigma(m) = m^d \mod n$
- Signature verification:
 - given message m, a signature on it $\sigma(m)$ and the public key pk = (n, e), verify the signature as $m \stackrel{?}{=} \sigma(m)^e \mod n$

Spring 2017

Marina Blanton

RSA Signature Scheme

- Plain or "textbook" RSA signature scheme is easily insecure
 - it is easy to forge a signature
 - first choose $\sigma(m)$
 - then compute m as $\sigma^e \mod n$
 - this is an existential forgery through a key-only attack
 - producing a signature on a meaningful message using this attack is difficult
 - forgery of meaningful messages is still easy using adversary's ability to request signatures

RSA Signature Scheme

- Insecurity of plain RSA signatures
 - forging a signature on an arbitrary message
 - say, adversary has $(m_1, \sigma(m_1))$ and $(m_2, \sigma(m_2))$
 - it forges a signature on $m_3 = m_1 \cdot m_2 \mod n$ as $\sigma(m_3) = \sigma(m_1) \cdot \sigma(m_2) \mod n$
 - this is an existential forgery using a known message attack
 - to obtain a signature on a message m of adversary's choice:
 - \mathcal{A} requests a signature on some m_1 and $m_2 = m/m_1 \mod n$
 - $-\sigma(m) = \sigma(m_1) \cdot \sigma(m_2) \bmod n$

Hashing and Signing

- Many modifications to plain RSA exist, but often without security proofs
- One general idea is to hash messages prior to signing
 - signing a short digest is faster than long messages
 - usage of proper cryptographic hash functions prevents forgeries
 - now a signature on m is produced as $\sigma(h(m))$
 - for RSA:

CSE 664

- let $h: \{0,1\}^* \to \mathbb{Z}_n^*$ be a cryptographic hash function
- given message $m \in \{0, 1\}^*$, sign as $\sigma = (h(m))^d \mod n$
- verification checks whether $h(m) = \sigma^e \mod n$

Spring 2017

Marina Blanton

Hashing and Signing

- It is crucial to use strong cryptographic hash functions
 - all security properties of hash functions are required to hold to prevent different types of attacks
 - preimage resistance
 - second preimage resistance
 - collision resistance
- Let's go back to public-key only attack
 - choose arbitrary σ and compute $\hat{m} = \sigma^e \mod n$
 - then $\hat{m} = h(m)$ and σ is a signature on m
 - what property do we need to make this forgery hard?

Hashing and Signing

- Other attacks against hashed RSA
 - the need for second preimage resistance
 - assume an attacker has a valid signature $\sigma(h(m))$ on message m
 - if the second preimage property of h doesn't hold, the attacker can find $m' \neq m$ with h(m) = h(m')
 - now $\sigma(h(m))$ is a valid signature on m'
 - collision resistance property is similarly needed
 - recall the contract signing example
 - we construct many versions of a legitimate contract m and a bogus contract m' until a collision h(m) = h(m') is found

Security of RSA Signatures

- Security of hashed RSA is proven in an idealized model where h is modeled as a truly random function
 - a hash function is used in practice
 - hashed RSA is widely used
- Both RSA encryption and signatures look similar, but a signature scheme cannot be built from the "reverse" of an encryption scheme
 - why?
 - it is true that RSA is both?

Signatures and Encryption

- How about combining encryption with signing?
- To encrypt a message m and produce a signature on it, we can:
 - **1.** sign and encrypt separately: send $E(m), \sigma(m)$
 - 2. sign and then encrypt: transmit $E(m||\sigma(m))$
 - **3.** encrypt and then sign: transmit $E(m), \sigma(E(m))$
- Which one is the best?
 - what do you think about the first type?

Signatures and Encryption

- The third type is prone to tampering
 - suppose Alice sends a message to Bob using the third type $E_B(m), \sigma_A(E_B(m))$ is used
 - Mallory can capture this transmission, substitute her own signature, and resend $E_B(m), \sigma_M(E_B(m))$
 - Bob will think that the message came from Mallory even though the message might contain information Mallory did not possess

Signature Algorithms

- Other signature algorithms
 - ElGamal signature scheme
 - was published in 1985 and works in groups where the discrete logarithm problem is hard
 - Schnorr signature scheme
 - modifies ElGamal signature scheme to sign a digest of a message in a subgroup of \mathbb{Z}_p^*
 - Digital Signature Algorithm (DSA)
 - a signature standard adopted by NIST
 - incorporates ideas from ElGamal and Schnorr signature schemes
- All of the above schemes are probabilistic

Design of Digital Signatures

- Long-term security for an encryption key might not be required
- Signatures, however, can be used to sign legal documents and may need to be verified many years later after signing
 - security of a signature scheme must be evaluated more carefully
- For adequate security ElGamal and RSA signature schemes leads to signatures of a thousand or more bits
 - it is possible to construct a scheme that produces shorter signatures
 - Schnorr signature scheme has significantly shorter signatures
 - this influenced development of the signature standard

Digital Signature Algorithm (DSA)

- ElGamal and Schnorr signature schemes then led to another scheme called Digital Signature Algorithm (DSA)
 - the DSA was adopted as a standard in 1994
 - published as FIPS PUB 186
 - current revision is FIPS PUB 186-4 (released July 2013)
- Both Schnorr signature scheme and DSA
 - use a subgroup of \mathbb{Z}_p^* of prime order q
 - have a key of the same form
- The DSA is specified to hash the message before signing

- The original DSA
 - the modulus p is required to have length $512 \le |p| \le 1024$ such that |p| is a multiple of 64
 - the size of q is 160 bits
 - SHA-1 is used as the hash function
 - signature on a 160-bit message digest is 320 bits (2 elements in \mathbb{Z}_q)
- DSA today
 - modulus p is 1024, 2048, or 3072 bits long
 - q is 160, 224, or 256 bits long
 - any hash function from FIPS 180 can be used

- Recall a common setup for groups where discrete logarithm problem is hard
 - choose prime p, such that $|p| \ge 1024$
 - there is a sufficiently large prime q such that q|(p-1)
 - g is a generator of subgroup of \mathbb{Z}_p^* having order q
 - we obtain setup for the group (p,q,g)

• Key generation

- let (p,q,g) be a group setup for the discrete log problem to be hard
 - we also want |p| and |q| from one of the predefined size pairs
- let $H : \{0, 1\}^* \to \mathbb{Z}_q$ be a hash function
- choose secret $x \in \mathbb{Z}_q$
- compute $h \equiv g^x \pmod{p}$
- the public key is pk = (H, p, q, g, h)
- the private key is sk = x

• Signing

- given a message $m \in \{0, 1\}^*$, public key pk = (H, p, q, g), and secret key sk = x
- choose $y \in \mathbb{Z}_q^*$ uniformly at random
- compute the signature $\sigma(m) = (\sigma_1, \sigma_2)$, where

$$\sigma_1 = (g^y \mod p) \mod q$$
 and
 $\sigma_2 = (H(m) + x\sigma_1)y^{-1} \mod q$

- if $\sigma_1 = 0$ or $\sigma_2 = 0$, a new value of y should be chosen

Spring 2017

- Signature verification
 - given a message $m \in \{0, 1\}^*$, signature $\sigma(m) = (\sigma_1, \sigma_2)$ and pk = (H, p, q, g, h)
 - verification involves computing
 - $e_1 = H(m)\sigma_2^{-1} \mod q$

•
$$e_2 = \sigma_1 \sigma_2^{-1} \mod q$$

- then test $(g^{e_1}h^{e_2} \mod p) \mod q \stackrel{?}{=} \sigma_1$
- output 1 (valid) iff verification succeeds

- Correctness property
 - the signature $\sigma(m) = (\sigma_1, \sigma_2)$ is

 $\sigma_1 = (g^y \mod p) \mod q$ and $\sigma_2 = (H(m) + x\sigma_1)y^{-1} \mod q$

verification involves

$$e_1 = H(m)\sigma_2^{-1} \mod q$$
 and $e_2 = \sigma_1\sigma_2^{-1} \mod q$

- the test computes

 $(g^{e_1}h^{e_2} \mod p) \mod q =$

CSE 664

Spring 2017

- Security of DSA
 - no proof of security under the discrete logarithm problem exists
 - no proof of security even in the idealized model when H is completely random
- No serious attacks have been found
 - the use of a good hash function is important
- DSS is rather popular in practice
- The standard also specifies elliptic curve version ECDSA

Beyond the Traditional Signatures

- Besides the traditional signature schemes, many other types of signature schemes with special properties exist
- Based on their goals, we divide them into the following categories:
 - stronger security properties
 - fail-stop signatures
 - undeniable signatures
 - forward secure signatures
 - key-insulated signatures

Beyond the Traditional Signatures

- Signature types (cont.)
 - achieving anonymity or repudiation
 - blind signatures
 - ring signatures
 - group signatures
 - designated verifier signatures
 - constrained environments
 - aggregate signatures
 - delegation of signing rights
 - proxy signatures