Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 16: Digital Signatures

Department of Computer Science and Engineering
University at Buffalo

Lecture Outline

- Introduction to digital signatures
- definitions
- security goals
- Digital signature algorithms
- RSA signatures
- Digital Signature Algorithm (DSA)

Digital Signatures

- A digital signature scheme is a method of signing messages stored in electronic form
- Digital signatures can be used in very similar ways conventional signatures are used
- paying by a credit card and signing the bill
- signing a contract
- signing a letter
- Unlike conventional signatures, we have that
- digital signatures are not physically attached to messages
- we cannot compare a digital signature to the original signature

Digital Signatures

- A digital signature scheme consists of the following algorithms
- key generation
- produces a private signing key $s k$ and a public verification key $p k$
- message signing
- given a message m and a private key $s k$, produces a signature $\sigma(m)$ on m
- signature verification
- given a message m, a public key $p k$, and a signature $\sigma(m)$ on m under the corresponding secret key $s k$
- the algorithm uses $p k$ to verify whether $\sigma(m)$ is a valid signature on m

Digital Signatures

- Digital signatures allows us to achieve the following security objectives:
- authentication
- integrity
- non-repudiation
- note that this is the main difference between signatures and MACs
- a MAC cannot be associated with a unique sender since a symmetric shared key is used
- Are there other conceptual differences from MACs?
\qquad
-

Digital Signatures

- Attack models:
- key-only attack: adversary knows only the verification key
- known message attack: adversary has a list of messages and corresponding signatures

$$
\left(m_{1}, \sigma\left(m_{1}\right)\right),\left(m_{2}, \sigma\left(m_{2}\right)\right), \ldots
$$

- chosen message attack: adversary can request signatures on messages of its choice m_{1}, m_{2}, \ldots

Digital Signatures

- Adversarial goals:
- total break: adversary is able to obtain the private key and can forge a signature on any message
- selective forgery: adversary is able to create a valid signature on a message chosen by someone else with a significant probability
- existential forgery: adversary is able to create a valid signature on at least one message
- Signature schemes are only computationally secure
- this holds for all public-key cryptosystems
- remember why?

Digital Signatures Formally

- A signature scheme is defined by three PPT algorithms (Gen, Sign, Vrfy) such that:

1. key generation algorithm Gen, on input a security parameter 1^{k}, outputs a key pair $(p k, s k)$, where $p k$ is the public key and $s k$ is the private key.
2. signing algorithm Sign, on input a private key $s k$ and message $m \in\{0,1\}^{*}$, outputs a signature σ, i.e., $\sigma \leftarrow \operatorname{Sign}_{s k}(m)$
3. verification algorithm $V r f y$, on input a public key $p k$, a message m, and a signature σ, outputs a bit b, where $b=1$ means the signature is valid and $b=0$ means it is invalid, i.e., $b:=\operatorname{Vrfy}_{p k}(m, \sigma)$

Security of Digital Signatures

- We'll want to achieve the same level of security as in case of MACs: existential unforgeability under an adaptive chosen-message attack
- Let $\Pi=$ (Gen, Sign, Vrfy) be a signature scheme
- The signature experiment Sig-forge ${ }_{\mathcal{A}, \Pi}(k)$:

1. generate $(p k, s k) \leftarrow \operatorname{Gen}\left(1^{k}\right)$
2. adversary \mathcal{A} is given $p k$ and oracle access to $\operatorname{Sign}_{s k}(\cdot)$; let Q denote the set of queries \mathcal{A} makes to the oracle
3. \mathcal{A} eventually outputs a pair (m, σ)
4. output $1\left(\mathcal{A}\right.$ wins) iff (a) $\operatorname{Vrfy}_{s k}(m, \sigma)=1$ and (b) $m \notin Q$

Security of Digital Signatures

- Definition: A signature scheme $\Pi=$ (Gen, Sign, Vrfy) is existentially unforgeable under an adaptive chosen-message attack if any PPT adversary \mathcal{A} cannot win the experiment with more than negligible probability

$$
\operatorname{Pr}\left[\text { Sig-forge }_{\mathcal{A}, \Pi}(k)=1\right] \leq \operatorname{negl}(k)
$$

- Another essential part of signature schemes is reliable key distribution
- what can happen?
- what are consequences?
- is this unique to signature schemes?

Plain RSA Signature Scheme

- Key generation:
- choose large prime p and q, set $n=p q$
- compute $e d \equiv 1(\bmod \phi(n))$
- set the public key to (n, e) and the private key to d
- Signing:
- given message m and the key pair $p k=(n, e)$ and $s k=d$, produce the signature $\sigma(m)$ as $\sigma(m)=m^{d} \bmod n$
- Signature verification:
- given message m, a signature on it $\sigma(m)$ and the public key $p k=(n, e)$, verify the signature as $m \stackrel{?}{=} \sigma(m)^{e} \bmod n$

RSA Signature Scheme

- Plain or "textbook" RSA signature scheme is easily insecure
- it is easy to forge a signature
- first choose $\sigma(m)$
- then compute m as $\sigma^{e} \bmod n$
- this is an existential forgery through a key-only attack
- producing a signature on a meaningful message using this attack is difficult
- forgery of meaningful messages is still easy using adversary's ability to request signatures

RSA Signature Scheme

- Insecurity of plain RSA signatures
- forging a signature on an arbitrary message
- say, adversary has $\left(m_{1}, \sigma\left(m_{1}\right)\right)$ and $\left(m_{2}, \sigma\left(m_{2}\right)\right)$
- it forges a signature on $m_{3}=m_{1} \cdot m_{2} \bmod n$ as $\sigma\left(m_{3}\right)=\sigma\left(m_{1}\right) \cdot \sigma\left(m_{2}\right) \bmod n$
- this is an existential forgery using a known message attack
- to obtain a signature on a message m of adversary's choice:
$-\mathcal{A}$ requests a signature on some m_{1} and $m_{2}=m / m_{1} \bmod n$
$-\sigma(m)=\sigma\left(m_{1}\right) \cdot \sigma\left(m_{2}\right) \bmod n$

Hashing and Signing

- Many modifications to plain RSA exist, but often without security proofs
- One general idea is to hash messages prior to signing
- signing a short digest is faster than long messages
- usage of proper cryptographic hash functions prevents forgeries
- now a signature on m is produced as $\sigma(h(m))$
- for RSA:
- let $h:\{0,1\}^{*} \rightarrow \mathbb{Z}_{n}^{*}$ be a cryptographic hash function
- given message $m \in\{0,1\}^{*}$, sign as $\sigma=(h(m))^{d} \bmod n$
- verification checks whether $h(m)=\sigma^{e} \bmod n$

Hashing and Signing

- It is crucial to use strong cryptographic hash functions
- all security properties of hash functions are required to hold to prevent different types of attacks
- preimage resistance
- second preimage resistance
- collision resistance
- Let's go back to public-key only attack
- choose arbitrary σ and compute $\hat{m}=\sigma^{e} \bmod n$
- then $\widehat{m}=h(m)$ and σ is a signature on m
- what property do we need to make this forgery hard?

Hashing and Signing

- Other attacks against hashed RSA
- the need for second preimage resistance
- assume an attacker has a valid signature $\sigma(h(m))$ on message m
- if the second preimage property of h doesn't hold, the attacker can find $m^{\prime} \neq m$ with $h(m)=h\left(m^{\prime}\right)$
- now $\sigma(h(m))$ is a valid signature on m^{\prime}
- collision resistance property is similarly needed
- recall the contract signing example
- we construct many versions of a legitimate contract m and a bogus contract m^{\prime} until a collision $h(m)=h\left(m^{\prime}\right)$ is found

Security of RSA Signatures

- Security of hashed RSA is proven in an idealized model where h is modeled as a truly random function
- a hash function is used in practice
- hashed RSA is widely used
- Both RSA encryption and signatures look similar, but a signature scheme cannot be built from the "reverse" of an encryption scheme
- why?
- it is true that RSA is both?

Signatures and Encryption

- How about combining encryption with signing?
- To encrypt a message m and produce a signature on it, we can:

1. sign and encrypt separately: send $E(m), \sigma(m)$
2. sign and then encrypt: transmit $E(m \| \sigma(m))$
3. encrypt and then sign: transmit $E(m), \sigma(E(m))$

- Which one is the best?
- what do you think about the first type?

Signatures and Encryption

- The third type is prone to tampering
- suppose Alice sends a message to Bob using the third type $E_{B}(m), \sigma_{A}\left(E_{B}(m)\right)$ is used
- Mallory can capture this transmission, substitute her own signature, and resend $E_{B}(m), \sigma_{M}\left(E_{B}(m)\right)$
- Bob will think that the message came from Mallory even though the message might contain information Mallory did not possess

Signature Algorithms

- Other signature algorithms
- ElGamal signature scheme
- was published in 1985 and works in groups where the discrete logarithm problem is hard
- Schnorr signature scheme
- modifies ElGamal signature scheme to sign a digest of a message in a subgroup of \mathbb{Z}_{p}^{*}
- Digital Signature Algorithm (DSA)
- a signature standard adopted by NIST
- incorporates ideas from ElGamal and Schnorr signature schemes
- All of the above schemes are probabilistic

Design of Digital Signatures

- Long-term security for an encryption key might not be required
- Signatures, however, can be used to sign legal documents and may need to be verified many years later after signing
- security of a signature scheme must be evaluated more carefully
- For adequate security EIGamal and RSA signature schemes leads to signatures of a thousand or more bits
- it is possible to construct a scheme that produces shorter signatures
- Schnorr signature scheme has significantly shorter signatures
- this influenced development of the signature standard

Digital Signature Algorithm (DSA)

- ElGamal and Schnorr signature schemes then led to another scheme called Digital Signature Algorithm (DSA)
- the DSA was adopted as a standard in 1994
- published as FIPS PUB 186
- current revision is FIPS PUB 186-4 (released July 2013)
- Both Schnorr signature scheme and DSA
- use a subgroup of \mathbb{Z}_{p}^{*} of prime order q
- have a key of the same form
- The DSA is specified to hash the message before signing

Digital Signature Algorithm

- The original DSA
- the modulus p is required to have length $512 \leq|p| \leq 1024$ such that $|p|$ is a multiple of 64
- the size of q is 160 bits
- SHA-1 is used as the hash function
- signature on a 160-bit message digest is 320 bits (2 elements in \mathbb{Z}_{q})
- DSA today
- modulus p is 1024, 2048, or 3072 bits long
- q is 160,224 , or 256 bits long
- any hash function from FIPS 180 can be used

Digital Signature Algorithm

- Recall a common setup for groups where discrete logarithm problem is hard
- choose prime p, such that $|p| \geq 1024$
- there is a sufficiently large prime q such that $q \mid(p-1)$
- g is a generator of subgroup of \mathbb{Z}_{p}^{*} having order q
- we obtain setup for the group (p, q, g)

Digital Signature Algorithm

- Key generation
- let (p, q, g) be a group setup for the discrete \log problem to be hard - we also want $|p|$ and $|q|$ from one of the predefined size pairs
- let $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$ be a hash function
- choose secret $x \in \mathbb{Z}_{q}$
- compute $h \equiv g^{x}(\bmod p)$
- the public key is $p k=(H, p, q, g, h)$
- the private key is $s k=x$

Digital Signature Algorithm

- Signing
- given a message $m \in\{0,1\}^{*}$, public key $p k=(H, p, q, g)$, and secret key $s k=x$
- choose $y \in \mathbb{Z}_{q}^{*}$ uniformly at random
- compute the signature $\sigma(m)=\left(\sigma_{1}, \sigma_{2}\right)$, where

$$
\begin{aligned}
& \sigma_{1}=\left(g^{y} \bmod p\right) \bmod q \text { and } \\
& \sigma_{2}=\left(H(m)+x \sigma_{1}\right) y^{-1} \bmod q
\end{aligned}
$$

- if $\sigma_{1}=0$ or $\sigma_{2}=0$, a new value of y should be chosen

Digital Signature Algorithm

- Signature verification
- given a message $m \in\{0,1\}^{*}$, signature $\sigma(m)=\left(\sigma_{1}, \sigma_{2}\right)$ and $p k=(H, p, q, g, h)$
- verification involves computing
- $e_{1}=H(m) \sigma_{2}^{-1} \bmod q$
- $e_{2}=\sigma_{1} \sigma_{2}^{-1} \bmod q$
- then test $\left(g^{e_{1}} h^{e_{2}} \bmod p\right) \bmod q \stackrel{?}{=} \sigma_{1}$
- output 1 (valid) iff verification succeeds

Digital Signature Algorithm

- Correctness property
- the signature $\sigma(m)=\left(\sigma_{1}, \sigma_{2}\right)$ is

$$
\sigma_{1}=\left(g^{y} \bmod p\right) \bmod q \text { and } \sigma_{2}=\left(H(m)+x \sigma_{1}\right) y^{-1} \bmod q
$$

- verification involves

$$
e_{1}=H(m) \sigma_{2}^{-1} \bmod q \text { and } e_{2}=\sigma_{1} \sigma_{2}^{-1} \bmod q
$$

- the test computes

$$
\left(g^{e_{1}} h^{e_{2}} \bmod p\right) \bmod q=
$$

Digital Signature Algorithm

- Security of DSA
- no proof of security under the discrete logarithm problem exists
- no proof of security even in the idealized model when H is completely random
- No serious attacks have been found
- the use of a good hash function is important
- DSS is rather popular in practice
- The standard also specifies elliptic curve version ECDSA

Beyond the Traditional Signatures

- Besides the traditional signature schemes, many other types of signature schemes with special properties exist
- Based on their goals, we divide them into the following categories:
- stronger security properties
- fail-stop signatures
- undeniable signatures
- forward secure signatures
- key-insulated signatures

Beyond the Traditional Signatures

- Signature types (cont.)
- achieving anonymity or repudiation
- blind signatures
- ring signatures
- group signatures
- designated verifier signatures
- constrained environments
- aggregate signatures
- delegation of signing rights
- proxy signatures

