Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 15: Discrete Logarithms and ElGamal Encryption

Department of Computer Science and Engineering University at Buffalo

What's Next

- So far we looked at a public-key encryption scheme modulo a composite
 - the difficulty of breaking it lies in factoring and computing roots modulo a composite
- Now we are going to study a public-key encryption scheme modulo a prime
 - discrete logarithms
 - Diffie-Hellman problem
 - ElGamal encryption

— Spring 2017

Terminology Recap

- Recall that group G is a set of elements together with
 - a binary operation for which the associative law holds and the set is closed under that operation
 - a unique identity element
 - and unique inverses for each element a of G
- ullet The multiplicative group modulo m is denoted by \mathbb{Z}_m^*
- A cyclic group is one that contains an element a whose powers a^i and a^{-i} make up the entire group
- An element a with such property is called a generator of the group

ElGamal Encryption

- The idea behind ElGamal encryption
 - we are given a cyclic multiplicative group G
 - let $m \in G$ be an arbitrary element
 - if g is an element of G chosen uniformly at random, then so is $g'=g\cdot m$
 - ullet m is perfectly protected
 - we want g to be pseudorandom
 - g is computable using the private key sk and can't be guessed otherwise

Discrete logarithms

- we are given a cyclic group G of order q
- then there exists an element $g \in G$ such that $G = \langle g \rangle = \{g^i : 0 \le i \le q-1\}$
- for each $h \in G$ there is a unique x such that $g^x = h$
- such x is called the discrete logarithm of h with respect to g and we use $x = \log_g h$
- many properties of regular logarithms apply
 - $\log_g 1 = 0$
 - $\log_g(h_1 \cdot h_2) = (\log_g h_1 + \log_g h_2) \bmod q$

- The discrete logarithm problem
 - in a cyclic group G with given generator g, compute unique $\log_g h$ for a random element $h \in G$
- Let PPT algorithm $Set(1^k)$ output a cyclic group G of order q and generator $g \in G$
- The discrete logarithm experiment $\mathsf{DLog}_{\mathcal{A},Set}(k)$:
 - **1.** Run $(G, q, g) \leftarrow Set(1^k)$ and choose random $h \in G$
 - 2. A is given G, q, g, h and outputs $x \in \mathbb{Z}_q$
 - 3. the experiment outputs 1 if $g^x = h$ and 0 otherwise

• We say that the discrete logarithm problem is hard (relative to Set) if any PPT adversary $\mathcal A$ cannot win the discrete logarithm experiment with a non-negligible probability

$$\Pr[\mathsf{DLog}_{\mathcal{A},Set}(k) = 1] \le \mathsf{negl}(k)$$

- When is the discrete logarithm problem hard?
 - most often a multiplicative group modulo prime p, \mathbb{Z}_p^* , or its subgroup is used
 - the choice of parameters is driven by known algorithms for solving the discrete logarithm problem

- Is the discrete logarithm problem generally hard?
 - it is hard in (\mathbb{Z}_p^*,\cdot) using proper parameters
 - how about $(\mathbb{Z}_n, +)$?
 - let gcd(g, n) = 1, so g is a generator of \mathbb{Z}_n
 - now $g^x \bmod n$ in multiplicative groups translates to $gx \bmod n$
 - the discrete logarithm problem is then $gx \equiv h \pmod{n}$
 - but since gcd(g, n) = 1, we can compute $g^{-1} \mod n$
 - $\operatorname{now} x = \log_g h = hg^{-1} \bmod n$
 - are there other cases when $\log_g h$ is hard?

- Algorithms for solving discrete log
 - there are generic algorithms that work for every cyclic group
 - e.g., Shanks' method, Pollard rho method, Pohlig-Hellman algorithm
 - there are algorithms that work for certain groups only
 - they rely on particular representation of the group
 - they are faster and will require larger security parameters
 - e.g., general number field sieve for (\mathbb{Z}_p^*,\cdot) with prime p
 - for certain groups, there are no better attacks than generic algorithms
 - e.g., groups over elliptic curves

Algorithms for Discrete Logarithm Problem

- Shanks' baby-step/giant-step algorithm
 - the algorithm requires $O(\sqrt{q})$ steps for groups of order q
 - "giant steps" are of size \sqrt{q} and "baby steps" are of size 1
 - algorithm steps on input $G = \langle g \rangle$ and $h \in G$
 - 1. set $t = \lfloor \sqrt{q} \rfloor$
 - 2. for i = 0 to |q/t|, compute $g_i = g^{i \cdot t}$
 - 3. sort pairs (i, g_i) by second value
 - 4. for i=0 to t, compute $h_i=h\cdot h^i$; if $h_i=g_j$ for some j, return $jt-i \bmod q$
 - taking into account sorting and mod exponentiations & multiplications, overall complexity is $O(\sqrt{q} \cdot \mathsf{polylog}(q))$

Algorithms for Discrete Logarithm Problem

- Pohlig-Hellman algorithm
 - works when factorization of group order q is known or can be computed
 - reduces the problem of computing discrete log in groups of order $q = q_1 \cdot q_2$ to discrete log in groups of order q_1 and q_2
 - it uses a variant of the Chinese remainder theorem
 - thus, group order q must always contain at least one large factor

- Discrete logarithm problem
 - groups of prime order are a popular choice because..
 - Pohlig-Hellman algorithm is not effective
 - finding a generator is easy: each element is a generator
 - exponent manipulation is easier: each exponent has an inverse
 - other security assumptions are more likely to hold
- How do we produce a group of prime order or with a large factor in the group order?

12

- A subgroup of a group is a subset of the group that forms a group with the same binary operation
 - for example, powers a^i in a multiplicative group can "hit" only a subset of the group elements
- A group (\mathbb{Z}_p^*,\cdot) for prime p has order $\phi(p)=p-1$
- ullet Subgroups of \mathbb{Z}_p^* can have any order q that divides p-1
 - we often might want p = 2q + 1 for prime p and q
 - or we can have p = 2qt + 1 for reasonably large prime q and some t

- How do we generate a subgroup?
 - let order of some group G be $q = q_1 \cdot q_2$
 - to obtain generator of subgroup of order q_1 , we often can pick $a \in G$ and set $g = a^{q_2}$
- How do we generate proper prime p?
 - we want to generate primes p and q such that q | (p-1)
 - to do so, we need to know the factorization of p-1
 - approach 1: generate a random prime p and then factor p-1
 - approach 2: generate a random q first and then choose r such that p = 2rq + 1 is prime

- The choice of parameters
 - for group \mathbb{Z}_p^* , p needs to be large enough for discrete log to be hard to solve
 - fastest algorithm runs on average in $2^{O(k^{1/3}(\log k)^{2/3})}$ time
 - today this requires |p| of 1536 bits or higher
 - the group order must have at least one large factor to prevent exhaustive search
 - e.g., 192 bits or higher
 - if the group order is prime, it can be relatively short (same 192 bits)
 - this can improve performance

- ElGamal encryption
 - a public-key encryption published in 1985 by ElGamal
 - its security relies on the discrete logarithm problem being hard
 - the encryption operation is randomized
 - a ciphertext is twice as long as the original message
 - the idea:
 - the plaintext m is masked by multiplying it by h^y
 - ullet another value g^y is transmitted as part of the ciphertext
 - knowing the private key, one can compute $h^{\mathcal{Y}}$ from $g^{\mathcal{Y}}$ and unmask the message

Key generation

- choose a cyclic group G of order q and a generator $g \in G$
- choose a random x from \mathbb{Z}_q and compute $h=g^x$
- public key: pk = (G, q, g, h)
- private key: sk = x

• Encryption

- to encrypt a message $m \in G$ using public key pk = (G, q, g, h)
- choose a random number $y \in \mathbb{Z}_q$
- compute the ciphertext as

$$c = \operatorname{Enc}_{pk}(m) = (c_1, c_2) = (g^y, m \cdot h^y)$$

• Decryption

- given a ciphertext $c = (c_1, c_2)$ and keys pk = (G, q, g, h), sk = x
- decrypt the ciphertext as $m = \text{Dec}_{sk}(c) = c_2 \cdot c_1^{-x}$

Correctness

- we show that $\operatorname{Dec}_{sk}(\operatorname{Enc}_{pk}(m)) = m$
- the decryption is

• Example

- key generation
 - let p = 2579 and g = 2
 - suppose we choose x = 765 and compute $h = 2^{765} \mod 2579 = 949$
 - the public key is pk = (2579, 2, 949)
 - the secret key is sk = 765
- encryption
 - to encrypt m = 1299, suppose we choose y = 853
 - to encrypt, first compute $c_1 = 2^{853} \mod 2579 = 435$ and $c_2 = 1299 \cdot 949^{853} \mod 2579 = 2396$

- Example (cont.)
 - encryption
 - the ciphertext is c = (435, 2396)
 - decryption
 - given $c = (c_1, c_2)$, we decrypt the message by computing $c_2 \cdot (c_1^x)^{-1} \mod p$:

$$m = 2396 \cdot (435^{765})^{-1} \mod 2579 = 1299$$

- Security of ElGamal encryption
 - depends on the discrete logarithm problem in G being infeasible
 - but it is based on a different hardness assumption

- On parameter choice in ElGamal
 - if g is a generator of \mathbb{Z}_p^*
 - p should have several hundred digits for the discrete logarithm to be hard
 - p-1 should have at least one large prime factor
 - if g does not generate \mathbb{Z}_p^*
 - the order of g can be smaller than p-1
 - for instance, prime order q of length 192 bits is sufficient
 - the group doesn't have to be \mathbb{Z}_p^*
 - other choices include groups defined over elliptic curves

- On parameter choice in ElGamal
 - sharing parameters
 - unlike in cryptosystems that use composite modulus, here the same p and g can be used in many keys
 - when modulus n=pq is used, its factorization is often the private key or allows to compute the private key
 - here both p and g are public
 - that makes this encryption secure is the knowledge of the secret value \boldsymbol{x}
 - a fresh value of y should be picked for each encryption

Diffie-Hellman Key Exchange

- Diffie-Hellman key exchange protocol
 - Alice and Bob want to compute a shared key, which must be unknown to eavesdroppers
 - Alice and Bob share public parameters: a group G of order q and a generator g
 - Alice randomly chooses $x \in \mathbb{Z}_q$ and sends g^x to Bob: $A \xrightarrow{g^x} B$
 - Bob randomly chooses $y \in \mathbb{Z}_q$ and sends g^y to Alice: $A \stackrel{g^y}{\longleftarrow} B$
 - the shared secret is set to g^{xy}
 - Alice computes it as $(g^y)^x = g^{xy}$
 - Bob computes it as $(g^x)^y = g^{xy}$

Diffie-Hellman Key Exchange

- Diffie-Hellman key exchange protocol
 - Alice and Bob are able to establish a shared secret with no prior relationship
 - it is believed to be infeasible for an eavesdropper to compute g^{xy} given g^x and g^y
- Diffie-Hellman problem
 - Computational Diffie-Hellman (CDH) problem
 - given g, g^x and g^y , compute g^{xy}
 - Decision Diffie-Hellman (DDH) problem
 - given g, g^x, g^y , and g^z , determine whether xy = z (modulo q)

Diffie-Hellman Problem

- As before, CDH (DDH) problem is hard if any PPT adversary ${\cal A}$ has at most negligible probability in solving it
- Diffie-Hellman problem
 - DDH is a stronger assumption than CDH
 - breaking CDH implies breaking DDH, but the converse is not true
 - discrete log is at least as hard as CDH
 - security of the Diffie-Hellman key exchange protocol is based on the CDH assumption

CSE 664 — Spring 2017

Security of ElGamal Encryption

- Going back to ElGamal
 - if the CDH assumption holds, ElGamal is one-way
 - i.e., if you can solve the CDH problem, you will be able to decrypt
 - if the DDH assumption holds, ElGamal is secure in the sense of indistinguishability
- \bullet Formally: if the DDH problem is hard (relative to Set), then the ElGamal encryption scheme has indistinguishable encryptions under a chosen-plaintext attack

CSE 664 — Spring 2017

26

Security of ElGamal Encryption

• Security proof sketch

CSE 664 — Spring 2017

Security of ElGamal Encryption

- Care must be taken when mapping messages to group elements
 - one (least significant) bit of discrete logarithm is easy to compute
 - we say that an element $y \in \mathbb{Z}_p^*$ is a quadratic residue (QR) modulo p if there exists $x \in \mathbb{Z}_p^*$ such that $y = x^2 \mod p$
 - given a ciphertext, an adversary can tell whether the underlying plaintext was a QR modulo p or not
 - to ensure indistinguishability, we need to make sure that all values we use will have the same value for that bit
 - thus, we encode messages as $x^2 \mod p$ only

EIGamal Encryption

- More on quadratic residues
 - a is called a quadratic residue (QR) modulo m if $x^2 \equiv a \pmod{m}$ has solutions
 - -a is called a quadratic non-residue (QNR) otherwise
 - there are the same number, (p-1)/2, of QRs and QNRs modulo prime p among numbers $1, \ldots, p-1$
 - if a is a QR modulo prime p, its square roots are $\pm x \mod p$
 - then one solution is $\leq (p-1)/2$ and the other one is not
 - square roots are efficiently computable

ElGamal Encryption

- Encryption with ElGamal becomes
 - given a message m, interpret it as a integer between 1 and q, where q=(p-1)/2
 - compute $\hat{m} = m^2 \mod p$ and encrypt \hat{m}
 - upon decryption:
 - obtain \hat{m}
 - compute square roots m_1, m_2 of \hat{m} modulo p
 - set m to the unique $1 \leq m_i \leq q$

Summary

- The discrete logarithm problem is considered hard in groups modulo a large prime
- Many constructions rely on it
- ElGamal is an example of encryption that assumes hardness of discrete logarithm problem
- Diffie-Hellman key exchange is built using similar assumptions
 - two types of hardness assumptions are known as computational and decision Diffie-Hellman problems
- ElGamal is CPA-secure under the DDH assumption

— Spring 2017