Applied Cryptography and Computer Security CSE 664 Spring 2017
 Lecture 15: Discrete Logarithms and ElGamal Encryption

Department of Computer Science and Engineering
University at Buffalo

What's Next

- So far we looked at a public-key encryption scheme modulo a composite
- the difficulty of breaking it lies in factoring and computing roots modulo a composite
- Now we are going to study a public-key encryption scheme modulo a prime
- discrete logarithms
- Diffie-Hellman problem
- ElGamal encryption

Terminology Recap

- Recall that group G is a set of elements together with
- a binary operation for which the associative law holds and the set is closed under that operation
- a unique identity element
- and unique inverses for each element a of G
- The multiplicative group modulo m is denoted by \mathbb{Z}_{m}^{*}
- A cyclic group is one that contains an element a whose powers a^{i} and a^{-i} make up the entire group
- An element a with such property is called a generator of the group

ElGamal Encryption

- The idea behind ElGamal encryption
- we are given a cyclic multiplicative group G
- let $m \in G$ be an arbitrary element
- if g is an element of G chosen uniformly at random, then so is $g^{\prime}=g \cdot m$
- m is perfectly protected
- we want g to be pseudorandom
- g is computable using the private key $s k$ and can't be guessed otherwise

Discrete Logarithm Problem

- Discrete logarithms
- we are given a cyclic group G of order q
- then there exists an element $g \in G$ such that $G=\langle g\rangle=\left\{g^{i}: 0 \leq i \leq q-1\right\}$
- for each $h \in G$ there is a unique x such that $g^{x}=h$
- such x is called the discrete logarithm of h with respect to g and we use $x=\log _{g} h$
- many properties of regular logarithms apply
- $\log _{g} 1=0$
- $\log _{g}\left(h_{1} \cdot h_{2}\right)=\left(\log _{g} h_{1}+\log _{g} h_{2}\right) \bmod q$

Discrete Logarithm Problem

- The discrete logarithm problem
- in a cyclic group G with given generator g, compute unique $\log _{g} h$ for a random element $h \in G$
- Let PPT algorithm $\operatorname{Set}\left(1^{k}\right)$ output a cyclic group G of order q and generator $g \in G$
- The discrete logarithm experiment $\operatorname{DLog}_{\mathcal{A}, S e t}(k)$:

1. Run $(G, q, g) \leftarrow \operatorname{Set}\left(1^{k}\right)$ and choose random $h \in G$
2. \mathcal{A} is given G, q, g, h and outputs $x \in \mathbb{Z}_{q}$
3. the experiment outputs $\mathbf{1}$ if $g^{x}=h$ and $\mathbf{0}$ otherwise

Discrete Logarithm Problem

- We say that the discrete logarithm problem is hard (relative to $S e t$) if any PPT adversary \mathcal{A} cannot win the discrete logarithm experiment with a non-negligible probability

$$
\operatorname{Pr}\left[\log _{\mathcal{A}, S e t}(k)=1\right] \leq \operatorname{neg} \mid(k)
$$

- When is the discrete logarithm problem hard?
- most often a multiplicative group modulo prime p, \mathbb{Z}_{p}^{*}, or its subgroup is used
- the choice of parameters is driven by known algorithms for solving the discrete logarithm problem

Discrete Logarithm Problem

- Is the discrete logarithm problem generally hard?
- it is hard in $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ using proper parameters
- how about $\left(\mathbb{Z}_{n},+\right)$?
- let $\operatorname{gcd}(g, n)=1$, so g is a generator of \mathbb{Z}_{n}
- now $g^{x} \bmod n$ in multiplicative groups translates to $g x \bmod n$
- the discrete logarithm problem is then $g x \equiv h(\bmod n)$
- but since $\operatorname{gcd}(g, n)=1$, we can compute $g^{-1} \bmod n$
- now $x=\log _{g} h=h g^{-1} \bmod n$
- are there other cases when $\log _{g} h$ is hard?

Discrete Logarithm Problem

- Algorithms for solving discrete log
- there are generic algorithms that work for every cyclic group
- e.g., Shanks' method, Pollard rho method, Pohlig-Hellman algorithm
- there are algorithms that work for certain groups only
- they rely on particular representation of the group
- they are faster and will require larger security parameters
- e.g., general number field sieve for $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ with prime p
- for certain groups, there are no better attacks than generic algorithms
- e.g., groups over elliptic curves

Algorithms for Discrete Logarithm Problem

- Shanks' baby-step/giant-step algorithm
- the algorithm requires $O(\sqrt{q})$ steps for groups of order q
- "giant steps" are of size \sqrt{q} and "baby steps" are of size 1
- algorithm steps on input $G=\langle g\rangle$ and $h \in G$

1. set $t=\lfloor\sqrt{q}\rfloor$
2. for $i=0$ to $\lfloor q / t\rfloor$, compute $g_{i}=g^{i \cdot t}$
3. sort pairs $\left(i, g_{i}\right)$ by second value
4. for $i=0$ to t, compute $h_{i}=h \cdot h^{i}$; if $h_{i}=g_{j}$ for some j, return $j t-i \bmod q$

- taking into account sorting and mod exponentiations \& multiplications, overall complexity is $O(\sqrt{q} \cdot \operatorname{polylog}(q))$

Algorithms for Discrete Logarithm Problem

- Pohlig-Hellman algorithm
- works when factorization of group order q is known or can be computed
- reduces the problem of computing discrete \log in groups of order $q=q_{1} \cdot q_{2}$ to discrete \log in groups of order q_{1} and q_{2}
- it uses a variant of the Chinese remainder theorem
- thus, group order q must always contain at least one large factor

Discrete Logarithm Problem

- Discrete logarithm problem
- groups of prime order are a popular choice because..
- Pohlig-Hellman algorithm is not effective
- finding a generator is easy: each element is a generator
- exponent manipulation is easier: each exponent has an inverse
- other security assumptions are more likely to hold
- How do we produce a group of prime order or with a large factor in the group order?

Discrete Logarithm Problem

- A subgroup of a group is a subset of the group that forms a group with the same binary operation
- for example, powers a^{i} in a multiplicative group can "hit" only a subset of the group elements
- A group $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ for prime p has order $\phi(p)=p-1$
- Subgroups of \mathbb{Z}_{p}^{*} can have any order q that divides $p-1$
- we often might want $p=2 q+1$ for prime p and q
- or we can have $p=2 q t+1$ for reasonably large prime q and some t

Discrete Logarithm Problem

- How do we generate a subgroup?
- let order of some group G be $q=q_{1} \cdot q_{2}$
- to obtain generator of subgroup of order q_{1}, we often can pick $a \in G$ and set $g=a^{q_{2}}$
- How do we generate proper prime p ?
- we want to generate primes p and q such that $q \mid(p-1)$
- to do so, we need to know the factorization of $p-1$
- approach 1: generate a random prime p and then factor $p-1$
- approach 2: generate a random q first and then choose r such that $p=2 r q+1$ is prime

Discrete Logarithm Problem

- The choice of parameters
- for group \mathbb{Z}_{p}^{*}, p needs to be large enough for discrete log to be hard to solve
- fastest algorithm runs on average in $2^{O\left(k^{1 / 3}(\log k)^{2 / 3}\right)}$ time
- today this requires $|p|$ of 1536 bits or higher
- the group order must have at least one large factor to prevent exhaustive search
- e.g., 192 bits or higher
- if the group order is prime, it can be relatively short (same 192 bits)
- this can improve performance

ElGamal Public-Key Encryption

- ElGamal encryption
- a public-key encryption published in 1985 by ElGamal
- its security relies on the discrete logarithm problem being hard
- the encryption operation is randomized
- a ciphertext is twice as long as the original message
- the idea:
- the plaintext m is masked by multiplying it by h^{y}
- another value g^{y} is transmitted as part of the ciphertext
- knowing the private key, one can compute h^{y} from g^{y} and unmask the message

ElGamal Public-Key Encryption

- Key generation
- choose a cyclic group G of order q and a generator $g \in G$
- choose a random x from \mathbb{Z}_{q} and compute $h=g^{x}$
- public key: $p k=(G, q, g, h)$
- private key: $s k=x$
- Encryption
- to encrypt a message $m \in G$ using public key $p k=(G, q, g, h)$
- choose a random number $y \in \mathbb{Z}_{q}$
- compute the ciphertext as

$$
c=\operatorname{Enc}_{p k}(m)=\left(c_{1}, c_{2}\right)=\left(g^{y}, m \cdot h^{y}\right)
$$

ElGamal Public-Key Encryption

- Decryption
- given a ciphertext $c=\left(c_{1}, c_{2}\right)$ and keys $p k=(G, q, g, h), s k=x$
- decrypt the ciphertext as $m=\operatorname{Dec}_{s k}(c)=c_{2} \cdot c_{1}^{-x}$
- Correctness
- we show that $\operatorname{Dec}_{s k}\left(\operatorname{Enc}_{p k}(m)\right)=m$
- the decryption is

ElGamal Public-Key Encryption

- Example
- key generation
- let $p=2579$ and $g=2$
- suppose we choose $x=765$ and compute $h=2^{765} \bmod 2579=949$
- the public key is $p k=(2579,2,949)$
- the secret key is $s k=765$
- encryption
- to encrypt $m=1299$, suppose we choose $y=853$
- to encrypt, first compute $c_{1}=2^{853} \bmod 2579=435$ and $c_{2}=1299 \cdot 949^{853} \bmod 2579=2396$

ElGamal Public-Key Encryption

- Example (cont.)
- encryption
- the ciphertext is $c=(435,2396)$
- decryption
- given $c=\left(c_{1}, c_{2}\right)$, we decrypt the message by computing $c_{2} \cdot\left(c_{1}^{x}\right)^{-1} \bmod p:$

$$
m=2396 \cdot\left(435^{765}\right)^{-1} \bmod 2579=1299
$$

- Security of ElGamal encryption
- depends on the discrete logarithm problem in G being infeasible
- but it is based on a different hardness assumption

ElGamal Public-Key Encryption

- On parameter choice in ElGamal
- if g is a generator of \mathbb{Z}_{p}^{*}
- p should have several hundred digits for the discrete logarithm to be hard
- $p-1$ should have at least one large prime factor
- if g does not generate \mathbb{Z}_{p}^{*}
- the order of g can be smaller than $p-1$
- for instance, prime order q of length 192 bits is sufficient
- the group doesn't have to be \mathbb{Z}_{p}^{*}
- other choices include groups defined over elliptic curves

EIGamal Public-Key Encryption

- On parameter choice in ElGamal
- sharing parameters
- unlike in cryptosystems that use composite modulus, here the same p and g can be used in many keys
- when modulus $n=p q$ is used, its factorization is often the private key or allows to compute the private key
- here both p and g are public
- that makes this encryption secure is the knowledge of the secret value x
- a fresh value of y should be picked for each encryption

Diffie-Hellman Key Exchange

- Diffie-Hellman key exchange protocol
- Alice and Bob want to compute a shared key, which must be unknown to eavesdroppers
- Alice and Bob share public parameters: a group G of order q and a generator g
- Alice randomly chooses $x \in \mathbb{Z}_{q}$ and sends g^{x} to Bob: $A \xrightarrow{g^{x}} B$
- Bob randomly chooses $y \in \mathbb{Z}_{q}$ and sends g^{y} to Alice: $A \stackrel{g^{y}}{\leftarrow} B$
- the shared secret is set to $g^{x y}$
- Alice computes it as $\left(g^{y}\right)^{x}=g^{x y}$
- Bob computes it as $\left(g^{x}\right)^{y}=g^{x y}$

Diffie-Hellman Key Exchange

- Diffie-Hellman key exchange protocol
- Alice and Bob are able to establish a shared secret with no prior relationship
- it is believed to be infeasible for an eavesdropper to compute $g^{x y}$ given g^{x} and g^{y}
- Diffie-Hellman problem
- Computational Diffie-Hellman (CDH) problem
- given g, g^{x} and g^{y}, compute $g^{x y}$
- Decision Diffie-Hellman (DDH) problem
- given g, g^{x}, g^{y}, and g^{z}, determine whether $x y=z(\operatorname{modul} q)$

Diffie-Hellman Problem

- As before, CDH (DDH) problem is hard if any PPT adversary \mathcal{A} has at most negligible probability in solving it
- Diffie-Hellman problem
- DDH is a stronger assumption than CDH
- breaking CDH implies breaking DDH, but the converse is not true
- discrete \log is at least as hard as CDH
- security of the Diffie-Hellman key exchange protocol is based on the CDH assumption

Security of ElGamal Encryption

- Going back to ElGamal
- if the CDH assumption holds, ElGamal is one-way
- i.e., if you can solve the CDH problem, you will be able to decrypt
- if the DDH assumption holds, ElGamal is secure in the sense of indistinguishability
- Formally: if the DDH problem is hard (relative to $S e t$), then the ElGamal encryption scheme has indistinguishable encryptions under a chosen-plaintext attack

Security of ElGamal Encryption

- Security proof sketch

Security of ElGamal Encryption

- Care must be taken when mapping messages to group elements
- one (least significant) bit of discrete logarithm is easy to compute
- we say that an element $y \in \mathbb{Z}_{p}^{*}$ is a quadratic residue $(\mathbf{Q R})$ modulo p if there exists $x \in \mathbb{Z}_{p}^{*}$ such that $y=x^{2} \bmod p$
- given a ciphertext, an adversary can tell whether the underlying plaintext was a QR modulo p or not
- to ensure indistinguishability, we need to make sure that all values we use will have the same value for that bit
- thus, we encode messages as $x^{2} \bmod p$ only

ElGamal Encryption

- More on quadratic residues
$-a$ is called a quadratic residue $(\mathbf{Q R}) \operatorname{modulo} m$ if $x^{2} \equiv a(\bmod m)$ has solutions
- a is called a quadratic non-residue (QNR) otherwise
- there are the same number, $(p-1) / 2$, of QRs and QNRs modulo prime p among numbers $1, \ldots, p-1$
- if a is a QR modulo prime p, its square roots are $\pm x \bmod p$
- then one solution is $\leq(p-1) / 2$ and the other one is not
- square roots are efficiently computable

ElGamal Encryption

- Encryption with ElGamal becomes
- given a message m, interpret it as a integer between 1 and q, where $q=(p-1) / 2$
- compute $\hat{m}=m^{2} \bmod p$ and encrypt \hat{m}
- upon decryption:
- obtain \widehat{m}
- compute square roots m_{1}, m_{2} of \widehat{m} modulo p
- set m to the unique $1 \leq m_{i} \leq q$

Summary

- The discrete logarithm problem is considered hard in groups modulo a large prime
- Many constructions rely on it
- ElGamal is an example of encryption that assumes hardness of discrete logarithm problem
- Diffie-Hellman key exchange is built using similar assumptions
- two types of hardness assumptions are known as computational and decision Diffie-Hellman problems
- ElGamal is CPA-secure under the DDH assumption

