Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 14: Security of RSA

Department of Computer Science and Engineering University at Buffalo

Summary of RSA

- Key generation
 - choose prime p, q, and e; set n = pq
 - public key is pk = (e, n)
 - private key is sk = d, where $d \equiv e^{-1} \pmod{\phi(n)}$
- Encryption
 - given a message 0 < m < n
 - encrypt as $c = E_{pk}(m) = m^e \mod n$
- Decryption
 - given ciphertext c
 - decrypt as $m = D_{sk}(c) = c^d \mod n$

- The security of the RSA encryption schemes depends on the hardness of the RSA problem
- The RSA problem is widely believed to be computationally equivalent to factoring, but no proof is known
- Knowledge of the following is equivalent with public key (n, e), i.e., enables decryption
 - factors p and q
 - $-\phi(n)$
 - private key d

• Knowledge of n and $\phi(n)$ implies knowledge of factors p and q

– given
$$n$$
 and $\phi(n)$, we can compute

$$\phi(n) = (p-1)(q-1) = n - p - q + 1 = n - p - n/p + 1$$

$$p\phi(n) = np - p^2 - n + p$$

then
$$p^2 - np + \phi(n)p - p + n = 0$$

 $p^2 - (n - \phi(n) + 1)p + n = 0$

– the above equation has two solutions: \boldsymbol{p} and \boldsymbol{q}

Factoring Large Numbers

- For factoring a product of two primes, most effective algorithms are
 - quadratic sieve
 - number field sieve
 - elliptic curve factoring algorithm
- The best factoring algorithms run in sub-exponential time
- Hardness of factoring
 - 512-bit modulus has been factored in 1999
 - 768-bit modulus has been factored in 2009
 - 1024-bit modulus may be factored soon

- Plain RSA is very weak
- Attacks on plain RSA
 - short messages
 - brute force search
 - common modulus
 - small exponents e and d
 - timing attacks
- Improving security of RSA

- Encrypting short messages with small *e*
 - often *e* can be very small such as 3
 - suppose that we encrypt a message $m < n^{1/3}$ and transmit ciphertext $c = m^e \mod n$
 - any m can be encoded as an element of \mathbb{Z}_n by treating it as integer and padding with 0s on the left
 - no modular reduction used and $m = c^{1/3}$ over integers can be easily carried out
 - now how about encrypting 128-bit symmetric encryption key with 1024-bit modulus?

- Brute force key search
 - try possible keys hoping to find the correct one
 - infeasible to succeed unlike in case of symmetric encryption
- Brute force message search
 - the message space can be bounded by some value L
 - simply encrypt all messages
 - the encryption algorithm is public
 - when we see ciphertext c, simply compare it to our ciphertexts
 - **–** attack takes time/space linear in *L*

- Brute force message search
 - unfortunately, a much faster attack is known that runs in about \sqrt{L} time
 - implications: decrypting a 128-bit key takes 2⁶⁴ steps
 - algorithm:
 - we are given $c = \operatorname{Enc}(m) = m^e \mod n$ for some $m < 2^\ell$
 - set $T = 2^{\alpha \ell}$ for $1/2 < \alpha < 1$
 - for r = 1, ..., T, set $x_r = c/r^e \mod n$
 - sort the pairs (r, x_r) by the second value
 - for s = 1, ..., T, if $s^e \mod n = x_r$ for some r, output $r \cdot s \mod n$

Spring 2017

Marina Blanton

• Small encryption exponent e

CSE 664

- suppose that the same e = 3 is used with different moduli (i.e., with different public keys)
- suppose Alice wants to send the same message m to three different people using their moduli n_1 , n_2 , and n_3
- she sends $c_i = m^3 \mod n_i$ for i = 1, 2, 3
- an eavesdropper Eve observes c_1, c_2 , and c_3
- Eve can use the Chinese Remainder Theorem to find a solution x($0 < x < n_1n_2n_3$) to the three congruences $x \equiv c_i \pmod{n_i}$
- the solution is $x = m^3$ and m can be recovered by computing $\sqrt[3]{x}$ over integers (since $m < \min(n_1, n_2, n_3)$)

Spring 2017

Marina Blanton

- Common modulus attack
 - this attack deals with a common misuse of RSA
 - suppose for efficiency reasons a trusted party generates one modulus n and several key pairs $(e_1, d_1), (e_2, d_2), \ldots$
 - then each user has $pk_i = (e_i, n)$ and $sk_i = d_i$
 - this setup is trivially insecure
 - why?

- Common modulus attack
 - now suppose that it is all right that all users know each others' keys
 - suppose Eve sees two ciphertexts that encrypt the same message

$$c_1 = m^{e_1} \mod n$$
 and $c_2 = m^{e_2} \mod n$

- $e_1 \neq e_2$ and it is likely that $gcd(e_1, e_2) = 1$
- then Even can use Extended Euclidean algorithm to compute x and y such that $e_1x + e_2y = 1$
- Eve computes $c_1^x \cdot c_2^y \bmod n$ to recover m

- Small decryption exponent d
 - the secret key d cannot be small
 - if $|d| \approx 1/4|n|$, there is an efficient algorithm for recovering d from public information (e, n)
 - thus, d should have roughly the same size as n

• Timing attacks

- measure decryption time hoping to recover the decryption key
- exponentiation algorithm and the ciphertext are known
- what we can do to prevent such attacks
 - use constant exponentiation time
 - add random delays
 - modify the values used in calculations by blinding

- Are timing attacks practical?
 - the answer is yes
 - OpenSSL was discovered to be vulnerable in 2003
 - researchers discovered a remote timing attack on OpenSSL implementations that allowed to learn RSA keys
 - to secure it, turn RSA blinding on

- Let's get back to security of RSA
 - RSA is not secure because it is deterministic
 - RSA leaks information
- Optimal asymmetric encryption padding (OAEP) attempts to solve these problems
- To achieve security in the sense of indistinguishability, randomization and expansion are necessary
 - now the ciphertext will be longer than the message
 - suppose we want the computation effort of breaking the indistinguishability to be 2^k
 - the ciphertext must be at least k bits longer than the message

• Simple padding scheme

CSE 664

- idea: pad message m with random r and encrypt their concatenation

- let
$$(n, e, d) \leftarrow \text{GenRSA}(1^k)$$
 with $|n| = k$

$$- ||m| = \ell(k) \le k - 1$$

- Gen: run $(n, e, d) \leftarrow$ GenRSA (1^k) and output pk = (n, e) and sk = (n, d)
- Enc: given $m \in \{0, 1\}^{\ell(k)}$, choose random $r \leftarrow \{0, 1\}^{k-\ell(k)-1}$ and output

$$c = \operatorname{Enc}_{pk}(m) = (r||m)^e \bmod n$$

- Dec: given $c \in \mathbb{Z}_n^*$, compute $m' = c^d \mod n$ and output $\ell(k)$ least significant bits of it

Spring 2017

Marina Blanton

- Security of this simple padding scheme
 - if |r| is not large enough, the scheme is not CPA-secure
 - e.g., $|r| = O(\log k)$
 - if $\ell(k) = c \cdot k$ for constant c < 1, the scheme can be conjectured secure
 - no proof based on the standard RSA assumption is known
 - if $\ell(k) = O(\log k)$, the scheme has been proven to be CPA-secure under the RSA assumption
 - is it satisfactory?

- PKCS # 1.5
 - it is a widely used and standardized version of RSA from RSA Laboratories
 - it uses the above idea and requires |r| to be at least 8 bytes
 - $\ell(n)$ is at most k/8 11 bytes
 - |r| is $k/8 \ell 3$ bytes
 - encryption is formed as

 $c = (0000000||0000010||r||0000000||m)^e \mod n$

- no byte of r is allowed to be 0
- the construction is believed to be CPA-secure, but no formal proof under the RSA assumption is known

Towards Higher Security Standards

- An example padding for achieving CPA-security
 - we are given an encryption scheme $\mathcal{E} = (Gen, Enc, Dec)$ and a cryptographic hash function h
 - to encrypt message m, generate a random number r
 - compute the ciphertext (c_1, c_2) as

 $c_1 = \operatorname{Enc}_k(r)$ and $c_2 = h(r) \oplus m$

- to decrypt a message given (c_1, c_2) , compute $h(\text{Dec}_k(c_1)) \oplus c_2$

Semantic Security of RSA

- This padding scheme with RSA:
 - public key is (e, n) with 1536-bit modulus
 - encryption of m is $(r^e \mod n, h(r) \oplus m)$ for a random $r \in \mathbb{Z}_n^*$
 - to decrypt a ciphertext (c_1, c_2) , compute $m = h(c_1^d \mod n) \oplus c_2$
 - for 256-bit messages, the size of ciphertexts is 1536 + 256
- Why is this solution secure?
 - it relies on randomness of h and one-way nature of Enc_k
 - to learn something about m from $h(r) \oplus m$, one has to know h(r)
 - but since h(r) is random, you cannot recover r
 - recovering r from $Enc_k(r)$ is also infeasible

OAEP

- In 1994 Bellare and Rogaway proposed an optimal asymmetric encryption padding (OAEP) method for encoding messages
 - it uses encryption $\mathcal{E} = (Gen, Enc, Dec)$ (formally modeled as one-way trapdoor permutation)
 - it also uses two hash functions $h : \{0, 1\}^{\ell} \to \{0, 1\}^{t}$ and $g : \{0, 1\}^{t} \to \{0, 1\}^{\ell}$
 - to encrypt an ℓ -bit message m:
 - choose an t-bit random r
 - compute the ciphertext as

```
\mathsf{Enc}_k(m\oplus g(r)||r\oplus h(m\oplus g(r)))
```

Spring 2017

OAEP

- **OAEP** cont.
 - to decrypt ciphertext c:
 - after applying Dec_k to c, parse the content in two parts $c_1 || c_2 \leftarrow Dec_k(c)$
 - to recover m from $m\oplus g(r)$, we need to find r as $c_2\oplus h(c_1)$
 - finally, set $m = c_1 \oplus g(r)$
- Security of OAEP
 - if h and g are modeled as random oracles and the RSA problem is hard
 - RSA-OAEP is proven to be CCA-secure for certain types of public exponents e (including common e = 3)

OAEP

- Security of OAEP
 - OAEP is designed in such a way that the only way to find m is to explicitly choose m and r and try them
- Size of parameters in OAEP
 - ciphertext has size k (e.g., 1536 for RSA)
 - t should be such that 2^t work is infeasible and negligible
 - e.g., t = O(k)
 - the plaintext size ℓ can be up to k-t
 - e.g., with k = 1536 and t = 128, message size is up to 1408 bits
 - expansion is optimal

Summary

- Security of RSA
 - many attacks have been discovered over the year
 - attacks on plain RSA can be very damaging
 - countermeasures for implementation-based attacks exist
- CPA-security of RSA
 - can be added by using padding
 - OAEP achieves an optimal expansion and is provably secure