Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 13: Public-Key Cryptography and RSA

Department of Computer Science and Engineering University at Buffalo

- What we already know
 - symmetric key cryptography enables confidentiality
 - achieved through secret key encryption
 - symmetric key cryptography enables authentication and integrity
 - achieved through MACs
- In all of the above the sender and received must share a secret key
 - need a secure channel for key distribution
 - not possible for parties with no prior relationship
 - public-key cryptography can aid with this

— Spring 2017

- Other limitations of symmetric key cryptography
 - authentication to multiple receivers is difficult
 - non-repudiation cannot be achieved
- What's the solution?
 - the concept of more powerful asymmetric key encryption
- Public-key cryptography was proposed by Diffie and Hellman
 - it was in 1976 in their work "New directions in cryptography"

- Diffie and Hellman introduced
 - public-key encryption
 - public-key key agreement protocols
 - digital signatures
- It also turned out that public-key encryption was proposed earlier
 - James Ellis proposed it in 1970 in a classified paper
 - the paper was made public by the British government in 1997
- The concept of key agreement and digital signatures is still due to Diffie and Hellman

— Spring 2017

- Public-key encryption
 - a party creates a public-private key pair
 - the public key is pk
 - the private or secret key is sk
 - the public key is used for encryption $\operatorname{Enc}_{pk}(m)$ and is publicly available
 - the private key is used for decryption only $\operatorname{Dec}_{sk}(c)$
 - knowing the public key and the encryption algorithm only, it is computationally infeasible to find the secret key

- (Public-key) Key agreement or key distribution
 - prior to the protocol the parties do not share a common secret
 - after the protocol execution they hold a key not known to any eavesdropper
- Digital signatures
 - a party generates a public-private signing key pair
 - private key is used to sign a message
 - public key is used to verify a signature on a message
 - can be viewed as single-source message authentication

— Spring 2017

Public Key Encryption Formally

- A public-key encryption scheme consists of three PPT algorithms (Gen, Enc, Dec) such that:
 - 1. key generation Gen, on input security parameter 1^n , outputs a public-private key pair (pk, sk)
 - 2. encryption Enc, on input public key pk and messages m from the message space, outputs ciphertext $c \leftarrow \text{Enc}_{pk}(m)$
 - message space often depends on pk
 - 3. decryption Dec, on input private key sk and ciphertext c, outputs a message $m := Dec_{sk}(c)$ or a special failure symbol \bot .

Public Key Encryption

- Message space \mathcal{M} can now be different from, e.g., all strings of size n
 - if we use arithmetic modulo p, a message can be any number in $\{0,\ldots,p-1\}$
- Properties
 - correctness
 - as before, we want $Dec_{sk}(Enc_{sk}(m)) = m$
 - but we can permit a negligible probability of failure
 - security
 - what is different from our previous definitions?

Security Against Eavesdroppers

- We are given public-key encryption scheme $\mathcal{E} = (Gen, Enc, Dec)$
- The eavesdropping indistinguishability experiment $PubK_{\mathcal{A},\mathcal{E}}^{\mathsf{eav}}(n)$
 - 1. Gen(1ⁿ) is run to produce keys (pk, sk)
 - 2. adversary A is given pk and outputs two messages m_0, m_1 from message space
 - 3. random bit $b \leftarrow \{0,1\}$ is chosen, and ciphertext $c \leftarrow \operatorname{Enc}_{pk}(m_b)$ is given to $\mathcal A$
 - 4. \mathcal{A} outputs bit b'; if b=b', the experiment outputs 1 (\mathcal{A} wins), and 0 otherwise

Chosen-Plaintext Security

- The CPA indistinguishability experiment $PubK_{\mathcal{A},\mathcal{E}}^{cpa}(n)$
 - 1. Gen(1ⁿ) is run to produce keys (pk, sk)
 - 2. adversary A is given pk and oracle access to $Enc_{pk}(\cdot)$; it outputs two messages m_0, m_1 from message space
 - 3. random bit $b \leftarrow \{0,1\}$ is chosen, and ciphertext $c \leftarrow \operatorname{Enc}_{pk}(m_b)$ is given to $\mathcal A$
 - 4. $\mathcal A$ continues to have oracle access to $\mathsf{Enc}_{pk}(\cdot)$ and outputs bit b'
 - 5. if b = b', the experiment outputs 1 (A wins), and 0 otherwise

Notions of Security

• A public-key encryption scheme $\mathcal{E} = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions under a chosen-plaintext attack (or is CPA-secure) if for all PPT adversaries \mathcal{A} ,

$$\Pr[\mathsf{PubK}^{\mathsf{cpa}}_{\mathcal{A},\mathcal{E}}(n) = 1] \leq \frac{1}{2} + \mathsf{negl}(n)$$

i.e., ${\cal A}$ cannot win the game with significantly better chances than random guess

- Similar definition can be constructed for eavesdropping adversaries
- What is the gap between the two notions of security?

Notions of Security

- We obtain that no deterministic public-key encryption scheme has indistinguishable encryptions in the presence of eavesdropper and under CPA attack
- Does anything change if we deal with multiple messages?
- What can we say about encrypting long messages?
- How about perfect secrecy in the public-key setting?

CSE 664 — Spring 2017

Encrypting Long Messages

- In practice, to encrypt long messages hybrid encryption is used
 - the simplest way is to choose a random symmetric key k and send it encrypted with the recipient's public key ${\sf Enc}_{pk}(k)$
 - encrypt the message m itself using k and symmetric key encryption $\mathcal{E}' = (\text{Gen}', \text{Enc}', \text{Dec}')$
 - m might need to be partitioned as m_1, \ldots, m_t
 - send $\operatorname{Enc}_k'(m_1), \ldots, \operatorname{Enc}_k'(m_t)$
- Why do we use a combination of two different encryption algorithms?

RSA Cryptosystem

- The RSA algorithm
 - invented by Ron Rivest, Adi Shamir, and Leonard Adleman in 1978
 - its security requires that factoring large numbers is hard
 - but there is no proof that the algorithm is as hard to break as factoring
 - sustained many years of attacks on it

CSE 664 — Spring 2017

Background

- Recall Euler's ϕ function
 - for a product of two primes $n = pq, \phi(n) = (p-1)(q-1)$
- Euler's theorem
 - given m > 1 and a with gcd(a, m) = 1, $a^{\phi(m)} \equiv 1 \pmod{m}$
- Recall Euler's theorem's corollary
 - given x, y, m, and a with gcd(m, a) = 1, if $x \equiv y \pmod{\phi(m)}$, then $a^x \equiv a^y \pmod{m}$
- Computation of a multiplicative inverse modulo m
 - given a and m with gcd(a, m) = 1, there is a unique x (between 0 and m) such that $ax \equiv 1 \pmod{m}$

RSA Cryptosystem

• The idea

- for modulus n>1 and integer e>0, let $x\in\mathbb{Z}_n^*$
- then $f(x) = x^e \mod n$ is a permutation if gcd(e, n) = 1
- if $d = e^{-1} \mod \phi(n)$, $f'(x) = x^d \mod n$ is the inverse of f
- The hardness assumption is called the RSA problem and is to compute the inverse function
 - easy if factorization of n or $\phi(n)$ is known
 - believed to be hard otherwise

Plain or "Textbook" RSA

• Key generation

- given security parameter 1^k , generate two large prime numbers p and q, each k/2 bits long
- compute n = pq
- select a small prime number e
- compute $\phi(n) = (p-1)(q-1)$
- and then compute d the inverse of e modulo $\phi(n)$
 - i.e., $ed \equiv 1 \pmod{\phi(n)}$
- The public key is pk = (e, n)The private key is sk = d

Plain RSA

• Encryption

- given a message $m \in \mathbb{Z}_n^*$
- given a public key pk = (e, n)
- encrypt as $c = \operatorname{Enc}_{pk}(m) = m^e \mod n$

• Decryption

- given a ciphertext c
- given a public key pk=(e,n) and the corresponding private key sk=d
- decrypt as $m = \operatorname{Dec}_{sk}(c) = c^d \mod n$

RSA

• Example

- generate a key pair
 - pick p = 7, q = 11
 - compute n = 77
 - pick e = 37
 - **compute** $\phi(n) = 6 \cdot 10 = 60$
 - compute $d \equiv e^{-1} \equiv 13 \pmod{60}$
- public key (37, 77)
- private key 13

— Spring 2017

RSA

- Example (cont.)
 - encryption
 - given a message m=15
 - encryption is $c = m^e \mod n$
 - $c = 15^{37} \mod 77 = 71$
 - decryption
 - given ciphertext c = 71
 - decryption is $m=c^d \bmod n$
 - $m = 71^{13} \mod 77 = 15$

RSA

- Why does it work?
 - we would like to see how the message is recovered from the ciphertext
- Decrypting encrypted message
 - $\operatorname{Dec}_{sk}(\operatorname{Enc}_{pk}(m)) =$
 - recall that $ed \equiv 1 \mod \phi(n)$
 - also recall that $x \equiv y \mod \phi(n) \Rightarrow m^x \equiv m^y \pmod n$
 - thus, we obtain $m^{ed} \equiv$

More on RSA

- ullet All of the above works when a message $m\in\mathbb{Z}_n^*$
 - the algorithm doesn't go through if $gcd(m, n) \neq 1$
 - the problem is that the space \mathbb{Z}_n^* is not known without private key
- ullet The good news is that we can still use any m between 0 and n-1
 - for n = pq, the probability that $gcd(m, n) \neq 1$ is negligible
 - and if $gcd(m,n) \neq 1$, there are bigger problems than algorithm's failure

CSE 664 — Spring 2017

RSA Security

- Security of RSA requires that the RSA problem is hard
- We start with factoring which must also be hard
 - let algorithm GenMod on input 1^k output n=pq, where p and q are k/2-bit primes
- The factoring experiment $Factor_{\mathcal{A}, GenMod}(k)$
 - 1. run GenMod (1^k) and obtain (p, q, n)
 - 2. \mathcal{A} is given n and outputs p', q' > 1
 - 3. output 1 (\mathcal{A} wins) if $p' \cdot q' = n$, and 0 otherwise
- ullet Factoring is hard (relative to GenMod) if for all PPT algorithms ${\cal A}$

$$\Pr[\mathsf{Factor}_{\mathcal{A},\mathsf{GenMod}}(k) = 1] \leq \mathsf{negl}(k)$$

RSA Security

- Let GenRSA be the key generation algorithm for RSA that takes $\mathbf{1}^k$ and outputs (n,e,d)
- The RSA experiment $RSAInv_{A,GenRSA}(k)$
 - 1. run GenRSA(1^k) to obtain (n, e, d)
 - 2. choose $y \in \mathbb{Z}_n^*$ and give n, e, and y to \mathcal{A}
 - 3. \mathcal{A} outputs $x \in \mathbb{Z}_n^*$ and wins (the experiment outputs 1) iff $y = x^e \mod n$
- The RSA problem is hard (relative to GenRSA) if any PPT algorithm \mathcal{A} wins the RSA experiment with at most negligible probability

$$\Pr[\mathsf{RSAInv}_{\mathcal{A},\mathsf{GenRSA}}(k) = 1] \leq \mathsf{negl}(k)$$

Insecurity of Plain RSA

- Hardness of RSA problem implies that it can generally be hard to decrypt messages without the private key (or factorization of the modulus)
- The above description of RSA, however, is not secure
 - why?
- What does the above construction exactly guarantee?
 - given a message m chosen uniformly at random from \mathbb{Z}_n^* and the public key (n,e)
 - ${f -}$ adversary cannot recover the entire m

- Choosing p, q, and n
 - today the modulus n needs to be at least 1536 bits long
 - often a random number is chosen for p and q and is tested for primality
 - Miller-Rabin primality test is common
 - the algorithm has a probability of error
 - but it is popular due to its speed
 - how large the error is can be controlled
 - composite numbers that pass this primality test are called strong pseudo-prime numbers

- Choosing e
 - the smaller e is, the faster encryption is performed
 - recall that the square-and-multiply algorithm for computing $m^e \bmod n$ depends on the length of the exponent
 - the number of multiplications also directly depends on the number of 1's in the binary representation of e
 - common choices for e are 3, 17, $2^{16} + 1 = 65537$
 - such numbers require only a few modulo multiplications to encrypt

- Speeding up decryption
 - we don't have control over d it'll have to be long
 - but we can still decrypt faster using smaller moduli
 - since p and q are known, we can exploit their shorter size
 - we apply the Chinese Remainder Theorem
 - recall that the CRT solves a system of congruences $x_i \equiv a_i \pmod{n_i}$
 - the solution is a congruence modulo $n = \prod n_i$

- Using the CRT for decryption
 - we have c and the goal is to compute $m=c^d \bmod n$
 - we first compute $m_1 = c^d \mod p$ and $m_2 = c^d \mod q$
 - this gives us $m_1 = m \mod p$ and $m_2 = m \mod q$
 - we then combine m_1 and m_2 using the CRT to obtain $m \bmod n$
 - the equations we are solving are $m \equiv m_1 \pmod{p}$ and $m \equiv m_2 \pmod{q}$
 - the unique solution is

$$m \equiv m_1(q^{-1} \mod p)q + m_2(p^{-1} \mod q)p \pmod{n}$$

Summary

- Public key cryptography achieves many objectives
- Security of public key encryption can be modeled similar to symmetric encryption
 - but security against chosen-plaintext attack (CPA) is now the weakest reasonable security model
- RSA is the most commonly used public-key encryption algorithm
 - requires that factoring large numbers is hard
 - the plain or "textbook" RSA doesn't meet our definition of security
- RSA implementations target at faster performance

— Spring 2017