Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 12: Introduction to Number Theory II

Department of Computer Science and Engineering
University at Buffalo

Lecture Outline

- This time we'll finish the intro to number theory
- What to expect:
- congruences
- Fermat and Euler's theorems
- the Chinese remainder theorem
- finding large primes

Congruences

- A congruence is a statement about divisibility
- such statements simplify reasoning about divisibility
- Definition
- let $a, b, m>0$ be integers
- if m divides $a-b$, then a is congruent to b modulo m and we write $a \equiv b(\bmod m)$
- if m does not divide $a-b$, a is not congruent to b modulo m and we write $a \not \equiv b(\bmod m)$
- the formula $a \equiv b(\bmod m)$ is called a congruence
- the integer m is called the modulus

Congruences

- Do not confuse $a \equiv b(\bmod m)$ with binary operator "mod"
$-a \equiv b(\bmod m)$ if and only if $(a \bmod m)=(b \bmod m)$
- For each integer a, the set of all integers $b \equiv a(\bmod m)$ is called the congruence class or residue class of a modulo m
- example: the residue class of $27(\bmod 5)$ is $\ldots,-13,-8,-3,2,7,12, \ldots$
- each value is a representative of the class, and the smallest positive value is the standard representative

Congruences

- The congruence relation has many similarities to equality
- it, like equality, is an equivalence relation
- reflexive: $a \equiv a(\bmod m)$
- symmetric: if $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$
- transitive: if $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$

Congruences

- Properties of congruence relations
- let $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$
$-a+c \equiv b+d(\bmod m)$
$-a-c \equiv b-d(\bmod m)$
$-a c \equiv b d(\bmod m)$
- let f be a polynomial with integer coefficients, then if $a \equiv b(\bmod m), f(a) \equiv f(b)(\bmod m)$
- let $d \mid m$, then $a \equiv b(\bmod m) \Rightarrow a \equiv b(\bmod d)$

Congruences

- Although addition, subtraction, and multiplication follow the usual rules, division does not always work as expected
$-a c \equiv b c(\bmod m)$ does not always imply $a \equiv b(\bmod m)$
- example: $2 \cdot 3=6 \equiv 18=2 \cdot 9(\bmod 12)$, but $3 \not \equiv 9(\bmod 12)$
- we next investigate when this implication is true
- Theorem (division):
- for integer $a, b, c \neq 0$, and $m>0$, if $\operatorname{gcd}(c, m)=1$, then $a c \equiv b c(\bmod m)$ implies $a \equiv b(\bmod m)$
- example: $5 \cdot 3=15 \equiv 39=13 \cdot 3(\bmod 8)$; both $15 \equiv 39(\bmod 8)$ and $5 \equiv 13(\bmod 8)$

Congruences

- Theorem (multiplicative inverse):
- if $\operatorname{gcd}(a, m)=1$, then there is a unique $x(0<x<m)$ such that $a x \equiv 1(\bmod m)$, i.e., x is $a^{-1}(\bmod m)$
- example: $a=3, m=5 ; x \equiv 2 \equiv 3^{-1}(\bmod 5)$
- the inverse is normally computed using the extended Euclidean algorithm, where $a x+m y=1$

Residue Sets

- A complete set of residues (CSR) modulo m is a set S of integers such that every integer is congruent to exactly one integer in that set S
- the standard CSR modulo m is $\{0,1, \ldots, m-1\}$, i.e, \mathbb{Z}_{m}
- A reduced set of residues (RSR) modulo m is a set R of integers such that every integer relatively prime to m is congruent to exactly one integer in R
- the standard RSR modulo m is all $1 \leq r \leq m$ such that $\operatorname{gcd}(r, m)=1$
- example: for $m=12$, the standard RSR is $\{1,5,7,11\}$
- for a prime p, this set is $\{1,2, \ldots, p-1\}$

Linear Congruences

- Now how do we solve congruences $a x \equiv b$ (mod m) for given a, b, m and unknown x ?
- we first need to determine when they are solvable
- Theorem (solvability of linear congruence)
$-a x \equiv b(\bmod m)$ has a solution if and only if $g c d(a, m)$ divides b
- example:
- solve $165 x \equiv 100(\bmod 285)$
-?

Linear Congruences

- Theorem (solution to a linear congruence)
- let $g=g c d(a, m)$
- if g divides b, then $a x \equiv b(\bmod m)$ has g solutions
- the solutions are:

$$
x \equiv \frac{b}{g} x_{0}+t \frac{m}{g}(\bmod m), \quad t=0,1, \ldots, g-1
$$

- here x_{0} is any solution to $\frac{a}{g} x_{0} \equiv 1\left(\bmod \frac{m}{g}\right)$

Linear Congruences

- Example of a linear congruence
- solve $7 x \equiv 3(\bmod 12)$
- first find $g=$
- determine the number of solutions
- determine x_{0}
- find the solution
- now solve $8 x \equiv 4(\bmod 12)$

Groups

- A group G is a set of elements together with a binary operation \circ such that
- the set is closed under the operation \circ, i.e., for every $a, b \in G, a \circ b$ is a unique element of G
- the associative law holds, i.e., for all $a, b, c \in G$, $a \circ(b \circ c)=(a \circ b) \circ c$
- the set has a unique identity element e such that $a \circ e=e \circ a=a$ for every $a \in G$
- every element has a unique inverse a^{-1} in G such that $a \circ a^{-1}=a^{-1} \circ a=e$

Groups

- A group is called commutative or abelian if $a \circ b=b \circ a$ for every pair $a, b \in G$
- Size of a group
- a group is finite if it has only a finite number of elements
- a group is infinite if it has an infinite number of elements
- the number of elements of a finite group is called the order of the group
- Groups is a convenient way to represent sets by strings of symbols

Groups

- Examples of groups
- the set of integers $\{\ldots,-2,-1,0,1,2, \ldots\}$ forms an infinite abelian group
- addition is the binary operation
- 0 is the identity
- $-a$ is the inverse of a
- this set does not form a group with multiplication as the binary operation (lack of inverses)

Groups

- Examples of groups
- if $m \geq 2$ is an integer, a complete set of residues (CSR) modulo m forms an abelian group
- addition modulo m is the binary operation
- the residue class containing 0 is the identity
- the inverse of the residue class containing a is the residue class containing $-a$
- this group is called the additive group modulo m
- a CSR modulo m does not form a group under multiplication

Groups

- Examples of groups
- recall that a reduced set of residues (RSR) includes all numbers relatively prime to m
- for $m>1$, a RSR modulo m forms a group with multiplication modulo m as operation
- the identity element is the residue class containing 1
- it is called the multiplicative group modulo m
- what is the group order?

Euler's ϕ Function

- Euler ϕ function
- $\phi(m)$ is the size of RSR modulo m
- ϕ is called the Euler Phi or totient function
- Properties of ϕ
- if p is prime, $\phi(p)=p-1$
- ϕ is multiplicative: $\phi(a b)=\phi(a) \phi(b)$
- thus, if $p \neq q$ are primes, $\phi(p q)=(p-1)(q-1)$
- if p is prime, $\phi\left(p^{e}\right)=p^{e}-p^{e-1}$
- if $n=\prod_{i} p_{i}^{e_{i}}$, where p_{i} 's are distinct primes and $e_{i} \geq 1$, $\phi(n)=\prod_{i} p_{i}^{e_{i}-1}\left(p_{i}-1\right)$

Fermat and Euler's Theorems

- Fermat's "Little" Theorem
- let p be prime and a be an integer which is not a multiple of p, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

- Euler's Theorem
- let $m>1$ and $\operatorname{gcd}(a, m)=1$, then

$$
a^{\phi(m)} \equiv 1(\bmod m)
$$

- A Corollary of Euler's Theorem
- let m, x, y, and g be positive integers with $\operatorname{gcd}(g, m)=1$
- if $x \equiv y(\bmod \phi(m))$, then $g^{x} \equiv g^{y}(\bmod m)$

Fermat and Euler's Theorems

- Another corollary of Euler's theorem
- we obtain an alternative way of computing $a^{-1}(\bmod m)$
- recall that $a \cdot a^{-1} \equiv 1(\bmod m)$
- factoring out one a gives us $a a^{\phi(m)-1} \equiv 1(\bmod m)$
- then $a^{-1} \equiv$
- for a prime modulus $p, a^{-1} \equiv$
- computing the inverse using this approach requires roughly the same number of bit operations as the extended Euclidean algorithm

More on Groups

- If a is an element of a finite group with identity 1 , then there is a unique smallest positive integer i with $a^{i}=1$ (using multiplicative notation)
$-\operatorname{such} i$ is called the order of a (different from the order of the group)
- The element a has infinite order is there is no positive integer i with $a^{i}=1$
- A cyclic group is one that contains an element a whose powers a^{i} and a^{-i} make up the entire group
- An element a with such property is called a generator of the group

Cyclic Groups

- Examples
- the set of all integers with + for the operation is a cyclic group of infinite order
- the group is generated by 1
- the "powers" of 1 are $0, \pm 1, \pm 2, \ldots$
- every element $a \neq 0$ has infinite order
- the integers modulo m with + operation form a cyclic group of order m, where the residue class of 1 is a generator
- the multiplicative group modulo m, \mathbb{Z}_{m}^{*}, may or may not be cyclic depending on m

Cyclic Groups

- Theorem: If p is prime, then \mathbb{Z}_{p}^{*} is cyclic.
- Example
- consider multiplicative group over \mathbb{Z}_{7}^{*}
- what is the order of 2 ?
- what is the order of 3 ?

Fast Exponentiation

- We'll need to compute a^{n} often
- This can be done using only $O\left(\log _{2} n\right)$ multiplications

```
power(a,n){
    e=n;y=1;z=a;
    repeat {
            if (e is odd) }y=y\cdotz
            if (e\leq1) return y;
            z=z\cdotz;
            e=e>>1;}\quad\longleftarrowe=\lfloore/2
    }
}
```


Fast Exponentiation

- To compute a^{n} mod m, we want to keep numbers small (smaller than m)
- We reduce them modulo m after each multiplication

```
power(a, n,m){
    e=n;y=1;z=a;
    repeat {
        if (e is odd) }y=(y\cdotz)%m
        if (e\leq1) return y;
        z=(z\cdotz)% m;
        e=e>>1;
    }
}
```


Fast Exponentiation

- Example: compute $3^{6} \bmod 11$
- set $e=6$ (0110), $y=1 ; z=3$
- execute the loop
- iteration 1
- iteration 2
- iteration 3
- What's the complexity of fast exponentiation?

The Chinese Remainder Theorem

- The Chinese Remainder Theorem (CRT) can be used to perform modular exponentiations even faster than in the above algorithm
- The main advantage of CRT:
- it allows us to split up one large exponentiation into smaller exponentiations
- The main idea:
- for a composite number m with factors p_{1}, p_{2}, \ldots, it allows us to combine congruences of the form $x \equiv a_{i}\left(\bmod p_{i}\right)$ into a congruence $x \equiv a(\bmod m)$
- Main uses:
- in public-key decryption and signing algorithms

The Chinese Remainder Theorem

- The Chinese Remainder Theorem
- we are given n_{1}, \ldots, n_{r} positive integers pair-wise relatively prime (i.e., $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for any $i \neq j$)
$-\operatorname{let} n=n_{1} \cdots n_{r}$
- then r congruences $x \equiv a_{i}\left(\bmod n_{i}\right)$ have common solutions modulo n
- The solution to such congruences is

$$
x \equiv \sum_{i=1}^{r}\left(n / n_{i}\right) b_{i} a_{i}(\bmod n)
$$

- here $b_{i} \equiv\left(n / n_{i}\right)^{-1}\left(\bmod n_{i}\right)$

The Chinese Remainder Theorem

- Example:
- solve a system of congruences $x \equiv 1(\bmod 7), x \equiv 3(\bmod 10)$, and $x \equiv 8(\bmod 13)$

Finding Large Primes

- In many constructions we rely on large primes
- How do we find them?
- the probability that a randomly picked integer, say, 2000 bits long is prime is not great
- But even if we have a candidate, how do we test it?
- Fermat's theorem says that if p is prime and $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$
- this theorem gives us a test for compositeness
- if p is odd, $p \not \backslash a$, and $a^{p-1} \not \equiv 1(\bmod p)$, then p is not prime
- how about the converse, a test for primality?

Finding Large Primes

- Unfortunately, the converse is not always true
- consider $p=11 \cdot 13=341$ and $a=2 ; 2^{340} \equiv 1(\bmod 341)$
- it is, however, true for most p and a
- The composite numbers that pass such "primality test" are called Carmichael numbers (pseudo-prime)
- they result in $a^{p-1} \equiv 1(\bmod p)$ for every integer a with $\operatorname{gcd}(a, p)=1$
- there are infinitely many of them
- they must be detected and avoided in cryptosystems like RSA

Finding Large Primes

- But there is a true converse of Fermat's theorem
- Lucas-Lehmer test (rigorous primality test):
- let $n>3$ be odd
- if for every prime p that divides $n-1$ there exists a such that $a^{n-1} \equiv 1(\bmod n)$, but $a^{(n-1) / p} \not \equiv 1(\bmod n)$, then n is prime
- using the test requires knowledge of factorization of $n-1$
- This theorem can be used iteratively to construct large, random primes
- start with a rather small prime and make it several digits longer in each step
- test for primality in each iteration

Finding Large Primes

- Constructing large primes:
- begin with a prime p_{1} and let $i=1$
- repeat the following steps until p_{i} is large enough
- for a random small k (9-10 digits), let $n=2 k p_{i}+1$
- if $2^{n-1} \not \equiv 1(\bmod n)$, then n is composite and try another k
- otherwise, n is probably prime, so try to prove it using Lucas-Lehmer test
- if you succeed in finding the base a to satisfy the test, then n is proved prime and set $p_{i+1}=n$
- otherwise try a new random k

Finding Large Primes

- Using Lucas-Lehmer approach adds about 10 digits to the length of the prime in each step
- It is possible to construct large primes faster
- we can double the size of the prime in one step
- complete factorization of the candidate prime is not required
- Pocklington-Lehmer theorem allows us to do so
- given prime p_{i} set n to $2 F p_{i}+1$, where factorization of F is not known
- the idea is that if $p_{i} \geq \sqrt{n}$, then n is prime

More on Primality Tests

- Given a large number n, can we test whether it is prime without other conditions?
- History of primality tests development
- trying all numbers up to \sqrt{n} works, but is inefficient
- this algorithm has been known for over 2000 years
- applying Fermat's theorem is efficient, but not always works
- Carmichael numbers satisfy the test as well
- this theorem was the basis for many efficient primality tests

More on Primality Tests

- History of primality tests development
- In 1970s randomized polynomial-time algorithms have been developed
- Miller-Rabin test determines composite numbers with probability at least $1-4^{-k}$ for a chosen k
- Solovay-Strassen test determines composite numbers with probability at least $1-2^{-k}$
- In 1983 Adleman, Pomerance, and Rumely achieved a breakthrough
- they gave the first deterministic test that doesn't require exponential time
- the algorithm runs in $(\log n)^{O(\log \log \log n)}$

More on Primality Tests

- History of primality tests development
- Finally, in 2004 Agrawal, Kayal, and Saxena proved that PRIMES is in P
- their deterministic algorithm runs in $O\left((\log n)^{15 / 2}\right)$ time or better
- the algorithm is based on a generalization of Fermat's theorem
- History happens even now!

Summary

- Congruences are statements about divisibility
- their properties often coincide with our intuition, but they also differ
- Fermat and Euler's theorems
- provide an alternative way of computing an inverse modulo a number
- provide a compositeness test
- To find a large prime either
- choose a value at random and test for primality
- construct a prime from smaller values
- As of 2004, unconditional primality testing is in \mathbf{P}

