Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 11: Introduction to Number Theory

Department of Computer Science and Engineering
University at Buffalo

Lecture Outline

- What we've covered so far:
- symmetric encryption
- hash functions
- Where we are heading:
- number theory
- public-key encryption
- digital signatures

Lecture Outline

- Introduction to number theory
- divisibility
- GCD and Euclidean algorithm
- prime and composite numbers
- Chinese remainder theorem
- Euler ϕ function
- Fermat's theorem

Divisibility

- Divisibility
- given integers a and b, we say that a divides b (denoted by $a \mid b$) if $b=a c$ for integer c
- a is called a divisor of b
- Transitivity theorem
- we are given integers a, b, and c, all of which >1
- if $a \mid b$ and $b \mid c$, then $a \mid c$
- Linear combination theorem
- let a, b, c, x, and y be integers >1
- if $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$

Divisibility

- Division algorithm (theorem)
- let $a>0$ and b be two integers
- then there exist two unique integers q and r such that $0 \leq r<a$ and $b=a q+r$
- Notation
- the integer q is called the quotient
- the integer r is called the remainder
- $\lfloor x\rfloor$ is the floor of x (largest integer $\leq x$)
$-\lceil x\rceil$ is the ceiling of x (smallest integer $\geq x$)
- then $q=\lfloor b / a\rfloor$ and $r=b \bmod a$

Greatest Common Divisor

- Greatest common divisor (GCD)
- suppose we are given integers a and b which are not both 0
- their greatest common divisor $g c d(a, b)=c$ is the greatest number that divides both a and b
- example: $\operatorname{gcd}(128,100)=4$
- it is clear that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$
- GCD and multiplication
- we are given integers a, b, and $m>1$
- if $\operatorname{gcd}(a, m)=\operatorname{gcd}(b, m)=1$, then $\operatorname{gcd}(a b, m)=1$
- example: $\operatorname{gcd}(25,7)=\operatorname{gcd}(3,7)=1 \Rightarrow \operatorname{gcd}(75,7)=1$

Greatest Common Divisor

- GCD and division
- Theorem 1
- we are given integers a and b
- if $g=\operatorname{gcd}(a, b)$, then $\operatorname{gcd}\left(\frac{a}{g}, \frac{b}{g}\right)=1$
- example: $\operatorname{gcd}(25,45)=5 \Rightarrow \operatorname{gcd}\left(\frac{25}{5}, \frac{45}{5}\right)=\operatorname{gcd}(5,9)=1$
- Theorem 2
- if a is a positive integer and b, q, and r are integers with $b=a q+r$, then $\operatorname{gcd}(b, a)=\operatorname{gcd}(a, r)$
- we can use this theorem to find GCD

Euclidean Algorithm

- Fact: given integers $a>0, b, q$, and r such that $b=a q+r$, $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r)$
- Euclidean algorithm for finding $\operatorname{gcd}(a, b)$
- apply the division algorithm iteratively to compute the remainder
- the last non-zero remainder is the answer
- while $a \neq 0$ do
$r \leftarrow b \bmod a$
$b \leftarrow a$
$a \leftarrow r$
return b

Euclidean Algorithm

- Example:
- compute GCD of 165 and 285
- steps of Euclidean algorithm:
- the answer is $\operatorname{gcd}(165,285)=$

Towards Extended Euclidean Algorithm

- Theorem:
- if integers a and b are not both 0 , then there are integers x and y so that $a x+b y=\operatorname{gcd}(a, b)$
- we can find x and y using the extended Euclidean algorithm
- Example:
- find x and y such that $285 x+165 y=\operatorname{gcd}(285,165)=15$
- we start with the next to last equation in our example and work backwards

Extended Euclidean Algorithm

- Example (cont.)
- algorithm steps:
- thus, we get
- Also, if $\operatorname{gcd}(a, b)=1$, then $a x+b y=1$, i.e., $a x \bmod b=1$

Extended Euclidean Algorithm

- Input: integers $a \geq b>0$
- Output: $g=\operatorname{gcd}(a, b)$ and x and y with $a x+b y=\operatorname{gcd}(a, b)$
- The algorithm itself:
$x=1 ; y=0 ; g=a ; r=0 ; s=1 ; t=b$
while $(t>0)\{$

$$
\begin{aligned}
& q=\lfloor g / t\rfloor \\
& u=x-q r ; v=y-q s ; w=g-q t \\
& x=r ; y=s ; g=t \\
& r=u ; s=v ; t=w
\end{aligned}
$$

$$
\}
$$

- Algorithm invariants: $a x+b y=g$ and $a r+b s=t$

Extended Euclidean Algorithm

- Complexity of the algorithm (theorem)
- this result is due to Lamé, 1845
- the number of steps (division operations) needed by the Euclidean algorithm is no more than five times of decimal digits in the smaller of the two numbers
- Corollary
- the number of bit operations needed by the Euclidean algorithm is $O\left(\left(\log _{2} a\right)^{3}\right)$, where a is the larger of the two numbers

Prime and Composite Numbers

- Prime numbers
- a prime number is an integer greater than 1 which is divisible by 1 and itself
- the first prime numbers are $2,3,5,7,11,13,17$, etc.
- Composite numbers
- a composite number is an integer greater than 1 which is not prime
- the composite numbers are $4,6,8,9,10,12,14$, etc.
- Relatively prime numbers
- integers a and b are relatively prime is $\operatorname{gcd}(a, b)=1$
- relatively prime numbers don't have common divisors other than 1

Decomposition of Numbers

- Fundamental Theorem of Arithmetics:
- every integer $n>1$ can be written as a product of prime numbers
- and this product is unique if the primes are written in non-decreasing order

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}=\prod_{i=1}^{k} p_{i}^{e_{i}}
$$

- here p_{1}, \ldots, p_{k} are the primes that divide n and $e_{i} \geq 1$ is the number of factors of p_{i} dividing n
- this decomposition is called the standard representation
- Example: $84=2 \cdot 2 \cdot 3 \cdot 7=2^{2} \cdot 3^{1} \cdot 7^{1}$

Using Standard Representation

- GCD and LCM
- we are given $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ and $m=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}$, where p_{i} are prime numbers and $e_{i}, f_{i} \geq 0$
$-\operatorname{gcd}(n, m)=p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \ldots p_{k}^{\min \left(e_{k}, f_{k}\right)}$
- the least common multiple of integers a and b is the smaller positive integer divisible by both a and b
$-\operatorname{lcm}(n, m)=p_{1}^{\max \left(e_{1}, f_{1}\right)} p_{2}^{\max \left(e_{2}, f_{2}\right)} \cdots p_{k}^{\max \left(e_{k}, f_{k}\right)}$
- also, $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$

Using Standard Representation

- Examples:
$-n=84=2^{2} \cdot 3 \cdot 7$
$-m=63=3^{2} .7$
$-\operatorname{gcd}(84,63)=$
$-\operatorname{lcm}(84,63)=$
$-\operatorname{gcd}(84,63) \cdot \operatorname{lcm}(84,63)=$

Distribution of Prime Numbers

- In cryptography, we'll need to use large primes and would like to know how prime numbers are distributed
- (Theorem) The number of prime numbers is infinite
- (Theorem) Gaps between primes
- for every positive integer n, there are n or more consecutive composite numbers
- For a positive real number x, let $\pi(x)$ be the number of prime numbers $\leq x$

Distribution of Prime Numbers

- The Prime Number Theorem
$-\pi(x)$ tends to $x / \ln x$ as x goes to infinity. In symbols,

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln x}=1
$$

- this tells us that there are plenty of large primes
- The question now is how we find prime numbers
- Theorem
- if integer $n>1$ is composite, it has a prime divisor $p \leq \sqrt{n}$
- in other words, if $n>1$ has no prime divisor $p \leq \sqrt{n}$, then it is prime

Finding Primes

- This suggests a simple algorithm for testing a small number for primality (and factoring if it is composite)
- Input: a positive integer n
- Output: whether n is prime, or one or more factors of n

```
\(m=n ; p=2\)
while \((p \leq \sqrt{m})\{\)
        if \((m \bmod p=0)\{\)
            print " \(n\) is composite with factor \(p\) "; \(m=m / p\)
        \}
        else \(\{p=p+1\}\)
\}
if ( \(m=n\) ) \{ print " \(n\) is prime" \}
else if \((m>1)\{\) print "the last factor of \(n\) is \(m "\}\)
```


Summary

- Today we've learned:
- divisibility theorems
- how to use Euclidean algorithm to compute GCD and more
- the number of prime numbers is large and they are well distributed
- More on number theory is still ahead

