Applied Cryptography and Computer

Security
CSE 664 Spring 2017

Lecture 10: Applications of Hash Functions

Department of Computer Science and Engineering
University at Buffalo

[E—

e Going back to our security goal of data integrity:
— theoretical MAC constructions
— CBC-MAC
— HMAC

e Sample applications of hash functions

\

CSE 664

Marina Blanton

. oevew B

Spring 2017 /
2

| MAC Algorithms A

e Constructing a MAC algorithm from a hash function

— one approach is to include the key & as part of the hash function
input: Mac,.(x) = h(kl||x)

— if the hash function is one-way, we won’t be able to recover the key

— but how about MAC forgery?

\ CSE 664 Spring 2017 /

Marina Blanton 3

| MAC Algorithms A

e Mac,(z) = h(k||x)
— assume we have a message m = mimo...my

— consider an iterated hash function: hg = IV, h; = f(m;, h;_1);
h(x) = hy

— then we can extend m by an arbitrary single block b and compute
the MAC on m/ = mymo...myb

— compute Mac, (m') = h(k||m||b) as f(Mac,(m),b)

e What if we construct a MAC from a hash function using the key k as the
IV for the compression function?

\ CSE 664 Spring 2017 /

Marina Blanton 4

| MAC Algorithms A

e Hash-Based MAC - HMAC

e Goals:
— use available hash functions without modifications
— preserve the original performance of the hash function
— use and handle keys in a simple way
— allow replacement of the underlying hash function

— have a well-understood cryptographic analysis of its strength

\ CSE 664 Spring 2017 /

Marina Blanton 5

i : N
MAC Algorithms

e HMAC
— HMAC,(z) = h((K @ opad)||h((K @ ipad)||z))

— K is the key k£ padded to a full block
— ipad = 0x3636.. .36 and opad = 0x5C5C. . .5C are fixed

padding constants

e Properties of HMAC:
— efficient
— security is related to that of the underlying hash function
e wewant k1 = h(K @ opad) and k> = h(K @ ipad) to be rather

independent and close to random

e then HMAC is existentially unforgeable under an adaptive
chosen-message attack for messages of any length

Spring 2017 /

\

CSE 664
Marina Blanton 6

| MAC Algorithms A

e HMAC Security

— provides greater security than the security of the underlying hash
function

— no known practical attacks if a secure hash function is used and
according to the specifications
e In general, HMAC can be attacked by:
— brute force search on the key space

— attacks on the hash function

\

CSE 664 Spring 2017 /

Marina Blanton 7

| Other Uses of Hash Functions A

e Hash Chains
— a method for authenticating multiple user logins or packet streams
— consists of successive application of a hash function to a string
— n applications of the hash function on z is denoted by h" (x)

— this produces a hash chain of length n

e Example:

— h*(z) = h(h(h(h(z)))) produces a hash chain of length 4

\ CSE 664 Spring 2017 /

Marina Blanton 8

user generates a hash chain of length n

e Authentication using hash chains

| Uses of Hash Functions A

at time 1, the user sends auth1 = h"(x) (and possibly authenticates

it through other means)

the recipient stores auth = authy

at time 2, the user sends auth, = h" " 1(z)

the recipient checks whether h(autho) = authq and, if so, accepts

the recipient updated auth = autho

h"(x)

— etc.
2 n—1)
\CSE664

Spring 2017 /

Marina Blanton

9

| Uses of Hash Functions A

e Why is such authentication secure?

e Authentication in packet streams
— we can similarly authenticate each packet as belonging to the stream
— need to take into account packet delivery delay
— a packet authentication value is opened several packets later

— see Perrig et al. “Efficient Authentication and Signing of Multicast
Streams over Lossy Channels” (2000) for more information

\

CSE 664 Spring 2017 /

Marina Blanton 10

| Uses of Hash Functions A

e Merkle Hash Tree

— integrity verification mechanism for hierarchically structured
documents or databases

— the technique works on trees only

— the hash of the tree is computed in the bottom-up fashion

e Generation of a Merkle hash tree
— for a leaf node v, simply compute its hash A (v)

— for a non-leaf node u with children v1, .. ., v;, compute its hash as
h(ul|h(v1)]|. . [[h(ve))

\ CSE 664 Spring 2017 /

Marina Blanton 11

Uses of Hash Functions

e Merkle Hash Tree

@/@ h(ul[h(v1)]]. .. |[R(ve))
h(vi) h(v2) h(vt)

— this computation continues until the hash of the root is computed

— the hash of the root corresponds to the hash of the entire tree

e Integrity verification
— node integrity verification is much faster than hashing the entire tree

— to check node v, obtain hashes of the nodes on the path from v to the
root

\ CSE 664 Spring 2017 /

Marina Blanton 12

| Uses of Hash Functions A

e Integrity verification in Merkle Hash Tree
h(root)

é ® your node
O hash is given

e compute the hash

v

— compute the hash of v and combine it with other hashes on the path
to the root

— compare your hash of the root with what you are given

— the node you are authenticating doesn’t have to be a leaf

\

CSE 664 Spring 2017 /

Marina Blanton 13

| Uses of Hash Functions A

e Merkle Hash Tree
— why does this work?

— what are the computation savings compared to just applying the
hash function to the entire tree?

— what needs to be done when a node’s content changes?

\ CSE 664 Spring 2017 /

Marina Blanton 14

\

CSE 664

e How do we use a MAC in combination with encryption?

message authentication
. 4 mMack(m) g

encrypt and authenticate

. A Ency, (777,),_|\/|>ack2 (m)

authenticate then encrypt

 Encny (mMace, (m))

encrypt then authenticate

Enck1 (m),l\/lﬁ (Enck1 (m)) B

Marina Blanton

(Confidentiality + Integrity A

Spring 2017 /
15

(Confidentiality + Integrity A

e Which construction is good for achieving both objectives?
— how do we define “good’’?
e We want a combination that always achieves both confidentiality and
integrity

— given any CPA-secure encryption scheme and any secure MAC
scheme, the construction must achieve both goals

— if there are secure encryption and MAC schemes using which a
construction doesn’t achieve both goals, we say it is insufficient

\

CSE 664 Spring 2017 /

Marina Blanton 16

(Confidentiality + Integrity A

e How do we combine two schemes into one?

— we are given encryption ¥ = (Geng, Enc, Dec) and MAC
M = (Geny;, Mac, Vrfy)

— we build message transmission scheme 7" = (Gen, EncMac, DecVrfy)
e Correctness is defined as before

e Security is based on meeting the requirements of two experiments:
authenticated communication and confidentiality experiments

— there is a single authenticated communication experiment
AuthComm 4 7(n)

\

CSE 664 Spring 2017 /

Marina Blanton 17

(Confidentiality + Integrity A

e Analysis of our constructions:

— encrypt and authenticate

e transmitting Macj,, (m) may leak information about m

— authenticate then encrypt

* has a chosen-ciphertext attack (limited version) against the
general version

e tampering with ciphertext might permit predictable changes to
the encrypted content

— encrypt then authenticate

o satisfies the definition and is CCA-secure

e The keys £1 and k> must be different!

\

CSE 664 Spring 2017 /

Marina Blanton 18

[soomy ———Q

e Hash functions have many uses:
— data integrity
— data and user authentication

— in various protocols as a one-way function
e Combining confidentiality and integrity requires care

e Next time:
— public key cryptography!

— number theory

\

CSE 664 Spring 2017 /

Marina Blanton 19

