Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 9: Hash Functions

Department of Computer Science and Engineering University at Buffalo

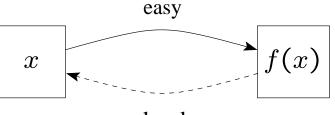
Lecture Outline

- So far we learned about
 - theoretical tools
 - practical algorithms
- In this lecture we learn about another practical tool of great importance in cryptography
 - hash functions
 - HMAC
 - other uses of hash functions

Spring 2017 -

Quick Detour: One-Way Functions

- A one-way function is easy to compute, but is hard to invert
- More formally, if f is one-way, then it is easy to compute f(x) from x, but given f(x) it is infeasible to find x



hard

- Example: breaking a glass
- One-way functions are a very powerful tool
- It is not known whether they exist

Spring 201

- A hash function h at minimum should satisfy the following properties:
 - compression: h maps an input x of an arbitrary length to a (short) fixed-length output h(x)
 - ease of computation: given h and x, h(x) is easy to compute
- Hash functions have many uses including hash tables
- We are interested in cryptographic hash function that must satisfy certain security properties
- Informally, what we are looking for in a hash function h is:
 - given h(x), it is hard to compute x

CSE 664

- it is hard to find x and x' such that h(x) = h(x')

- Cryptographic hash functions are often used as a real-life substitute for ideal one-way functions
- But they have other important uses as well:
 - data integrity
 - message authentication
 - password hashing and one-time passwords
 - in digital signatures
 - timestamping
 - and others

- More formally, let $h:X\to Y$ be a cryptographic hash function
- *h* must satisfy the following security properties:

CSE 664

- Preimage resistance (one-way): given h and $y \in Y$, it is difficult to find $x \in X$ such that h(x) = y
- Second preimage resistance (weak collision resistance): given h and $x \in X$, it is difficult to find $x' \in X$ such that $x' \neq x$ and h(x') = h(x)
- Collision resistance (strong collision resistance): given h, it is difficult to find $x, x' \in X$ such that $x' \neq x$ and h(x') = h(x)

Spring 2017 -

- Normally the input domain is all strings $\{0, 1\}^*$ and the output is $\{0, 1\}^{\ell(n)}$ for security parameter n
- Collision resilience formally: collision finding experiment Hash-coll_{A,h}(n):
 - 1. adversary \mathcal{A} is given h and outputs x, x'
 - **2.** output 1 (\mathcal{A} wins) if $x \neq x'$ and h(x) = h(x'), and 0 otherwise
- Definition: A function h is collision resistant if any PPT adversary A can't win the game with more than a negligible probability, i.e.:

$$\Pr[\mathsf{Hash-coll}_{\mathcal{A},h}(n) = 1] \le \operatorname{negl}(n)$$

CSE 664

- A good cryptographic hash function (satisfying the definition) will have:
 - non-correlation: input bits and output bits should not be correlated (and it is desirable that every input bit affects every output bit)
 - near-collision resistance: it should be hard to find any two inputs xand x' such that h(x) and h(x') differ only in a small number of bits
 - partial-preimage resistance or local one-wayness: it should be as difficult to recover any substring as to recover the entire input
 - and even if part of the input is known, it should difficult to find the remainder

- A cryptographic hash function can be keyed
 - it takes a secret key as its another parameter
 - that secret key defines the function's behavior
 - i.e., each new key makes it a new hash function
- Formally, a hash family is defined by algorithms (Gen, H)
 - key generation algorithm Gen, on input security parameter 1^n , outputs key k
 - hashing algorithm H, on input a key k and string $x \in \{0, 1\}^*$, outputs a string $y \in \{0, 1\}^{\ell(n)}$
- The key k can be public or private

CSE 664

- Commonly used hash function algorithms:
 - MD5
 - SHA-1
 - SHA-2 family (SHA-256, SHA-384, and others)
- Normally hash function algorithms are iterated
 - they use a compression function
 - the input is partitioned into blocks
 - a compression function is used on the current block m_i and the previous output h_{i-1} to compute

$$h_i = f(m_i, h_{i-1})$$

CSE 664

Spring 2017 ~

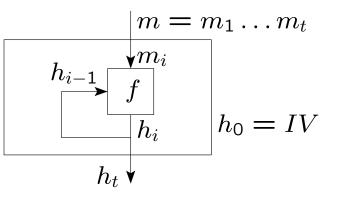
Marina Blanton

- Most unkeyed hash functions use a compression function \boldsymbol{f}
 - f takes a fixed length ℓ -bit input and outputs an intermediate result of length n ($\ell > n$)
- Most unkeyed hash functions use chaining
 - output of the current block depends on all previous blocks

- let the input be
$$m = m_1 m_2 \dots m_t$$

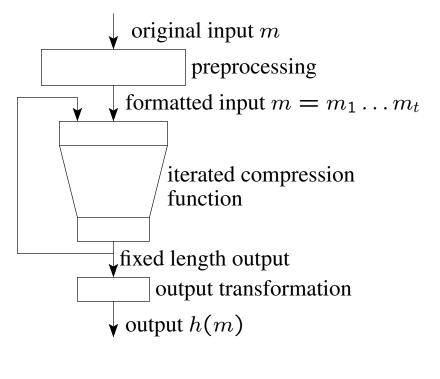
CSE 664

- set
$$h_0 = IV$$
; $h_i = f(m_i, h_{i-1})$; and $h(m) = h_t$



Spring 2017 ~

- Often, before the iterated compression function is called a preprocessing step is used
- Also, after the compression function, output transformation can be applied



CSE 664

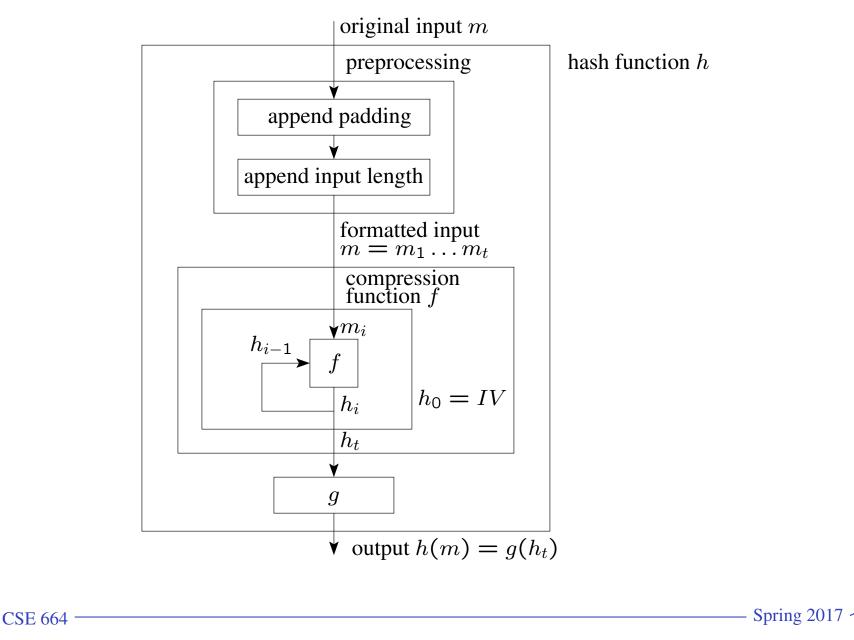
Spring 2017

- The preprocessing step typically includes:
 - padding the message (i.e., appending extra bits) to obtain a bitlength multiple of the blocklength ℓ
 - appending the length of the unpadded input
 - this prevents collisions and thus improves security
- The output transformation g is optional
 - it can map the *n*-bit output h_t to a result of another length

- often
$$g(h_t) = h_t$$

CSE 664

Hash Functions: Detailed View



- Merkle-Damgard construction
 - we are given a compression function $f : \{0, 1\}^{\ell+n} \to \{0, 1\}^n$
 - divide the input m into t blocks $m_1m_2...m_t$ of size ℓ padding the last block with 0s if necessary
 - define an extra final block m_{t+1} to hold the right justified binary representation of original *m*'s length
 - set $h_0 = 0^n$ and compute $h_i = f(h_{i-1} || m_i)$ for i = 1, ..., t + 1

- **output**
$$h(m) = h_{t+1}$$

CSE 664

• Theorem: If *f* is (fixed-length) collision resistant hash function, this construction is collision resistant

Spring 2017 ~

• Cascading hash functions

CSE 664

- we are given two hash functions h_1 and h_2
- if either h_1 or h_2 is collision resistant, $h(x) = h_1(x)||h_2(x)|$ is a collision resistant hash function
- if h_1 and h_2 are independent, have to find a collision in both simultaneously
- hopefully this would require the product of the effort to attack them individually
- this is a simple yet powerful way to increase strength using available functions

Attacks on Hash Functions

• Attacks on the bitsize of a hash

CSE 664

- assume we are given a message m and its hash h(m)
- we want to find another message m' with the same hash
- a naive approach for finding a collision is to pick a random m' and check whether h(m) = h(m')
- this can result in very little effort, but for well-distributed hashes the probability of a match is 2^{-n}
- however, if we have control over m as well, the effort greatly reduces
- colliding pairs of messages m and m' where h(m) = h(m') can be done in $2^{n/2}$ time

Spring 2017 ~

Birthday Attack

- Birthday attack is one of cryptographic applications of birthday paradox
- Birthday paradox:
 - we are given a group of people
 - what is the minimum group size required to find two people who who share the same birthday with probability at least 1/2?
- General problem statement:
 - we are given a random variable that is an integer with uniform distribution between 1 and n
 - given a selection of k instances (k < n) of the variable, what is the probability Pr(n, k) that there is at least one duplicate?

Birthday Paradox

- **Calculating** Pr(365, k)
 - if we pick k random days out of 365, what is the probability that there are no collisions?
 - the number of possibilities with no collision: $365 \times 364 \times \cdots \times (365 - k + 1) = 365!/(365 - k)!$
 - the total number of possibilities: 365^k
 - thus, we obtain

CSE 664

$$\Pr(365,k) = 1 - \frac{365!}{(365-k)!365^k}$$

- if
$$k = 23$$
, $Pr(365, 23) = 0.5073$

Spring 2017 ~

Birthday Paradox

• In general:

CSE 664

$$\Pr(n,k) = 1 - \frac{n!}{(n-k)!n^k} = 1 - \frac{n(n-1)\cdots(n-k+1)}{n^k}$$

= $1 - \frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{n-(k-1)}{n}$
= $1 - \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)$

- if x is a small real number, then $1-x\approx e^{-x}$
- using it in our equations, we obtain:

$$\Pr(n,k) \approx 1 - e^{-\frac{1}{n}} \cdot e^{-\frac{2}{n}} \cdots e^{-\frac{k-1}{n}} = 1 - e^{-\frac{k(k-1)}{2n}}$$

Birthday Paradox

• Say, we want Pr(n, k) > 0.5. What k is needed?

$$\frac{1}{2} = 1 - e^{-\frac{k(k-1)}{2n}} \Rightarrow e^{-\frac{k(k-1)}{2n}} = \frac{1}{2} \Rightarrow$$
$$-\frac{k(k-1)}{2n} = \ln(1/2) \Rightarrow \frac{k(k-1)}{2n} = \ln 2$$

• For large
$$k, k(k-1) \approx k^2$$
, thus we obtain:

2n

CSE 664

$$\frac{k^2}{2n} \approx \ln 2 \implies k^2 \approx (\ln 2)2n \implies$$

$$k \approx \sqrt{(2 \ln 2)n} = 1.18\sqrt{n} \approx \sqrt{n}$$

Spring 2017

Security of Hash Functions

- This directly applies to hash functions:
 - for a hash function that produces n-bit output, there are 2^n possible output values
 - but about $\sqrt{2^n} = 2^{n/2}$ tries are needed to find a collision with a good probability
- Choosing output length
 - to achieve 128-bit security, we need 256-bit output values
- As applied to hash functions, birthday paradox is used in Yuval's birthday attack

Birthday Attack

- We have a legitimate message m_1 and a fraudulent message m_2
- We want to find m'_1 and m'_2 resulting from minor modifications of m_1 and m_2 with $h(m'_1) = h(m'_2)$
 - then a signature on the hash of m_1' is a valid signature on m_2' 's hash
- Birthday attack:

CSE 664

- find n/2 places to tweak m_1
- generate $2^{n/2}$ minor modifications m'_1 of m_1
- hash each modified message and store message-hash pairs (searchable by the hash value)
- generate minor modifications m'_2 of m_2 computing $h(m'_2)$ for each and checking for matches with any m'_1 above until a match is found

Birthday Attack

• Example:

CSE 664

– message m_1 and its 2^{14} modifications:

 $\left\{ \begin{array}{c} This \ letter \ is \\ I \ am \ writing \end{array} \right\} to \ introduce \left\{ \begin{array}{c} you \ to \\ to \ you \end{array} \right\} \left\{ \begin{array}{c} Mr. \\ - \end{array} \right\} Alfred \left\{ \begin{array}{c} P. \\ - \end{array} \right\} \\ Barton, the \left\{ \begin{array}{c} new \\ newly \ appointed \end{array} \right\} \left\{ \begin{array}{c} chief \\ senior \end{array} \right\} jewelry \ buyer \ for \\ \left\{ \begin{array}{c} our \\ the \end{array} \right\} \ Northern \left\{ \begin{array}{c} European \\ Europe \end{array} \right\} \left\{ \begin{array}{c} area \\ division \end{array} \right\}. \ He \left\{ \begin{array}{c} will \ take \\ has \ taken \end{array} \right\} \\ over \left\{ \begin{array}{c} the \\ - \end{array} \right\} \ responsibility \ for \left\{ \begin{array}{c} all \\ the \ whole \ of \end{array} \right\} \ our \ interests \ in \\ \left\{ \begin{array}{c} watches \ and \ jewellery \\ jewellery \ and \ watches \end{array} \right\} \ in \ the \left\{ \begin{array}{c} area \\ region \end{array} \right\}.$

• No generic attacks of effort less than 2ⁿ are known for other security properties (pre-image and second pre-image resistance)

Spring 2017

Random Oracle Model

- The Random Oracle Model (ROM) models an "ideal" hash function
- This ideal function is such that

CSE 664

- the only efficient way to determine the value of h(x) is to actually evaluate the function on x
- the output is truly random and cannot be predicted even if other values h(x'), h(x''), etc. are known
- Every time the ideal hash function is used, you consult an "oracle"

- you send x to the oracle and obtain h(x) back

• This model was introduced by Bellare and Rogaway in 1993

Random Oracle Model

- The rationale for using the random oracle model is
 - collision or preimage resistance of a hash function is not always sufficient to prove security
 - constructions that use hash functions can be more efficient than constructions without them
 - if we use an ideal function, we can prove construction with hash functions secure
- Is this model secure?
 - generally it is secure, but there are counterexamples
 - avoid this model if alternatives exist

Spring 2017 ~

- Families of customized hash functions
 - MD2, MD4, MD5 (MD = message digest)
 - a family of cryptographic hash functions designed by Ron Rivest
 - all have 128-bit output
 - MD2 was perceived as slower and less secure than MD4 and MD5
 - MD4 is specified as internet standard in RFC 1320
 - MD5 was designed as a strengthened version of MD4 before weaknesses in MD4 were found
 - MD5 is specified as internet standard RFC 1321
 - SHA-0, SHA-1
 - SHA-2 family

• MD4/MD5

CSE 664

- for 128-bit hashes, collisions are expected in 2⁶⁴ time
- collisions have been found for MD4 in 2²⁰ compression function computations (90s)
- MD5 was widely used until relatively recently
- attacks on MD5
 - Boer and Bosselaers found a pseudo collision (same message, two different IV's) in 1993
 - Dobbertin created collisions for MD5 compression function with a chosen IV in 1996
 - Wang et al. in 2004 found collisions for MD5 for any IV which are easy to find

- Secure Hash Algorithm (SHA)
 - SHA was designed by NIST and published in FIPS 180 in 1993
 - In 1995 a revision, known as SHA-1, was specified in FIPS 180-1
 - it is also specified in RFC 3174
 - SHA-0 and SHA-1 have 160 bit output and MD4-based design
 - In 2002 NIST produced a revision of the standard in FIPS 180-2
 - SHA-2 hash functions have length 256, 384, and 512 to be compatible with the increased security of AES
 - they are known as SHA-256, SHA-384, and SHA-512
 - Also, SHA-224 was added to compatibility with 3DES

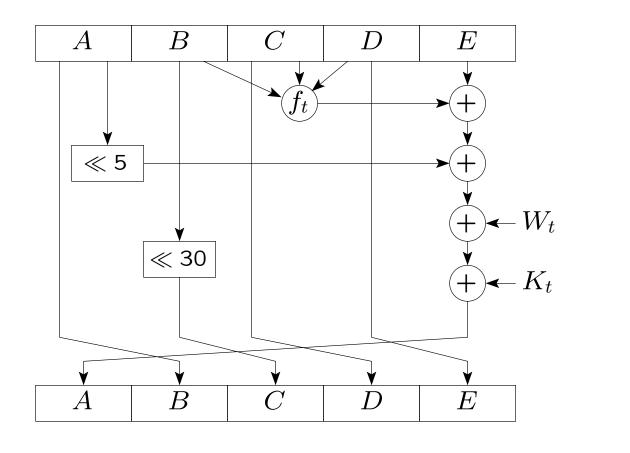
Spring 2017 ~

• Comparison of SHA parameters

	SHA-1	SHA-256	SHA-384	SHA-512
hash size	160	256	384	512
message size	$< 2^{64}$	< 2 ⁶⁴	$< 2^{128}$	$< 2^{128}$
block size	512	512	1024	1024
word size	32	32	64	64
number of steps	80	64	80	80
security (birthday	80	128	192	256
attack)				

- SHA-1 algorithm
 - pad the input before processing
 - initialize the 5-word (160-bit) buffer with
 - A = 67452301; B = efcdab89; C = 98badcfe
 - D = 10325476; E = C3D2E1F0
 - message is processed in 16 32-bit words
 - expand 16 words into 80 words by XORing and shifting
 - use 4 rounds of 20 steps each on a message block and the buffer
 - the buffer is updated as (t is the step number) (A, B, C, D, E) = $((E + f_t(B, C, D) + (A \ll 5) + W_t + K_t), A, (B \ll 30), C, D)$

• One step of SHA-1



Marina Blanton

Spring 2017

• SHA-1 details

CSE 664

- -t is the step number
- K_t is the a constant value derived from the sin function
- W_t is derived from the message block $m_i = W_0 W_1 \dots W_{15}$ as

•
$$W_t = W_t$$
 for $t = 0, ..., 15$

- $W_t = (W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) \ll 1$ for t = 16, ..., 79
- The difference between SHA-0 and SHA-1 is that SHA-0 doesn't have 1-bit shift in the construction of W_{16}, \ldots, W_{79}

• Security of SHA

CSE 664

- brute force attack is harder than in MD5 (160 bits vs. 128 bits)
- SHA performs more complex transformations that MD5
 - it makes finding collisions more difficult
- Joux and also Wang et al. found collisions in SHA-0 in 2004
 - collisions can be found in SHA-0 in $< 2^{40}$
- in 2005 collisions have been found in 58-round "reduced" SHA-1 (2³³ work)
- finding collisions in the full version of SHA-1 is estimated at $< 2^{69}$
- several other results followed

Spring 2017 ~

- Search for SHA-3
 - Feb 2007: NIST announces requests for candidate algorithms for SHA-3 family
 - Oct 2008: 64 algorithms were received
 - Dec 2008: 51 first-round algorithms meeting minimum requirements were announced
 - Jul 2009: 14 second-round candidates were announced
 - Dec 2010: 5 finalists were selected
 - Oct 2012: the winner, Keccak, was announced
 - 2013: controversy about NIST-announced changes
 - Aug 2015: SHA-3 standard was released

- SHA-3 Requirements
 - digest sizes of 224, 256, 384, and 512 bits
 - support of maximum message length of at least $2^{64} 1$ bits
 - must be implementable in a wide range of hardware and software platforms
 - other requirements
- Evaluation criteria (ordered)
 - security
 - cost and performance
 - algorithm and implementation characteristics

SHA-3

- SHA-3 is specified in NIST's FIPS 202 standard
 - it is based on Keccak family of sponge functions
 - the sponge construction is a mode of operation that builds a function mapping variable-length input to variable-length output using a fixed-length permutation and a padding rule
 - Keccak instances call one of seven permutations with SHA-3 using the largest permutation Keccak-f[1600]
 - each permutation uses a round function with simple operations such as XOR, AND and NOT and rotations
 - the design is dictinct from other widely used techniques (SHA-2, AES, etc.)

SHA-3

- In December 2016, NIST released Special Publication (SP) 800-185 with SHA-3 derived functions:
 - cSHAKE is a customizable variant of the SHAKE function used in Keccak and is a building block for all functions below
 - KMAC (= Keccak MAC) is a PRF and keyed hash function based on Keccak
 - it is faster than HMAC

CSE 664

- TupleHash is a variable-length hash function designed to hash tuples of input strings without trivial collisions
- ParallelHash is a variable-length hash function that can hash very long messages in parallel

Spring 2017

Summary

- Hash function design
 - iterated functions with chaining
 - Merkle-Damgard construction
- Attacks on hash functions
 - birthday attack applies to find collisions
 - finding preimage requires brute force search
- Customized hash functions
 - MD4/MD5
 - SHA-0, SHA-1, SHA-2
 - new SHA-3

CSE 664