Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 7: Advanced Encryption Standard (AES)

Department of Computer Science and Engineering University at Buffalo

Lecture Outline

- Last time:
 - block ciphers
 - Data Encryption Standard
 - attacks on DES
 - double and triple DES
- This lecture:
 - Advanced Encryption Standard
 - cipher details

Advanced Encryption Standard (AES)

- In 1997 NIST made a formal call for an unclassified publicly disclosed encryption algorithm available worldwide and royalty-free
 - the goal was to replace DES with a new standard called AES
 - the algorithm must be a symmetric block cipher
 - the algorithm must support (at a minimum) 128-bit blocks and key sizes of 128, 192, and 256 bits
- The evaluation criteria were:
 - security
 - speed and memory requirements
 - algorithm and implementation characteristics

Spring 201'

- In 1998 15 candidate AES algorithms were announced
- They were narrowed to 5 in 1999: MARS, RC6, Rijndael, Serpent, and Twofish
 - all five were thought to be secure
- A more thorough evaluation was performed
- In 2000 NIST announced that Rijndael was selected as the AES
- In 2001 AES was published for public review and comments and adopted later that year (published in FIPS 197)
- The selection process for the AES was very open

Rijndael

- invented by Belgian researchers Deamen and Rijmen
- designed to be simple and efficient in both hardware and software on a wide range of platforms
- supports different block sizes (128, 192, and 256 bits)
- supports keys of different length (128, 192, and 256 bits)
- uses a variable number of rounds
 - Nr = 10 if both keys and block sizes are 128
 - Nr = 12 if max of block and key sizes is 192
 - Nr = 14 if max of block and key sizes is 256

- During encryption:
 - the block is copied into the state matrix
 - the state is modified at each round of encryption and decryption
 - the final state is copied to the ciphertext

- The key schedule in AES
 - the key is treated as a 4×4 matrix as well
 - the key is then expanded into an array of words
 - each word is 4 bytes and there are 44 words (for 128-bit key)
 - four distinct words serve as a round key for each round

	k_0	k_4	k_8	k ₁₂		w_0	w_1			w_{43}
	k_1	k_5	k_9	k ₁₃						
•	k_2	k_6	k ₁₀	k ₁₄				• • •	w_{42}	
•	<i>k</i> ₃	k_7	k_{11}	k ₁₅						

- Rijndael doesn't have a Feistel structure
 - 2 out of 5 AES candidates (including Rijndael) don't use Feistel structure
 - they process the entire block in parallel during each round
- The operations are (3 substitution and 1 permutation operations):
 - SUBBYTES: byte-by-byte substitution using an S-box
 - SHIFTROWS: a simple permutation
 - MIXCOLUMNS: a substitution using mod 2⁸ arithmetics
 - ADDROUNDKEY: a simple XOR of the current state with a portion of the expanded key

- At a high-level, encryption proceeds as follows:
 - set initial state $s_0 = m$
 - perform operation ADDROUNDKEY (XORs k_i and s_i)
 - for each of the first Nr-1 rounds:
 - perform a substitution operation SUBBYTES on s_i and an S-box
 - perform a permutation SHIFTROWS on s_i
 - perform an operation MIXCOLUMNS on s_i
 - perform ADDROUNDKEY
 - the last round is the same except no MIXCOLUMNS is used
 - set the ciphertext $c = s_{Nr}$

- More about Rijndael design...
 - ADDROUNDKEY is the only operation that uses key
 - that's why it is applied at the beginning and at the end
 - all operations are reversible
 - the decryption algorithm uses the expanded key in the reverse order
 - the decryption algorithm, however, is not identical to the encryption algorithm

- The SUBBYTES operation
 - maps a state byte $s_{i,j}$ to a new byte $s_{i,j}'$ using S-box
 - the S-box is a 16×16 matrix with a byte in each position
 - the S-box contains a permutation of all possible 256 8-bit values
 - the values are computed using a formula
 - it was designed to resist known cryptanalytic attacks (i.e., to have low correlation between input bits and output bits)

- The SUBBYTES operation
 - to compute the new $s'_{i,j}$:
 - set x to the 4 leftmost bits of $s_{i,j}$ and y to its 4 rightmost bits
 - use x as the row and y as the column to locate a cell in the S-box
 - use that cell value as $s_{i,j}^\prime$

- the same procedure is performed on each byte of the state

CSE 664 — Spring 2017

- The SHIFTROWS operation
 - performs circular left shift on state rows
 - 2nd row is shifted by 1 byte
 - 3rd row is shifted by 2 bytes
 - 4th row is shifted by 3 bytes

$s_{0,0}$	$s_{0,1}$	s _{0,2}	s _{0,3}		$s_{0,0}$	$s_{0,1}$	s _{0,2}	s _{0,3}
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	s _{1,3}		$s_{1,1}$	$s_{1,2}$	$s_{1,3}$	$s_{1,0}$
s _{2,0}	$s_{2,1}$	$s_{2,2}$	s _{2,3}		s _{2,2}	s _{2,3}	s _{2,0}	$s_{2,1}$
\$3,0	$s_{3,1}$	s _{3,2}	s _{3,3}		s _{3,3}	s _{3,0}	$s_{3,1}$	s _{3,2}

- important because other operations operate on a single cell

- The MIXCOLUMNS operation
 - multiplies the state by a fixed matrix

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

- was designed to ensure good mixing among the bytes of each column
- the coefficients 01, 02, and 03 are for implementation purposes (multiplication involves at most a shift and an XOR)

- Decryption:
 - inverse S-box is used in SUBBYTES
 - inverse shifts are performed in SHIFTROWS
 - inverse multiplication matrix is used in MIXCOLUMNS
- Key expansion:
 - was designed to resist known attacks and be efficient
 - knowledge of a part of the key or round key doesn't enable calculation of other key bits
 - round-dependent values are used in key expansion

- Summary of Rijndael design
 - simple design but resistant to known attacks
 - very efficient on a variety of platforms including 8-bit and 64-bit platforms
 - highly parallelizable
 - had the highest throughput in hardware among all AES candidates
 - well suited for restricted-space environments (very low RAM and ROM requirements)
 - optimized for encryption (decryption is slower)

Encryption Modes

- Recall that encryption modes specify how messages longer than one block are encrypted and decrypted
- 4 modes of operation were standardized in FIPS Pub. 81 for DES
 - electronic codebook mode (ECB), cipher feedback mode (CFB),
 cipher block chaining mode (CBC), and output feedback mode (OFB)
- 5 modes have been approved by NIST for AES and other ciphers in 2001
 - the 4 above and counter mode

Bootstrapping Symmetric Encryption

- You can communicate a secret key to your friend by:
 - phone, (slow) mail, inviting her for dinner, ...
- We are going to use public key encryption to communicate the symmetric encryption key
- To agree on a secret symmetric key, the idea is:
 - pick a fresh secret key s and encrypt it with the friend's publicly known key pk as ${\rm Enc}_{pk}(s)$
 - the friend will be able to decrypt and use s, but nobody else