Applied Cryptography and Computer

Security CSE 664 Spring 2017

Lecture 7: Advanced Encryption Standard (AES)

Department of Computer Science and Engineering
University at Buffalo

Lecture Outline

- Last time:
- block ciphers
- Data Encryption Standard
- attacks on DES
- double and triple DES
- This lecture:
- Advanced Encryption Standard
- cipher details

Advanced Encryption Standard (AES)

- In 1997 NIST made a formal call for an unclassified publicly disclosed encryption algorithm available worldwide and royalty-free
- the goal was to replace DES with a new standard called AES
- the algorithm must be a symmetric block cipher
- the algorithm must support (at a minimum) 128-bit blocks and key sizes of 128, 192, and 256 bits
- The evaluation criteria were:
- security
- speed and memory requirements
- algorithm and implementation characteristics

AES

- In 199815 candidate AES algorithms were announced
- They were narrowed to 5 in 1999: MARS, RC6, Rijndael, Serpent, and Twofish
- all five were thought to be secure
- A more thorough evaluation was performed
- In 2000 NIST announced that Rijndael was selected as the AES
- In 2001 AES was published for public review and comments and adopted later that year (published in FIPS 197)
- The selection process for the AES was very open

AES

- Rijndael
- invented by Belgian researchers Deamen and Rijmen
- designed to be simple and efficient in both hardware and software on a wide range of platforms
- supports different block sizes (128, 192, and 256 bits)
- supports keys of different length (128, 192, and 256 bits)
- uses a variable number of rounds
- $N r=10$ if both keys and block sizes are 128
- $N r=12$ if max of block and key sizes is 192
- $N r=14$ if max of block and key sizes is 256

AES

- During encryption:
- the block is copied into the state matrix
- the state is modified at each round of encryption and decryption
- the final state is copied to the ciphertext

$i n_{0}$	$i n_{4}$	$i n_{8}$	$i n_{12}$					
$i n_{1}$	$i n_{5}$	$i n_{9}$	$i n_{13}$					
$i n_{2}$	$i n_{6}$	$i n_{10}$	$i n_{14}$					
$i n_{3}$	$i n_{7}$	$i n_{11}$	$i n_{15}$	\quad	$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
:---	:---	:---	:---					
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$					

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$
	$s_{3,0}$	$s_{3,1}$	$s_{3,2}$
$s_{3,3}$			

out $_{0}$	out $_{4}$	out $_{8}$	out $_{12}$
out $_{1}$	out $_{5}$	out $_{9}$	out $_{13}$
out $_{2}$	out $_{6}$	out $_{10}$	out $_{16}$
out $_{3}$	out $_{7}$	out $_{11}$	out $_{15}$

AES

- The key schedule in AES
- the key is treated as a 4×4 matrix as well
- the key is then expanded into an array of words
- each word is 4 bytes and there are 44 words (for 128-bit key)
- four distinct words serve as a round key for each round

k_{0}	k_{4}	k_{8}	k_{12}
k_{1}	k_{5}	k_{9}	k_{13}
k_{2}	k_{6}	k_{10}	k_{14}
k_{3}	k_{7}	k_{11}	k_{15}

AES

- Rijndael doesn't have a Feistel structure
- 2 out of 5 AES candidates (including Rijndael) don't use Feistel structure
- they process the entire block in parallel during each round
- The operations are (3 substitution and 1 permutation operations):
- SUBBYTES: byte-by-byte substitution using an S-box
- SHIFTROWS: a simple permutation
- MIXCOLUMNS: a substitution using mod 2^{8} arithmetics
- ADDROUNDKEY: a simple XOR of the current state with a portion of the expanded key

AES

- At a high-level, encryption proceeds as follows:
- set initial state $s_{0}=m$
- perform operation ADDROUNDKEY (XORs k_{i} and s_{i})
- for each of the first $N r-1$ rounds:
- perform a substitution operation SUBBYTES on s_{i} and an S-box
- perform a permutation SHIFTROWS on s_{i}
- perform an operation MIXCOLUMNS on s_{i}
- perform AddRoundKey
- the last round is the same except no MIXCOLUMNS is used
- set the ciphertext $c=s_{N r}$

AES

- More about Rijndael design...
- ADDROUNDKEY is the only operation that uses key
- that's why it is applied at the beginning and at the end
- all operations are reversible
- the decryption algorithm uses the expanded key in the reverse order
- the decryption algorithm, however, is not identical to the encryption algorithm

AES

- The SubBytes operation
- maps a state byte $s_{i, j}$ to a new byte $s_{i, j}^{\prime}$ using S-box
- the S-box is a 16×16 matrix with a byte in each position
- the S-box contains a permutation of all possible 256 8-bit values
- the values are computed using a formula
- it was designed to resist known cryptanalytic attacks (i.e., to have low correlation between input bits and output bits)

AES

- The SUbBytes operation
- to compute the new $s_{i, j}^{\prime}$:
- set x to the 4 leftmost bits of $s_{i, j}$ and y to its 4 rightmost bits
- use x as the row and y as the column to locate a cell in the S-box
- use that cell value as $s_{i, j}^{\prime}$

- the same procedure is performed on each byte of the state

AES

- The ShiftRows operation
- performs circular left shift on state rows
- 2nd row is shifted by 1 byte
- 3rd row is shifted by 2 bytes
- 4th row is shifted by 3 bytes

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$					
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	$\quad \longrightarrow$	$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
:---	:---	:---	:---					
$s_{1,1}$	$s_{1,2}$	$s_{1,3}$	$s_{1,0}$					
$s_{2,2}$	$s_{2,3}$	$s_{2,0}$	$s_{2,1}$					

- important because other operations operate on a single cell

AES

- The MixCOLUMNS operation
- multiplies the state by a fixed matrix

$$
\left[\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right]\left[\begin{array}{llll}
s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\
s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\
s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\
s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}
\end{array}\right]=\left[\begin{array}{llll}
s_{0,0}^{\prime} & s_{0,1}^{\prime} & s_{0,2}^{\prime} & s_{0,3}^{\prime} \\
s_{1,0}^{\prime} & s_{1,1}^{\prime} & s_{1,2}^{\prime} & s_{1,3}^{\prime} \\
s_{2,0}^{\prime} & s_{2,1}^{\prime} & s_{2,2}^{\prime} & s_{2,3}^{\prime} \\
s_{3,0}^{\prime} & s_{3,1}^{\prime} & s_{3,2}^{\prime} & s_{3,3}^{\prime}
\end{array}\right]
$$

- was designed to ensure good mixing among the bytes of each column
- the coefficients 01,02 , and 03 are for implementation purposes (multiplication involves at most a shift and an XOR)

AES

- Decryption:
- inverse S-box is used in SUBBYTES
- inverse shifts are performed in SHIFTROWS
- inverse multiplication matrix is used in MIXCOLUMNS
- Key expansion:
- was designed to resist known attacks and be efficient
- knowledge of a part of the key or round key doesn't enable calculation of other key bits
- round-dependent values are used in key expansion

AES

- Summary of Rijndael design
- simple design but resistant to known attacks
- very efficient on a variety of platforms including 8-bit and 64-bit platforms
- highly parallelizable
- had the highest throughput in hardware among all AES candidates
- well suited for restricted-space environments (very low RAM and ROM requirements)
- optimized for encryption (decryption is slower)

Encryption Modes

- Recall that encryption modes specify how messages longer than one block are encrypted and decrypted
- 4 modes of operation were standardized in FIPS Pub. 81 for DES
- electronic codebook mode (ECB), cipher feedback mode (CFB), cipher block chaining mode (CBC), and output feedback mode (OFB)
- 5 modes have been approved by NIST for AES and other ciphers in 2001
- the 4 above and counter mode

Bootstrapping Symmetric Encryption

- You can communicate a secret key to your friend by:
- phone, (slow) mail, inviting her for dinner, ...
- We are going to use public key encryption to communicate the symmetric encryption key
- To agree on a secret symmetric key, the idea is:
- pick a fresh secret key s and encrypt it with the friend's publicly known key $p k$ as $\mathrm{Enc}_{p k}(s)$
- the friend will be able to decrypt and use s, but nobody else

