Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 5: Symmetric Encryption II

Department of Computer Science and Engineering University at Buffalo

Symmetric Encryption

- Recall types of attacks against an encryption scheme
 - ciphertext only
 - known plaintext
 - chosen plaintext
 - chosen ciphertext
- In this lecture, we
 - move towards security against more powerful adversaries
 - learn about block ciphers

Spring 2017 ~

Security Against Chosen-Plaintext Attacks

- In chosen-plaintext attack (CPA), adversary \mathcal{A} is allowed to ask for encryptions of messages of its choice
 - it is now active and adaptive
- A is given black-box access to encryption oracle and can query it on different messages
 - notation $\mathcal{A}^{\mathcal{O}(\cdot)}$ means \mathcal{A} has oracle access to algorithm \mathcal{O}
- As before, A is asked to distinguish between encryptions of messages of its choice
- Is this model too strong?

CPA Security

- **CPA indistinguishability experiment** $\mathsf{PrivK}_{\mathcal{A},\mathcal{E}}^{\mathsf{cpa}}(n)$
 - **1. random key** k is generated by $Gen(1^n)$
 - 2. \mathcal{A} is given 1^n and ability to query $Enc_k(\cdot)$, and chooses two messages m_0, m_1 of the same length
 - **3. random bit** $b \leftarrow \{0, 1\}$ is chosen, challenge ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A}
 - 4. \mathcal{A} can use $Enc_k(\cdot)$ and eventually outputs bit b'
 - 5. experiment outputs 1 if b' = b (A wins) and 0 otherwise
- $\mathcal{E} = (Gen, Enc, Dec)$ has indistinguishable encryptions under the chosen-plaintext attack (CPA-secure) if for all PPT \mathcal{A}

$$\Pr[\operatorname{PrivK}_{\mathcal{A},\mathcal{E}}^{\operatorname{cpa}}(n) = 1] \leq \frac{1}{2} + \operatorname{negl}(n)$$

CSE 664

- Spring 2017 -

CPA Security

- How come adversary is allowed to query Enc_k on a message and later use that message for the challenge?
- How does this notion of security compare to the indistinguishability against eavesdroppers?
- How about security for multiple encryptions?
 - good news! no need for other definitions
 - then really long messages can be treated as several fixed-length messages

Towards CPA-Secure Encryption

- We are going to use a new building block: pseudorandom functions
 - just like pseudorandomness of one string doesn't make sense, we'll consider a distribution (or class) of functions
 - we'll look at keyed functions $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$
 - the first argument is the key k and second argument is the input \boldsymbol{x}
 - once the key is fixed, the function F_k : $\{0,1\}^n \rightarrow \{0,1\}^n$ is fixed
- Pseudorandom property is now defined as
 - a computationally limited adversary cannot distinguish behavior of a pseudorandom function F_k (for a randomly chosen and secret k) from a function f chosen at random

Towards CPA-Secure Encryption

- *f* is one of all possible functions that map *n*-bit inputs to *n*-bit outputs
 - each function can be specified as a lookup table
 - if f is chosen at random, outputs f(x) and f(y) are uniformly distributed and independent
- Pseudorandomness property of F_k no longer holds if
 - key k is known or not chosen at random
 - adversary is not bounded by polynomial (in n) time

Towards CPA-Secure Encryption

Definition: An efficient function F : {0, 1}ⁿ × {0, 1}ⁿ → {0, 1}ⁿ is a pseudorandom function if any PPT distinguisher D cannot tell apart outputs of F_k and f, i.e.,

$$|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]| \le \operatorname{negl}(n)$$

for a uniformly chosen function $f: \{0, 1\}^n \to \{0, 1\}^n$ and uniformly chosen key $k \leftarrow \{0, 1\}^n$

- Pseudorandom functions are useful for different purposes in cryptography
 - we start with CPA-secure encryption schemes

CPA-Secure Encryption

- Intuitively, F_k enciphers its input (message?) rather well
 - the problem is that $F_k(m)$ is deterministic, not sufficient
 - how do we randomize encryption?
- Solution for CPA-secure encryption

CSE 664

- Gen: on input 1^n , choose $k \stackrel{R}{\leftarrow} \{0, 1\}^n$
- Enc: on input key $k \in \{0, 1\}^n$ and message $m \in \{0, 1\}^n$, choose $r \stackrel{R}{\leftarrow} \{0, 1\}^n$ and output ciphertext $c := (r, F_k(r) \oplus m)$
- Dec: on input key $k \in \{0, 1\}^n$ and ciphertext $c = (c_1, c_2)$, output message $m = F_k(c_1) \oplus c_2$

Spring 2017 -

Marina Blanton

CPA-Secure Encryption

- Theorem: Given that F is a pseudorandom function, the above construction is a CPA-secure encryption scheme for n-bit messages
- Proof idea:
 - 1. Suppose that random function f is used in place of F_k . Proof the construction secure.
 - 2. Replace f with F_k and show that any negligible advantage in breaking indistinguishability has to come from the use of F_k .

CPA-Secure Encryption in Practice

- Block ciphers used in practice are keyed permutations
 - can we use them in place of pseudorandom functions and still get the proper level of security?
- Define pseudorandom permutation similar to pseudorandom functions
 - efficient, negligible advantage in distinguishing from a random permutation
- **Claim:** a pseudorandom permutation is also a pseudorandom function
 - probability of collision in a pseudorandom function is negligible
- We also want to be able to invert pseudorandom permutation F_k
 - i.e., block cipher decryption algorithm

CPA-Secure Encryption in Practice

- How about messages of sizes other than n?
 - shorter messages
 - really long messages
- Short messages
 - unambiguously pad the message to be n bits
 - often can append a "1" followed by the necessary number of "0"s
- Messages longer than *n*
 - partition message into blocks of size $n: m = m_1 m_2 \dots m_\ell$
 - encrypting each block separately results in doubling message length
 - modes of encryption with less expansion exist

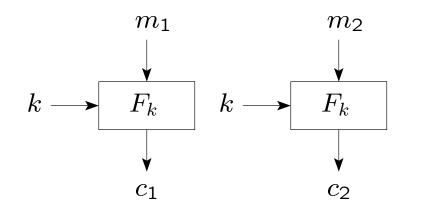
Spring 2017 ~

- Encryption modes indicate how messages longer than one block are encrypted and decrypted
- 4 modes of operation were standardized in 1980 for Digital Encryption Standard (DES)
 - can be used with any block cipher
 - electronic codebook mode (ECB), cipher feedback mode (CFB),
 cipher block chaining mode (CBC), and output feedback mode (OFB)
- **5 modes** were specified with the current standard Advanced Encryption Standard (AES) in 2001
 - the 4 above and counter mode

• Electronic Codebook (ECB) mode

CSE 664

- divide the message m into blocks $m_1m_2...m_\ell$ of size n each
- encipher each block separately: for $i = 1, ..., \ell$, $c_i = F_k(m_i)$
- the resulting ciphertext is $c = c_1 c_2 \dots c_\ell$



- Properties of ECB mode:
 - identical plaintext blocks result in identical ciphertexts (under the same key)
 - each block can be decrypted independently
 - errors in a ciphertext block do not affect other blocks
- Is it secure?

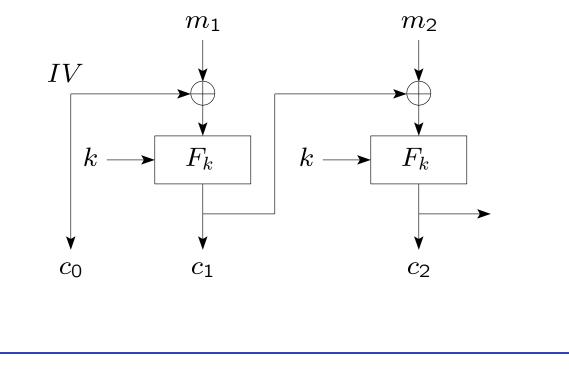
CSE 664

Spring 2017 -

• Cipher Block Chaining (CBC) mode

CSE 664

- set $c_0 = IV \stackrel{R}{\leftarrow} \{0, 1\}^n$ (initialization vector)
- encryption: for $i = 1, ..., \ell$, $c_i = F_k(m_i \oplus c_{i-1})$
- decryption: for $i = 1, ..., \ell, m_i = c_{i-1} \oplus F_k^{-1}(c_i)$



- Spring 2017 -

- Properties of CBC mode:
 - **–** if *F* is a pseudorandom permutation, this mode is CPA-secure
 - a ciphertext block depends on all preceding plaintext blocks
 - sequential encryption, cannot use parallel hardware
 - *IV* must be random and communicated intact
 - if the IV is not random, security quickly degrades
 - if someone can fool the receiver into using a different IV, security issues arise

- Cipher Feedback (CFB) mode
 - the message is XORed with the encryption of the feedback from the previous block
 - set initial input $I_1 = IV$

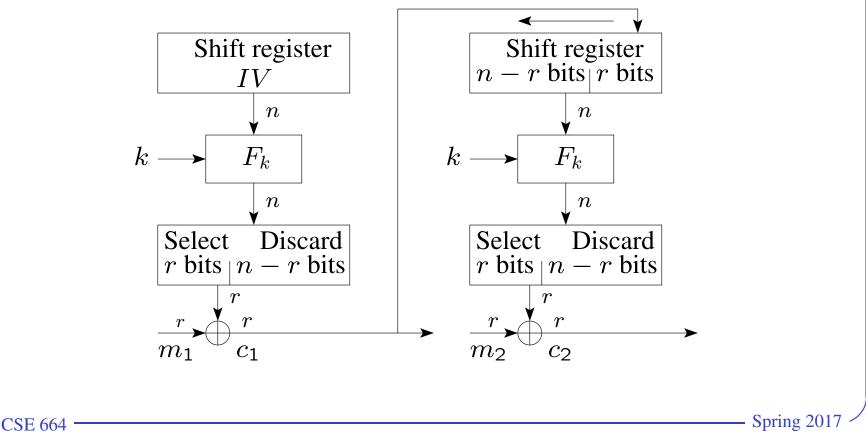
CSE 664

- encryption: $c_i = F_k(I_i) \oplus m_i$; $I_{i+1} = c_i$
- decryption: $m_i = c_i \oplus F_k(I_i)$
- This mode allows the block cipher to be used as a stream cipher
 - if our application requires that plaintext units shorter than the block are transmitted without delay, we can use this mode
 - the message is transmitted in *r*-bit units (*r* is often 8 or 1)

Spring 2017 ~

Marina Blanton

- Cipher Feedback (CFB) mode
 - input: key k, n-bit IV, r-bit plaintext blocks m_1, \ldots
 - output: r-bit ciphertext blocks c_1, \ldots

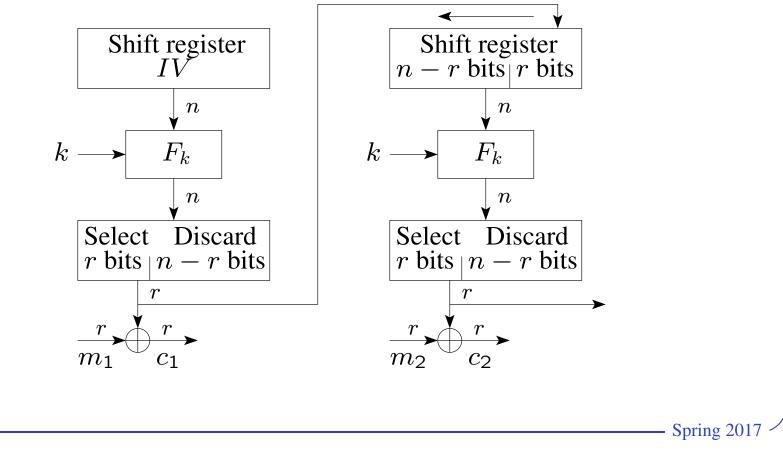


- Properties of CFB mode:
 - the mode is CPA-secure
 - similar to CBC, a ciphertext block depends on all previous plaintext blocks
 - decreased throughput when used on small units
 - one encryption operation is applied per r bits, not per n bits

• Output Feedback (OFB) mode

CSE 664

 similar to CFB, but the feedback is from encryption output and is independent of the message



- Output Feedback (OFB) mode:
 - n-bit feedback is recommended
 - using fewer bits for the feedback reduces the size of the cycle
- Properties of OFB:

CSE 664

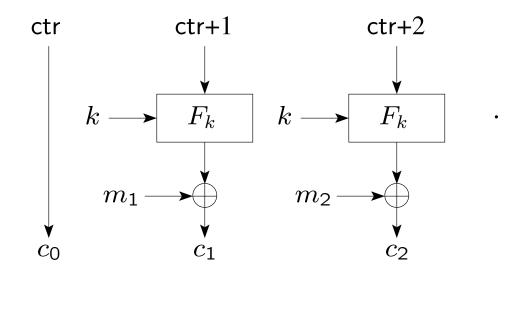
- the mode is CPA-secure
- the key stream is plaintext-independent
- OFB may be used for applications in which all error propagation must be avoided
- similar to CFB, throughput is decreased for r < n, but the key stream can be precomputed

• Counter (CRT) mode

CSE 664

- a counter is encrypted and XORed with a plaintext block
- no feedback into the encryption function

- initially set
$$\operatorname{ctr} = IV \stackrel{R}{\leftarrow} \{0, 1\}^n$$



- Spring 2017 <

- Counter (CRT) mode
 - encryption: for $i = 1, ..., \ell$, $c_i = F_k(\operatorname{ctr} + i) \oplus m_i$
 - decryption: for $i = 1, ..., \ell$, $m_i = F_k(\operatorname{ctr} + i) \oplus c_i$
- Properties:
 - ciphertext can have the same length as the plaintext
 - we just truncate the value and transmit it

- Advantages of counter mode
 - Hardware and software efficiency: multiple blocks can be encrypted or decrypted in parallel
 - Preprocessing: encryption can be done in advance; the rest is only XOR
 - Random access: *i*th block of plaintext or ciphertext can be processed independently of others
 - Security: at least as secure as other modes (i.e., CPA-secure)
 - Simplicity: doesn't require decryption or decryption key scheduling
- But what happens if the counter is reused?

CSE 664

Practical Remarks

- Use good randomness
 - true randomness for long-term secrets
 - cryptographically strong pseudo-random number generator in other cases
- Stick to exact specification of a CPA-secure encryption mode
 - ECB mode has historical significance only
- Both the size of the key and block size must be sufficiently large

Spring 2017 ~

Message Integrity

- The above modes in general don't protect transmitted ciphertexts from tampering
 - some modes are easier to tamper with than others
 - none achieve "proper" integrity protection
- A separate integrity or message authentication mechanism should be used to ensure that the message arrives intact

Summary

- Block ciphers vs stream ciphers
 - which type is preferred?
- Notions of security for symmetric encryption
- What is next?
 - practical constructions for block ciphers
 - past and current standards