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Lecture OutlineLecture Outline

• Last lecture:

– classical ciphers

• This lecture:

– elements of probability theory

– perfect secrecy

– one-time pad (Vernam’s cipher)

– entropy

– language redundancy
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Lecture OutlineLecture Outline

• Recall how the security of a cryptosystem is shown:

– computational security

– unconditional security

• Today we study unconditionally secure systems using probability theory

– given a ciphertext, no information can be learned about the message
it encrypts

– ciphers we already learned about can be made unconditionally
secure
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One-Time PadOne-Time Pad

• An example of crypto system that achieves unconditional and perfect
secrecy is one-time pad (Vernam’s cipher)

– given a binary message m of length n

– algorithm Gen produces a random binary key k of length at least n

– to encrypt m with k, compute Enck(m) = m⊕ k

– to decrypt c with k, compute Deck(c) = c⊕ k

• What properties does this cipher have and why is it so good?
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Elementary Probability TheoryElementary Probability Theory

• A discrete random variable X consists of:

– a finite set X of values

– a probability distribution defined on X

• The probability that X takes on the value x is denoted by Pr[X = x]

• We must have that

– Pr[X = x] ≥ 0 for all x ∈ X

–
∑

x∈X Pr[X = x] = 1

• Example: dice from homework

– probability distribution is Pr[X = 1] = . . . = Pr[X = 6] = 1/6
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Elementary Probability TheoryElementary Probability Theory

• Let X and Y be random variables (defined on sets X and Y , resp.)

• Joint probability Pr[X = x, Y = y] is the probability that X takes
value x and Y takes value y

• Conditional probability Pr[X = x | Y = y] is the probability that X
takes value x given that Y takes value y

• X and Y are independent random variables if
Pr[X = x, Y = y] = Pr[X = x]Pr[Y = y] for all x ∈ X and y ∈ Y
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Elementary Probability TheoryElementary Probability Theory

• Example with two perfect dice:

– Let D1 denote the result of throwing first dice, D2 the result of
throwing the second dice, and S their sum

– What is the joint probability Pr[D1 = 2, D2 = 5]?

– What is the conditional probability Pr[D2 = 3 |D1 = 3]?

– Are D1 and D2 independent?

– What is the joint probability Pr[D1 = 3, S = 5]?

– Are D1 and S independent?

– What is the conditional probability Pr[S = 8 |D1 = 4]?
Pr[S = 8 |D1 = 1]? Pr[D1 = 3 | S = 4]?
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Probability TheoryProbability Theory

• Conditional and joint probabilities are related:

Pr[X = x, Y = y] = Pr[X = x | Y = y] · Pr[Y = y] (1)

and

Pr[X = x, Y = y] = Pr[Y = y |X = x] · Pr[X = x] (2)

• From these two expressions we obtain Bayes’ Theorem:

– if Pr[Y = y] > 0, then

Pr[X = x | Y = y] =
Pr[X = x] · Pr[Y = y |X = x]

Pr[Y = y]
(3)

• How is it useful to us?
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Probability TheoryProbability Theory

• Corollary: X and Y are independent random variables if and only if

Pr[X = x | Y = y] = Pr[X = x]

for all x ∈ X and y ∈ Y

– follows from definition of independent random variables and
equation (1)

• This is what we need for perfect secrecy
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What Does This Do for Us?What Does This Do for Us?

• Recall that a cipher is associated withM, K, and C

• Let Pr[K = k] denote the probability of key k ∈ K being output by Gen

• Let Pr[M = m] define the a priori probability that message m is
chosen for encryption

• M and K are independent and define ciphertext distribution C

• Given M , K and Enc, we can compute Pr[M = m | C = c]

• This takes us to the notion of perfect secrecy. . .
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Perfect SecrecyPerfect Secrecy

• Definition: An encryption scheme (Gen, Enc, Dec) has perfect secrecy if
for every distribution overM, every m ∈M and c ∈ C s.t.
Pr[C = c] > 0:

Pr[M = m | C = c] = Pr[M = m]

• Interpretation: after observing ciphertext c the a posteriori probability
that the message is m is identical to the a priori probability that the
message is m
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Perfect SecrecyPerfect Secrecy

• Alternative definition of perfect secrecy

– An encryption scheme (Gen, Enc, Dec) is perfectly secret if and only
if for every distribution overM and every m ∈M and c ∈ C:

Pr[C = c |M = m] = Pr[C = c]

– This means that the probability distribution of the ciphertext does
not depend on the plaintext

– In other words, an encryption scheme (Gen, Enc, Dec) is perfectly
secret if and only if for every distribution overM and every
m1,m2 ∈M and c ∈ C:

Pr[C = c |M = m1] = Pr[C = c |M = m2]
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Perfect IndistinguishabilityPerfect Indistinguishability

• Indistinguishability of encrypted messages allows us to formulate
security requirement as an experiment or game

– interactive game with adversaryA, who tries to break a
cryptographic scheme

• Our first experiment

– for eavesdropping adversaries

– using private-key encryption

– asks them to distinguish between encryptions of different messages

– let E = (Gen, Enc, Dec), and we name the experiment PrivKeav
A,E
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Perfect IndistinguishabilityPerfect Indistinguishability

• Experiment PrivKeav
A,E

1. A chooses two messages m0,m1 ∈M

2. random key k is generated by Gen, and random bit b← {0,1} is
chosen

3. ciphertext c← Enck(mb) is computed and given toA

4. A outputs bit b′ as its guess for b

5. experiment outputs 1 if b′ = b (A wins) and 0 otherwise

• Given this experiment, how should we define indistinguishability?
perfect secrecy?
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Perfect IndistinguishabilityPerfect Indistinguishability

• Definition: An encryption scheme (Gen, Enc, Dec) over message space
M is perfectly secret if for every adversaryA it holds that

Pr[PrivKeav
A,E = 1] =

1

2

– notice that is must work for everyA

• This definition is equivalent to our original definition of perfect secrecy
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One-Time PadOne-Time Pad

• One-time pad (Vernam’s cipher)

– for fixed integer n, letM = K = C = {0,1}n

– Gen chooses a key k uniformly at random from K
• each key is chosen with probability 2−n

– Enc: given key k ∈ {0,1}n and message m ∈ {0,1}n, compute
Enck(m) = m⊕ k

– Dec: given key k ∈ {0,1}n and ciphertext c ∈ {0,1}n, compute
Deck(c) = c⊕ k

• Why is it perfectly secret?
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One-Time PadOne-Time Pad

• Theorem: One-time pad encryption scheme achieves perfect secrecy

• Proof

– fix distribution overM and message m ∈M

Pr[C = c |M = m] =

– this works for all distributions and all m, so for all distributions over
M, all m1,m2 ∈M, and all c ∈ C:

Pr[C = c |M = m1] = Pr[C = c |M = m2] =
1

2n

– by definition of perfect secrecy, this encryption is perfectly secret
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More on One-Time PadMore on One-Time Pad

• One-time pad can be defined on units larger than bits (e.g., letters)

• One-time pad questions:

– Since the key must be long, what if we use text from a book as our
key?

– What if we reuse the key on different messages?

– Can we securely encrypt using a short/reusable key?
• no encryption scheme with smaller key space than message space

can be perfectly secret
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Perfect SecrecyPerfect Secrecy

• It can be shown that

– Shift cipher has perfect secrecy if
• the key is chosen randomly

• it is used to encrypt a single letter

– Similarly, Vigenère cipher has perfect secrecy if
• each letter in the key is chosen randomly

• the message has the same length as the key

• (Shannon’s theorem) In general, to achieve perfect secrecy:

– every key must be chosen with equal probability

– for every message m and every ciphertext c, there is a unique key k

such that Enck(m) = c
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EntropyEntropy

• Entropy H measures the amount of information (or amount of
uncertainty)

• The larger H of a message distribution is, the harder it is to predict that
message

• H is measured in bits as the minimum number of bits required to
encode all possible messages

H(X) = −
∑
x∈X

Pr[X = x] log2 Pr[X = x]

• Examples
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EntropyEntropy

• If there are n messages and they are all equally probable, then

H(X) = −
n∑

i=1

1

n
log2

1

n
= − log2

1

n
= log2 n

• Entropy is commonly used in security to measure information leakage

– compute entropy before and after transmitting a ciphertext

– if entropy associated with messages changes, leakage of information
about transmitted message takes place

– similarly, if uncertainty associated with the keys changes after
transmission, leakage of key information takes place
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EntropyEntropy

• Entropy after transmission is captured using conditional entropy
H(X|Y )

– H(M)−H(M |C) defines information leakage about messages

– H(K)− (K|C) defines information leakage about keys

• Perfect secrecy is achieved if (and only if) H(M) = H(M |C)

– that is, it is required that M and C are independent variables
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EntropyEntropy

• Conditional entropy H(X|Y ) is defined as follows:

– for each value y of Y , we get a conditional probability distribution
on X , denoted by X|y

H(X|y) = −
∑
x∈X

Pr[X = x|Y = y] · log2 Pr[X = x|Y = y]

– conditional entropy H(X|Y ) is defined as the weighted average
(w.r.t. probabilities Pr[Y = y]) of entropies H(X|y) over all
possible y

H(X|Y ) = −
∑
y∈Y

∑
x∈X

(Pr[Y = y] · Pr[X = x|Y = y]·

log2 Pr[X = x|Y = y])
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Language RedundancyLanguage Redundancy

• Absolute rate of a language

– is the maximum number of bits that can be encoded in each
character

– assuming that each character sequence is equally likely

• In an alphabet of ` letters:

– there are `n possible strings of size n

– if all of them are equiprobable, the entropy of a string is log2 `n

– then the absolute language rate

ra =
log2 `

n

n
=

n log2 `

n
= log2 `

• For English with ` = 26, ra = 4.7 bits
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Language RedundancyLanguage Redundancy

• Now compare that rate with the amount of information each English
letter actually encodes

• Entropy of a language L is defined as

HL = lim
n→∞

H(Mn)

n

– it measures the amount of entropy per letter and represents the
average number of bits of information per character

• For English, 1 ≤ HL ≤ 1.5 bits per character

• Redundancy of English

RL = 1−
HL

ra
= 1−

1.25

4.7
≈ 0.75
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SummarySummary

• Probabilities are used to evaluate security of a cipher

• Perfect secrecy achieves unconditional security

• One-time pad is a provably unbreakable cipher but is hard to use in
practice

• Entropy is used to measure the amount of uncertainty of the encryption
key given a ciphertext

• Next time:

– private-key encryption

– computational security

CSE 664 Spring 2017

26Marina Blanton


