Applied Cryptography and Data Security CSE 664 Spring 2017

Lecture 2: Classical Ciphers

Department of Computer Science and Engineering University at Buffalo

Lecture Outline

• What did we cover last time?

• What is ahead?

—— Spring 2017

Encryption

- Goal: secrecy of communication
- Basic terminology
 - plaintext or message
 - ciphertext
 - cryptographic key
- Encryption scheme is defined by algorithms
 - Gen: setup public parameters and key(s)
 - Enc: given a message m and encryption key, output ciphertext c
 - Dec: given a ciphertext c and decryption key, output plaintext m or fail

Encryption

- ullet Gen can be configurable and takes a parameter $n \in \mathbb{N}$ called security parameter
- Encryption scheme $\mathcal{E} = (Gen, Enc, Dec)$ has associated
 - message space ${\mathcal M}$
 - ciphertext space C
 - key space \mathcal{K}
- We obtain:
 - Gen : $\mathbb{N} \to \mathcal{K}$
 - Enc : $\mathcal{M} \times \mathcal{K} \to \mathcal{C}$
 - Dec : $\mathcal{C} \times \mathcal{K} \to \mathcal{M}$

Encryption

• What do we want from an encryption scheme?

correctness

security

— Spring 2017

Types of Encryption

• Symmetric key encryption

• Public-key encryption

• How about cryptography beyond encryption?

History of Ciphers

- Date back to 2500+ years
- An ongoing battle between codemakers and codebreakers
- Driven by current communication and computation technology
 - paper and ink
 - radio, cryptographic engines
 - computers and digital communication

Caesar Cipher

- Caesar cipher works on individual letters
 - associates each letter with a number between 0 and 25, i.e., A=0, B=1, etc.
 - message space is $\mathcal{M}=\{0,...,25\}$ and ciphertext space is $\mathcal{C}=\{0,...,25\}$
- Encryption: shift the letter right by 3 positions, i.e., $Enc(m) = (m + 3) \mod 26$
- Decryption: shift the letter left by 3 positions, i.e., $Dec(c) = (c 3) \mod 26$

— Spring 2017

Caesar Cipher

• Example

ABCDEFGHIJK L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Message M = CIPHER
- Ciphertext C = ?
- Assuming Kerckhoffs' principle, how do you break shift cipher?

- Spring 2017

Shift Cipher

- Shift cipher is generalization of Caesar cipher
 - uses a key with key space $\mathcal{K} = \{1, ..., 25\}$
- Gen: choose $k \stackrel{R}{\leftarrow} \mathcal{K}$
- Enc: given key k, shift the letter right by k positions, i.e., $\operatorname{Enc}_k(m) = (m+k) \bmod 26$
- Dec: given key k, shift the letter left by k positions, i.e., $\operatorname{Dec}_k(c) = (c k) \mod 26$
- How hard is this one to break? What does it tell us?

Substitution Cipher

- Similarly, operates on one letter at a time ($\mathcal{M}=\mathcal{C}=\mathbb{Z}_{26}$)
- The key space consists of all possible permutations of the 26 symbols 0, ..., 25
- Gen: choose a random permutation $\pi: \mathbb{Z}_{26} \to \mathbb{Z}_{26}$
- Enc: permute using π , i.e., $\operatorname{Enc}_{\pi}(m) = \pi(m)$
- Dec: reverse permutation, i.e., $\mathrm{Dec}_{\pi}(c)=\pi^{-1}(c)$, where π^{-1} is the inverse permutation to π
- Example

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z X N Y A H P O G Z Q W B T S F L R C V M U E K J D I

Substitution Cipher

• Key space is $26! \approx 4 \cdot 10^{26}$

CSE 664

- exhaustive (or brute-force) search is no longer possible
- the cipher thought to be unbreakable at the time it was used
- The key to breaking the cipher lies in frequency analysis
- The fact: each language has certain features such as frequency of letters and frequency of groups of letters
- Substitution cipher preserves such features

______ Spring 2017

Substitution Cipher: Cryptanalysis

• Probabilities of occurrence of English language letters:

letter	prob	letter	prob	letter	prob	letter	prob
A	0.082	Н	0.061	О	0.075	V	0.010
В	0.015	I	0.070	P	0.019	\mathbf{W}	0.023
C	0.028	J	0.002	Q	0.001	X	0.001
D	0.043	K	0.008	R	0.060	Y	0.020
E	0.127	L	0.040	S	0.063	Z	0.001
F	0.022	\mathbf{M}	0.024	T	0.091		
G	0.020	N	0.067	U	0.028		

- The common sequences of two or three consecutive letters (diagrams and trigrams, resp.) are also known
- Other language features: vowels constitute 40% of plaintext, letter Q is always followed by U, etc.

CSE 664 — Spring 2017

13

Substitution Cipher: Cryptanalysis

- Given a ciphertext, count different characters and their combinations to determine the frequency of usage
- Examine the ciphertext for patterns, repeated series, etc.
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics
- Example:

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

Another Attack on Shift Ciphers

- Using probabilities we can also automate cryptanalysis of shift cipher
 - why is previous approach harder to automate?
- How this attack works
 - let p_i denote the probability of ith letter, $0 \le i \le 25$, in English text
 - using known values for p_i 's, we get

$$\sum_{i=0}^{25} p_i^2 \approx 0.065$$

- let q_i denote the probability of ith letter in a ciphertext
 - how is it computed?

- Spring 2017

Another Attack on Shift Ciphers

- How this attack works (cont.)
 - if the key was k, then we expect $q_{i+k} \approx p_i$
 - so test each value of k using

$$I_j = \sum_{i=0}^{25} p_i \cdot q_{i+j}$$

for $0 \le j \le 25$

- output k for which I_k is closest to 0.065

Vigenère Cipher

- The security of the substitution cipher can be improved if each letter is mapped to different letters
 - such ciphers are called polyalphabetic
 - shift and substitution ciphers are both monoalphabetic
- ullet In Vigenère cipher, the key is a string of length ℓ and is called a keyword
- Encryption is performed on ℓ characters at a time similar to the shift cipher

Vigenère Cipher

- Gen: choose $\ell \leftarrow \mathbb{N}$ and random key $k \xleftarrow{R} \mathbb{Z}_{26}^{\ell}$
- Enc: given key $k=(k_1,k_2,\ldots,k_\ell)$, encrypt ℓ -character message m as $\operatorname{Enc}_k(m_1,\ldots,m_\ell)=((m_1+k_1) \bmod 26,\ldots,(m_\ell+k_\ell) \bmod 26)$
- To decrypt c using k:

$$Dec_k(c_1,...,c_\ell) = ((c_1 - k_1) \mod 26,...,(c_\ell - k_\ell) \mod 26)$$

Vigenère Cipher

• Example:

- using $\ell=4$ and the keyword k= LUCK, encrypt the plaintext m= CRYPTOGRAPHY
- rewrite the key as k = (11, 20, 2, 10) and compute the ciphertext as:

- the ciphertext is c = NLAZEIIBLJJI

- Shift ciphers are vulnerable to frequency analysis attacks, but what about the Vigenère cipher?
- As the length of the keyword increases, usage of letters no longer follows language structure
- Think of this cipher as a collection of several shift ciphers
- Now the first task is to find the length of the key ℓ
- Then we can divide the message into ℓ parts and use frequency analysis on each

• There are two methods to find the key length: Kasisky test and index of coincidence

• Kasisky test:

- two identical segments of plaintext will be encrypted to the same ciphertext if they are δ positions apart where $\delta \equiv 0 \pmod{\ell}$
- search for identical segments (of length \geq 3) and record the distances between them $(\delta_1, \delta_2, ...)$
- ℓ divides the δ_i 's $\Rightarrow \ell$ divides $gcd(\delta_1, \delta_2, \ldots)$

• Index of coincidence:

- assume we are given a string $x = x_1 x_2 \cdots x_n$ of n characters
- index of coincidence of x, $I_c(x)$, is measures the likelihood that two randomly drawn elements of x are identical
- as before, let q_i denote probability of ith letter in x
- index of coincidence is computed (in simplified form) as

$$I_c(x) \approx \sum_{i=0}^{25} q_i^2$$

- for English text, we get 0.065
- for random strings, each q_i has roughly the same probability

- Index of coincidence:
 - for $q_i = 1/26$, we get

$$I_c(x) = \sum_{i=0}^{25} \left(\frac{1}{26}\right)^2 = \frac{1}{26} \approx 0.038$$

- ullet Thus we can test for various key lengths to see whether I_c of the ciphertext is close to that of English
- We first divide the ciphertext string $c = c_1 ... c_n$ into ℓ substrings $s_1, ..., s_\ell$ and write them in a matrix

- Spring 2017

• Guessing key length:

$$\begin{bmatrix} c_1 & c_{\ell+1} & \cdots & c_{n-\ell+1} \\ c_2 & c_{\ell+2} & \cdots & c_{n-\ell+2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{\ell} & c_{2\ell} & \cdots & c_n \end{bmatrix} = C_1$$

$$= C_2$$

$$\vdots$$

$$= C_{\ell}$$

- compute $I_c(C_i)$ for $i = 1, ..., \ell$
- if the values are not close to 0.065, try a different key length ℓ
- ullet Once the key size is determined, use frequency analysis on each C_i

- How index of coincidence is derived
 - denote the frequency of ith letter in x by f_i
 - so we have $q_i = f_i/n$ for n-character x
 - we can choose two elements in x in $\binom{n}{2}$ ways
 - recall that the binomial coefficient $\binom{n}{k} = \frac{n!}{(k!(n-k)!)}$
 - for each letter i, there are $\binom{f_i}{2}$ ways of choosing both elements to be i

$$I_c(x) = \frac{\sum_{i=0}^{25} {f_i \choose 2}}{{n \choose 2}} = \frac{\sum_{i=0}^{25} f_i (f_i - 1)}{n(n-1)} \approx \frac{\sum_{i=0}^{25} f_i^2}{n^2} = \sum_{i=0}^{25} q_i^2$$

Cipher Cryptanalysis

- Types of attacks on encryption:
 - ciphertext only attack: the cryptanalyst knows a number of ciphertexts
 - known plaintext attack: the cryptanalyst knows a number of ciphertexts and the corresponding plaintexts
 - chosen plaintext attack: the cryptanalyst can obtain encryptions of chosen plaintext messages
 - chosen ciphertext attack: the cryptanalyst can obtain decryptions of chosen ciphertexts
- Which did we use so far? what about others?
- How realistic are they?

— Spring 2017

Summary

- Encryption: definitions, types, properties
- Shift ciphers have small key space and are easy to break using brute force search
- Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks
- Vigenère ciphertexts can be decrypted as well
 - once the key length is found, frequency analysis can be applied

CSE 664 — Spring 2017

27