Applied Cryptography and Data Security CSE 664 Spring 2017

Lecture 2: Classical Ciphers

Department of Computer Science and Engineering
University at Buffalo

Lecture Outline

- What did we cover last time?
- What is ahead?

Encryption

- Goal: secrecy of communication
- Basic terminology
- plaintext or message
- ciphertext
- cryptographic key
- Encryption scheme is defined by algorithms
- Gen: setup public parameters and key(s)
- Enc: given a message m and encryption key, output ciphertext c
- Dec: given a ciphertext c and decryption key, output plaintext m or fail

Encryption

- Gen can be configurable and takes a parameter $n \in \mathbb{N}$ called security parameter
- Encryption scheme $\mathcal{E}=($ Gen, Enc, Dec) has associated
- message space \mathcal{M}
- ciphertext space \mathcal{C}
- key space \mathcal{K}
- We obtain:
- Gen : $\mathbb{N} \rightarrow \mathcal{K}$
- Enc: $\mathcal{M} \times \mathcal{K} \rightarrow \mathcal{C}$
- Dec: $\mathcal{C} \times \mathcal{K} \rightarrow \mathcal{M}$

Encryption

- What do we want from an encryption scheme?
- correctness
- security

Types of Encryption

- Symmetric key encryption
- Public-key encryption
- How about cryptography beyond encryption?

History of Ciphers

- Date back to 2500+ years
- An ongoing battle between codemakers and codebreakers
- Driven by current communication and computation technology
- paper and ink
- radio, cryptographic engines
- computers and digital communication

Caesar Cipher

- Caesar cipher works on individual letters
- associates each letter with a number between 0 and 25, i.e., $A=0$, $B=1$, etc.
- message space is $\mathcal{M}=\{0, \ldots, 25\}$ and ciphertext space is $\mathcal{C}=\{0, \ldots, 25\}$
- Encryption: shift the letter right by 3 positions, i.e., $\operatorname{Enc}(m)=(m+3) \bmod 26$
- Decryption: shift the letter left by 3 positions, i.e., $\operatorname{Dec}(c)=(c-3) \bmod 26$

Caesar Cipher

- Example

ABCDEFGHIJKLMNOPQRSTUVWXYZ 012345678910111213141516171819202122232425

- Message $M=$ CIPHER
- Ciphertext $C=$?
- Assuming Kerckhoffs' principle, how do you break shift cipher?

Shift Cipher

- Shift cipher is generalization of Caesar cipher
- uses a key with key space $\mathcal{K}=\{1, \ldots, 25\}$
- Gen: choose $k \stackrel{R}{\leftarrow} \mathcal{K}$
- Enc: given key k, shift the letter right by k positions, i.e., $\operatorname{Enc}_{k}(m)=(m+k) \bmod 26$
- Dec: given key k, shift the letter left by k positions, i.e., $\operatorname{Dec}_{k}(c)=(c-k) \bmod 26$
- How hard is this one to break? What does it tell us?

Substitution Cipher

- Similarly, operates on one letter at a time $\left(\mathcal{M}=\mathcal{C}=\mathbb{Z}_{26}\right)$
- The key space consists of all possible permutations of the 26 symbols 0 , ..., 25
- Gen: choose a random permutation $\pi: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$
- Enc: permute using π, i.e., $\mathrm{Enc}_{\pi}(m)=\pi(m)$
- Dec: reverse permutation, i.e., $\operatorname{Dec}_{\pi}(c)=\pi^{-1}(c)$, where π^{-1} is the inverse permutation to π
- Example

Substitution Cipher

- Key space is $26!\approx 4 \cdot 10^{26}$
- exhaustive (or brute-force) search is no longer possible
- the cipher thought to be unbreakable at the time it was used
- The key to breaking the cipher lies in frequency analysis
- The fact: each language has certain features such as frequency of letters and frequency of groups of letters
- Substitution cipher preserves such features

Substitution Cipher: Cryptanalysis

- Probabilities of occurrence of English language letters:

letter	prob	letter	prob	letter	prob	letter	prob
A	$\mathbf{0 . 0 8 2}$	H	$\mathbf{0 . 0 6 1}$	\mathbf{O}	$\mathbf{0 . 0 7 5}$	V	$\mathbf{0 . 0 1 0}$
B	$\mathbf{0 . 0 1 5}$	I	$\mathbf{0 . 0 7 0}$	P	$\mathbf{0 . 0 1 9}$	\mathbf{W}	$\mathbf{0 . 0 2 3}$
C	$\mathbf{0 . 0 2 8}$	\mathbf{J}	$\mathbf{0 . 0 0 2}$	\mathbf{Q}	$\mathbf{0 . 0 0 1}$	X	$\mathbf{0 . 0 0 1}$
D	$\mathbf{0 . 0 4 3}$	K	$\mathbf{0 . 0 0 8}$	R	$\mathbf{0 . 0 6 0}$	Y	$\mathbf{0 . 0 2 0}$
E	$\mathbf{0 . 1 2 7}$	\mathbf{L}	$\mathbf{0 . 0 4 0}$	S	$\mathbf{0 . 0 6 3}$	Z	$\mathbf{0 . 0 0 1}$
F	$\mathbf{0 . 0 2 2}$	M	$\mathbf{0 . 0 2 4}$	T	$\mathbf{0 . 0 9 1}$		
G	$\mathbf{0 . 0 2 0}$	N	$\mathbf{0 . 0 6 7}$	\mathbf{U}	$\mathbf{0 . 0 2 8}$		

- The common sequences of two or three consecutive letters (diagrams and trigrams, resp.) are also known
- Other language features: vowels constitute 40% of plaintext, letter Q is always followed by \mathbf{U}, etc.

Substitution Cipher: Cryptanalysis

- Given a ciphertext, count different characters and their combinations to determine the frequency of usage
- Examine the ciphertext for patterns, repeated series, etc.
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics
- Example:

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ XZWGCHSMRNMDHNCMFQCHZ JMXJZWIEJYUCFWDJNZDIR

Another Attack on Shift Ciphers

- Using probabilities we can also automate cryptanalysis of shift cipher
- why is previous approach harder to automate?
- How this attack works
- let p_{i} denote the probability of i th letter, $0 \leq i \leq 25$, in English text
- using known values for p_{i} 's, we get

$$
\sum_{i=0}^{25} p_{i}^{2} \approx 0.065
$$

- let q_{i} denote the probability of i th letter in a ciphertext
- how is it computed?

Another Attack on Shift Ciphers

- How this attack works (cont.)
- if the key was k, then we expect $q_{i+k} \approx p_{i}$
- so test each value of k using

$$
I_{j}=\sum_{i=0}^{25} p_{i} \cdot q_{i+j}
$$

for $0 \leq j \leq 25$

- output k for which I_{k} is closest to 0.065

Vigenère Cipher

- The security of the substitution cipher can be improved if each letter is mapped to different letters
- such ciphers are called polyalphabetic
- shift and substitution ciphers are both monoalphabetic
- In Vigenère cipher, the key is a string of length ℓ and is called a keyword
- Encryption is performed on ℓ characters at a time similar to the shift cipher

Vigenère Cipher

- Gen: choose $\ell \leftarrow \mathbb{N}$ and random key $k \stackrel{R}{\leftarrow} \mathbb{Z}_{26}^{\ell}$
- Enc: given key $k=\left(k_{1}, k_{2}, \ldots, k_{\ell}\right)$, encrypt ℓ-character message m as $\operatorname{Enc}_{k}\left(m_{1}, \ldots, m_{\ell}\right)=\left(\left(m_{1}+k_{1}\right) \bmod 26, \ldots,\left(m_{\ell}+k_{\ell}\right) \bmod 26\right)$
- To decrypt c using k :

$$
\operatorname{Dec}_{k}\left(c_{1}, \ldots, c_{\ell}\right)=\left(\left(c_{1}-k_{1}\right) \bmod 26, \ldots,\left(c_{\ell}-k_{\ell}\right) \bmod 26\right)
$$

Vigenère Cipher

- Example:
- using $\ell=4$ and the keyword $k=$ LUCK, encrypt the plaintext $m=$ CRYPTOGRAPHY
- rewrite the key as $k=(11,20,2,10)$ and compute the ciphertext as:

2	17	24	15	19	$\mathbf{1 4}$	$\mathbf{6}$	$\mathbf{1 7}$	$\mathbf{0}$	$\mathbf{1 5}$	$\mathbf{7}$	$\mathbf{2 4}$
$\mathbf{1 1}$	20	2	10	$\mathbf{1 1}$	$\mathbf{2 0}$	$\mathbf{2}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{2 0}$	$\mathbf{2}$	$\mathbf{1 0}$
$\mathbf{1 3}$	$\mathbf{1 1}$	$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{1 1}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{8}$

- the ciphertext is $c=$ NLAZEIIBLJJI

Vigenère Cipher: Cryptanalysis

- Shift ciphers are vulnerable to frequency analysis attacks, but what about the Vigenère cipher?
- As the length of the keyword increases, usage of letters no longer follows language structure
- Think of this cipher as a collection of several shift ciphers
- Now the first task is to find the length of the key ℓ
- Then we can divide the message into ℓ parts and use frequency analysis on each

Vigenère Cipher: Cryptanalysis

- There are two methods to find the key length: Kasisky test and index of coincidence
- Kasisky test:
- two identical segments of plaintext will be encrypted to the same ciphertext if they are δ positions apart where $\delta \equiv 0(\bmod \ell)$
- search for identical segments (of length ≥ 3) and record the distances between them $\left(\delta_{1}, \delta_{2}, \ldots\right)$
- ℓ divides the δ_{i} 's $\Rightarrow \ell$ divides $\operatorname{gcd}\left(\delta_{1}, \delta_{2}, \ldots\right)$

Vigenère Cipher: Cryptanalysis

- Index of coincidence:
- assume we are given a string $x=x_{1} x_{2} \cdots x_{n}$ of n characters
- index of coincidence of $x, I_{c}(x)$, is measures the likelihood that two randomly drawn elements of x are identical
- as before, let q_{i} denote probability of i th letter in x
- index of coincidence is computed (in simplified form) as

$$
I_{c}(x) \approx \sum_{i=0}^{25} q_{i}^{2}
$$

- for English text, we get 0.065
- for random strings, each q_{i} has roughly the same probability

Vigenère Cipher: Cryptanalysis

- Index of coincidence:
- for $q_{i}=1 / 26$, we get

$$
I_{c}(x)=\sum_{i=0}^{25}\left(\frac{1}{26}\right)^{2}=\frac{1}{26} \approx 0.038
$$

- Thus we can test for various key lengths to see whether I_{c} of the ciphertext is close to that of English
- We first divide the ciphertext string $c=c_{1} \ldots c_{n}$ into ℓ substrings s_{1}, \ldots, s_{ℓ} and write them in a matrix

Vigenère Cipher: Cryptanalysis

- Guessing key length:

$$
\left[\begin{array}{cccc}
c_{1} & c_{\ell+1} & \cdots & c_{n-\ell+1} \\
c_{2} & c_{\ell+2} & \cdots & c_{n-\ell+2} \\
\vdots & \vdots & \ddots & \vdots \\
c_{\ell} & c_{2 \ell} & \cdots & c_{n}
\end{array}\right]=C_{1}=C_{2}
$$

- compute $I_{c}\left(C_{i}\right)$ for $i=1, \ldots, \ell$
- if the values are not close to 0.065 , try a different key length ℓ
- Once the key size is determined, use frequency analysis on each C_{i}

Vigenère Cipher: Cryptanalysis

- How index of coincidence is derived
- denote the frequency of i th letter in x by f_{i}
- so we have $q_{i}=f_{i} / n$ for n-character x
- we can choose two elements in x in $\binom{n}{2}$ ways
- recall that the binomial coefficient $\binom{n}{k}=\frac{n!}{(k!(n-k)!)}$
- for each letter i, there are $\binom{f_{i}}{2}$ ways of choosing both elements to be i

$$
I_{c}(x)=\frac{\sum_{i=0}^{25}\binom{f_{i}}{2}}{\binom{n}{2}}=\frac{\sum_{i=0}^{25} f_{i}\left(f_{i}-1\right)}{n(n-1)} \approx \frac{\sum_{i=0}^{25} f_{i}^{2}}{n^{2}}=\sum_{i=0}^{25} q_{i}^{2}
$$

Cipher Cryptanalysis

- Types of attacks on encryption:
- ciphertext only attack: the cryptanalyst knows a number of ciphertexts
- known plaintext attack: the cryptanalyst knows a number of ciphertexts and the corresponding plaintexts
- chosen plaintext attack: the cryptanalyst can obtain encryptions of chosen plaintext messages
- chosen ciphertext attack: the cryptanalyst can obtain decryptions of chosen ciphertexts
- Which did we use so far? what about others?
- How realistic are they?

Summary

- Encryption: definitions, types, properties
- Shift ciphers have small key space and are easy to break using brute force search
- Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks
- Vigenère ciphertexts can be decrypted as well
- once the key length is found, frequency analysis can be applied

