Applied Cryptography and Computer Security CSE 664 Spring 2017

Lecture 1: Basic Definitions and Concepts

Department of Computer Science and Engineering University at Buffalo

What Background is Expected?

- Mathematical maturity, including:
 - basic complexity theory
 - ability to evaluate complexity of algorithms using big-O notation
 - elementary discrete math
 - ability to work with sets, modular arithmetics
 - elementary probability theory
 - ability to compute probability of conjunction or disjunction of independent events, conditional probability
 - familiarity with mathematical proofs
 - proofs by construction, contradiction
- Programming abilities

What is Cryptography?

- Historically, the use of cryptography was to ensure secrecy of transmitting messages
- Primarily uses were by military and was perceived as an art of designing codes
- Today it evolved into a rigorous study of mathematical techniques
- Its uses significantly exceed secret communication alone

- Spring 2017

Where Do We Find Cryptography Today?

- Widely used applications of cryptography include:
 - secure communication on the web
 - secure credit card purchases, online banking, etc.
 - secure remote login and authentication
 - digital signatures and certificates
 - access control enforcement in multi-user operating systems
 - disk encryption
 - software protection
 - system, transaction, or communication integrity checking
 - trusted computing and data modification
 - secure electronic voting and elections

More Esoteric Uses of Cryptography

- Cryptography also allows us to realize:
 - secure bidding and auctions
 - e-cash
 - contract negotiation and fair contract signing
 - anonymous authentication (e.g., using hidden credentials and/or hidden policies)
 - usage of untrusted storage (e.g., searches on encrypted data) or untrusted computational power (e.g., uncheatable grid computing)
 - privacy-preserving computation and outsourcing
 - many other capabilities

- Spring 2017

What is Modern Cryptography?

- Cryptography is the scientific study of techniques for achieving security objectives
 - securing digital information, transactions, distributed communications
 - any distributed computation or interaction that may come under attack
- Cryptanalysis is the study of mathematical techniques for attempting to defeat security objectives
- Modern cryptography is formal and rigorous

— Spring 2017

Why is Rigorous Treatment Important?

- Too many proposals fail to achieve their security objectives
 - if any of them is deployed on a wide scale, consequences can be disastrous
- In modern cryptography, we
 - clearly state all assumptions
 - define the power an adversary has
 - show security of the system in the presence of such adversary under the stated assumptions
- Such design is likely to withstand the time if the underlying assumptions prove to hold

But Good Design is Not Everything

- Good design is only half of the game
 - correct implementation is no less important
 - history shows numerous examples of spectacular security failures due to improper implementation or configuration
- Common causes of implementation failure
 - improper choice of parameters
 - improperly chosen randomness
- Clear understanding of security guarantees of a cryptographic solution is important for correct use

What Security Objectives Can We Have?

- Examples of security objectives:
 - confidentiality: information is available to authorized parties only
 - integrity: any unauthorized change to the data is detected
 - availability: resources are available to authorized parties
- Cryptography is only one tool for realizing security objectives
 - others include software, hardware, physical security, etc.
- Many other security objectives can be formulated

CSE 664 — Spring 2017

10

Attacker Models

- We often refer to participants in a cryptosystem as Alice and Bob
- An adversary Eve/Carl/Mallory eavesdrops on the communication or tries to disrupt the protocol
 - passive attacker
 - active attacker
 - outsider
 - insider

— Spring 2017

Attacker's Power

- A cryptographic system often
 - precisely defines the power of an attacker
 - formally shows resilience to such adversarial behavior
- How powerful should we expect the adversary to be?
 - option 1: can assume adversary has unlimited resources
 - option 2: can assume adversary is limited by our computational abilities

What Does it Mean for a Cryptosystem to be Secure?

- Unconditional or information-theoretic security
 - the system is secure even in presence of adversary with unlimited computational resources
 - security analysis uses probability theory
 - for example, perfect secrecy in encryption schemes
- Computational security
 - relies on a hard computational problem that cannot be solved on a today's computer
 - can be broken in principle using enough computing resources
 - system stays secure as long as the underlying hard problem is believed to remain hard

13

Modern Cryptographic Design

- Kerckhoffs' principle
 - it states that algorithms comprising a cryptosystem should not be kept secret
 - why?

- Unfortunately, security by obscurity is still very common
 - always use a standardized construction with public design

Modern Cryptographic Design

- Principles of modern cryptography
 - formulation of rigorous and precise definition of security
 - important for design
 - important for usage
 - important for studying
 - unproven assumptions must be clearly stated
 - security cannot be proven otherwise
 - can be used for comparison of schemes (weaker assumptions are preferred)
 - facilitates studying of the assumptions

— Spring 2017

Modern Cryptographic Design

- Principles of modern cryptography (cont.)
 - proofs of security with respect to the definition and relative to the assumption
 - without proofs, security is left to intuition and is often broken shortly after
 - reductions are most common types of security proofs "given that assumption A holds, construction B is secure according to the given definition"
 - reduction means that breaking security of B is at least as hard as breaking A
 - proof by reduction proceeds by showing that if B is insecure, A does not hold

Hardness Terms

- In cryptography these terms are used as:
 - given a security parameter k, easy (efficient) means it is possible to compute a function in time polynomial in k
 - hard (infeasible) means that computation cannot be performed in polynomial time (e.g., requires exponential computation)
 - impossible means that the function cannot be computed using unlimited resources
 - negligible means that the function drops faster than any polynomial (i.e., at a super-polynomial rate)