
CSE 410/565 Computer Security

Spring 2022

Lecture 16: Building Secure Software

Department of Computer Science and Engineering

University at Buffalo

1



ReviewReview

• A large number of software vulnerabilities

– various types of buffer overflows

– input injection attacks

– integer overflow

– format string problems

– interaction with environment variables

– race conditions

• What can we do to improve software security?

CSE 410/565 Spring 2022

2Marina Blanton



OverviewOverview

• Defensive programming: what it is and how it is useful

• How can we make software safer?

– handling program input

– writing safe code

– interacting with the environment

– handling program output

CSE 410/565 Spring 2022

3Marina Blanton



Defensive ProgrammingDefensive Programming

• Defensive programming is the practice of defensive software design to

ensure that the software performs as expected in adversarial environment

– the goal is to ensure correct operation in face of unanticipated usage of

the software

– main difference between normal practices and defensive programming is

that nothing is assumed

– any assumptions about the input and interaction with other components

of the system are made explicit

• user input, file contents, network data, database contents, environment

variables, libraries, etc.

• e.g., it is not assumed that function or library calls outside of the

program will work as advertised

CSE 410/565 Spring 2022

4Marina Blanton



Defensive ProgrammingDefensive Programming

• Defensive programming (cont.)

– all assumptions are validated and handled in the code

– all error states are accounted for

• How can it be achieved?

– assumption validation is performed for the same components as before

• checking of input and program parameters

• validation of environment variables, interaction with operating system,

etc.

CSE 410/565 Spring 2022

5Marina Blanton



Defensive ProgrammingDefensive Programming

• Software security should be a design goal addressed from the start of

program development

– if it’s not, the resulting program is unlikely to be secure

– any assumptions made about the input and/or the environment must be

validated in the program

– any time changes are made to a secure program, the assumptions need to

be revisited

– the need for secure software is not sufficiently recognized

• time pressure, insufficient funding

• Regular testing techniques won’t identify many vulnerabilities triggered by

unusual inputs

CSE 410/565 Spring 2022

6Marina Blanton



Creating Secure CodeCreating Secure Code

• Input handling

– input size, input interpretation, input syntax

– examples

• program arguments cannot be trusted including the program name

itself

• program arguments cannot be assumed to be shorter than the

maximum length of a command line in shell

– several languages now include function calls to aid in input validation

• e.g., PHP has mysql real escape string() that escapes

special characters in its argument string for use in SQL queries

– use regular expressions to validate the input

CSE 410/565 Spring 2022

7Marina Blanton



Creating Secure CodeCreating Secure Code

• Input fuzzing

– is a technique for testing many potential types of abnormal inputs

– was introduced in 1989 to help anticipate potential problems in a

program when used on adversarial inputs

– the main idea is to use randomly generated data as inputs to a program

– the range of inputs can be very large

• use random textual or binary inputs

• generate random network requests

• pass random parameters to functions

CSE 410/565 Spring 2022

8Marina Blanton



Input FuzzingInput Fuzzing

• Example of input fuzzing

– standard HTTP GET request

• GET /index.html HTTP/1.1

– anomalous requests

• AAAAA. . . AAAA /index.html HTTP/1.1

• GET /////////index.html HTTP/1.1

• GET %n%n%n%n%n.html HTTP/1.1

• GET /AAAAAAAAAAAAAA.html HTTP/1.1

• GET /index.html HTTTTTTTTTTTP/1.1

• GET /index.html HTTP/1.1.1.1.1.1.1

CSE 410/565 Spring 2022

9Marina Blanton



Input FuzzingInput Fuzzing

• Regression vs. Fuzzing

– regression prescribes running program on many normal inputs, looks for

badness

• the goal is to prevent normal users from encountering errors (i.e.,

assertions are bad)

– fuzzing prescribes running program on many abnormal inputs, looks for

badness

• the goal is to prevent attackers from encountering exploitable errors

(i.e., assertions are often ok)

• There are several types of fuzzing

– black-box fuzz testing

– constraint-based automatic test case generation

CSE 410/565 Spring 2022

10Marina Blanton



Input FuzzingInput Fuzzing

• Black box fuzz testing

– given a program, simply feed it random inputs to see whether it would

crash

– advantages: really easy

– disadvantages: inefficient

• only a very small fraction of inputs triggers a crash, probability of

running across them might be low

• input often requires structure, random inputs are likely to be

malformed

– enhancements to the basic approach exist

• mutation based fuzzing, generation based fuzzing

CSE 410/565 Spring 2022

11Marina Blanton



Input FuzzingInput Fuzzing

• Mutation-based black-box fuzzing

– take a well-formed input, randomly perturb it (by flipping bits, etc.)

– little or no knowledge of input structure is assumed

– introduced anomalies can be completely random or follow some

heuristics

• e.g., remove NULL, shift characters, etc.

– existing tools

• ZZUF (http://caca.zoy.org/wiki/zzuf) is very successful

in finding bugs in real-world programs

• Taof, GPF, ProxyFuzz, FileFuzz, etc.

CSE 410/565 Spring 2022

12Marina Blanton



Input FuzzingInput Fuzzing

• Example: fuzzing a PDF viewer

– Google for .pdf (about a billion results)

– crawl pages to build a corpus

– use a fuzzing tool or script to take a file and mutate it

• feed the file to the program and records if it crashes

• Advantages

– very easy to setup and automate, no protocol knowledge is required

• Disadvantages

– limited by the initial corpus, may fail for protocols that use checksums,

challenge-response, etc.

CSE 410/565 Spring 2022

13Marina Blanton



Input FuzzingInput Fuzzing

• Generation-based fuzzing

– test cases are generated from some description of the format

• e.g., RFC, documentation, etc.

– anomalies are added to each possible spot in the inputs

– knowledge of protocol is expected to give better results than random

fuzzing

– advantages

• completeness, can deal with complex dependencies such as checksums

– disadvantages

• have to have protocol specification, writing generator can be labor

intensive

CSE 410/565 Spring 2022

14Marina Blanton



Input FuzzingInput Fuzzing

• Existing generation-based fuzzing tools

– generational fuzzers for common protocols (ftp, http, SNMP, etc.)

• Mu-4000, Codenomicon, PROTOS, FTPFuzz

– fuzzing frameworks: you provide a spec, they provide a fuzz set

• SPIKE, Peach, Sulley

– dumb fuzzing automated: you provide files or packet traces, they provide

fuzz set

• Filep, Taof, GPF, ProxyFuzz, PeachShark

– special purpose fuzzers

• ActiveX, regular expressions, and others

CSE 410/565 Spring 2022

15Marina Blanton



Input FuzzingInput Fuzzing

• How much fuzzing is enough?

– mutation based fuzzers are able of producing an infinite number of test

cases, when has the fuzzer run long enough?

– example

• I have a 250KB PDF file

• suppose the program crashes if one specific byte is changed to a

particular value

• you are expected to run hundreds of thousand tests before finding the

bug, is that days?

– code coverage can be used as a metric of how much has been covered

and whether more tests are needed

• coverage data can be obtained using profiling tools such as gcov

CSE 410/565 Spring 2022

16Marina Blanton



Input FuzzingInput Fuzzing

• Constraint-based automatic test case generation

– look inside the box: use the code itself to guide fuzzing

– assert security/safety properties

– explore different execution paths to check whether the security

properties hold

– challenges

• for a given path, need to somehow check whether an input can violate

the security property

• find inputs that will go down different execution paths

CSE 410/565 Spring 2022

17Marina Blanton



Input FuzzingInput Fuzzing

• Example

func(unsigned int len) {
unsigned int s;

char *buf;

if (len % 2 == 0) s = len;

else s = len + 2;

buf = malloc(s);

read(fd, buf, len);

...

– where is the bug?

– what is the security/safety property?

– what inputs will cause violation of the security property?

– how likely will random testing find the bug?

CSE 410/565 Spring 2022

18Marina Blanton



Input FuzzingInput Fuzzing

• Identify all paths

F T
if len % 2 == 0

read(fd, buf, len);

buf = malloc(s);

assert(s ≥ len);

s = lens = len + 2

CSE 410/565 Spring 2022

19Marina Blanton



Input FuzzingInput Fuzzing

F T
if len % 2 == 0

read(fd, buf, len);

buf = malloc(s);

assert(s ≥ len);

s = lens = len + 2

• Test len = 8

– no assertion failure

– what about all inputs that take the same path as len = 8?

CSE 410/565 Spring 2022

20Marina Blanton



Input FuzzingInput Fuzzing

• Solution: symbolic execution

– represent inputs (i.e., len) as symbolic variables

– perform each operation on symbolic variables symbolically

– construct a formula for a given path and give it to a solver

– example

• is there a value for len s.t.

len % 2 = 0 ∧ s = len ∧ s < len?

• in this case the formula is not satisfiable, the solver returns no

• this means that for any len that follows this path, the execution will

be safe

– symbolic execution can check many inputs at the same time

CSE 410/565 Spring 2022

21Marina Blanton



Input FuzzingInput Fuzzing

• Symbolic execution (cont.)

– how do we check other paths?

– reverse condition of the branch to go a different path

• the condition becomes len % 2 != 0

• the formula becomes

len % 2 != 0 ∧ s = len + 2 ∧ s < len

– the solver returns satisfying assignment len = 2
32 − 1

– the bug is found

• Some available tools: EXE, DART, CUTE

CSE 410/565 Spring 2022

22Marina Blanton



Creating Safe CodeCreating Safe Code

• Correct implementation is also important to program safety

– ensure that algorithms are appropriate

• e.g., a strong pseudo-random number generator is used, all code used

in testing has been removed, etc.

• search for patterns such as “fix”, “assume”, “XXX”, etc.

– ensure that stored values are interpreted correctly

• i.e., a memory location is interpreted according to the same data type

as what was stored in that memory

• use pointers with caution

– ensure correct memory usage

• freeing memory after use to avoid memory leaks, freeing only after the

last use

CSE 410/565 Spring 2022

23Marina Blanton



Creating Safe CodeCreating Safe Code

• Program interaction with the environment

– carefully check (or don’t use) critical environment variables

– exercise the principle of least privilege

• use groups for escalated privileges whenever possible

• grant only necessary privileges (e.g., to a web server)

• partition a complex program into sub-tasks with appropriate separate

privileges

– handle access to shared resources correctly

• use atomic operations to obtain exclusive access to a resource

• e.g., check for a lock file by attempting to create it

CSE 410/565 Spring 2022

24Marina Blanton



Creating Safe CodeCreating Safe Code

• Program interaction with the environment (cont.)

– exercise safe temporary file use

• use unpredictable temporary file names

• handle file creation operation with care or use atomic operations

• grant minimum access privileges on temporary files

– be aware of operating system interactions and optimizations

• securely deleting a file is an excellent example of how the program

might not perform as expected due to OS optimizations

– are the data being written to the original data blocks?

– are the data being repeatedly written?

CSE 410/565 Spring 2022

25Marina Blanton



Creating Safe CodeCreating Safe Code

• Program interaction with the environment (cont.)

– verify interaction with other programs for correctness

• inputs passed from another program should not be assumed trusted (or

having common origin)

• check exit status of child processes

• use suitable data protection for network-based communication

• Handling program output

– use correct encoding

– apply necessary protection

CSE 410/565 Spring 2022

26Marina Blanton



SummarySummary

• Writing safe code is an extremely non-trivial task

– explicitly validate all assumptions about program input and environment

– use safe programming practices

– use any tools and techniques for testing that resources permit

• code review, static analysis, fuzzing, . . .

CSE 410/565 Spring 2022

27Marina Blanton


